Littérature scientifique sur le sujet « WIND INTERACTION »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « WIND INTERACTION ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "WIND INTERACTION"

1

Colosimo, Irene, Paul L. M. de Vet, Dirk S. van Maren, Ad J. H. M. Reniers, Johan C. Winterwerp et Bram C. van Prooijen. « The Impact of Wind on Flow and Sediment Transport over Intertidal Flats ». Journal of Marine Science and Engineering 8, no 11 (12 novembre 2020) : 910. http://dx.doi.org/10.3390/jmse8110910.

Texte intégral
Résumé :
Sediment transport over intertidal flats is driven by a combination of waves, tides, and wind-driven flow. In this study we aimed at identifying and quantifying the interactions between these processes. A five week long dataset consisting of flow velocities, waves, water depths, suspended sediment concentrations, and bed level changes was collected at two locations across a tidal flat in the Wadden Sea (The Netherlands). A momentum balance was evaluated, based on field data, for windy and non-windy conditions. The results show that wind speed and direction have large impacts on the net flow, and that even moderate wind can reverse the tidal flow. A simple analytical tide–wind interaction model shows that the wind-induced reversal can be predicted as a function of tidal flow amplitude and wind forcing. Asymmetries in sediment transport are not only related to the tide–wind interaction, but also to the intratidal asymmetries in sediment concentration. These asymmetries are influenced by wind-induced circulation interacting with the large scale topography. An analysis of the shear stresses induced by waves and currents revealed the relative contributions of local processes (resuspension) and large-scale processes (advection) at different tidal flat elevations.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Boyko, Taras, Mariia Ruda, Serhiy Stasevych et Olha Chaplyk. « THE WIND TURBINE AND THE ENVIRONMENT INTERACTION MODEL ». Measuring Equipment and Metrology 82, no 4 (2021) : 51–60. http://dx.doi.org/10.23939/istcmtm2021.04.051.

Texte intégral
Résumé :
The modeling of the mutual influence of the wind power plant and the ecosystem is carried out. It is proposed to consider the compartment of a complex landscape complex as an elementary structural element of the ecosystem. The wind power plant is a component of a complex landscape complex and is considered during its life cycle. The categories of environmental impact and the relative contribution of harmful factors for each category have been determined. The modeling was carried out using various scenarios of waste management, which will make it possible to reduce the negative impact of harmful factors for each category. Summary data on the impact of harmful factors on the environment were obtained, and ecological profiles were constructed using the Eco-indicator methodology. Such profiles, together with the weighting factors, allow a comprehensive presentation of environmental impacts and obtaining the values of eco-indicators that characterize the damage caused by a wind turbine to the environment. The process of synthesis of an industrial cyber-physical system is carried out by five typical steps, among which the process of ‘cyber-realization’ is to create a cyber twin and compare it with the real system. To implement this process, mathematical modeling was carried out, as a result of which a system of differential equations was obtained, the input data for which were the values of environmental impacts, expressed by the specified indicators. The resulting model will act as ideal for a real system ‘wind turbine – environment”, and will allow predicting the consequences of the harmful impact of a wind turbine on a complex landscape system and will determine the main impacts to achieve its maximum efficiency and adaptation to the requirements for environmental protection and conservation. Some results obtained using the developed model are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati et Sang-Eul Han. « The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method ». Journal of Clean Energy Technologies 3, no 4 (2015) : 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Andreas, Edgar L., et Larry Mahrt. « On the Prospects for Observing Spray-Mediated Air–Sea Transfer in Wind–Water Tunnels ». Journal of the Atmospheric Sciences 73, no 1 (21 décembre 2015) : 185–98. http://dx.doi.org/10.1175/jas-d-15-0083.1.

Texte intégral
Résumé :
Abstract Nature is wild, unconstrained, and often dangerous. In particular, studying air–sea interaction in winds typical of tropical cyclones can place researchers, their instruments, and even their research platforms in jeopardy. As an alternative, laboratory wind–water tunnels can probe 10-m equivalent winds of hurricane strength under conditions that are well constrained and place no personnel or equipment at risk. Wind–water tunnels, however, cannot simulate all aspects of air–sea interaction in high winds. The authors use here the comprehensive data from the Air–Sea Interaction Salt Water Tank (ASIST) wind–water tunnel at the University of Miami that Jeong, Haus, and Donelan published in this journal to demonstrate how spray-mediated processes are different over the open ocean and in wind tunnels. A key result is that, at all high-wind speeds, the ASIST tunnel was able to quantify the so-called interfacial air–sea enthalpy flux—the flux controlled by molecular processes right at the air–water interface. This flux cannot be measured in high winds over the open ocean because the ubiquitous spray-mediated enthalpy transfer confounds the measurements. The resulting parameterization for this interfacial flux has implications for modeling air–sea heat fluxes from moderate winds to winds of hurricane strength.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kurniawati, Diniar Mungil. « Investigasi Performa Turbin Angin Crossflow Dengan Simulasi Numerik 2D ». JTT (Jurnal Teknologi Terpadu) 8, no 1 (27 avril 2020) : 7–12. http://dx.doi.org/10.32487/jtt.v8i1.762.

Texte intégral
Résumé :
Wind turbine is a solution to harness of renewable energy because it requires wind as the main energy. Wind turbine work by extracting wind energy into electrical energy. Crossflow wind turbine is one of the wind turbines that are developed because it does not need wind direction to produce maximum efficiency. Crossflow wind turbines work with the concept of multiple interactions, namely in the first interaction the wind hits the first level of turbine blades, then the interaction of the two winds, the remainder of the first interaction enters the second level blades before leaving the wind turbine. In the design of crossflow wind turbine the diameter ratio and slope angle are important factors that influence to determine of performance in crossflow wind turbine. In this study varied the angle of slope 90 ° and variations in diameter ratio of 0.6 and 0.7. The study aimed to analyze the effect of diameter ratio and slope angle in performance of the crossflow wind turbine. This research was conducted with numerical simulation through 2D CFD modeling. The results showed that the best performance of crossflow wind turbine occurred at diameter ratio variation 0.7 in TSR 0.3 with the best CP value 0.34.
Styles APA, Harvard, Vancouver, ISO, etc.
6

MacLeod, Morgan, et Antonija Oklopčić. « Stellar Wind Confinement of Evaporating Exoplanet Atmospheres and Its Signatures in 1083 nm Observations ». Astrophysical Journal 926, no 2 (1 février 2022) : 226. http://dx.doi.org/10.3847/1538-4357/ac46ce.

Texte intégral
Résumé :
Abstract Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in-transit spectra and narrowband light curves. We model the escape of initially homogeneous planetary winds interacting with a stellar wind. The ram pressure balance of the two winds governs this interaction. When the impingement of the stellar wind on the planetary outflow is mild or moderate, the planetary outflow expands nearly spherically through its sonic surface before forming a shocked boundary layer. When the confinement is strong, the planetary outflow is redirected into a cometary tail before it expands to its sonic radius. The resultant transmission spectra at the He 1083 nm line are accurately represented by a 1D spherical wind solution in cases of mild to moderate stellar wind interaction. In cases of strong stellar wind interaction, the degree of absorption is enhanced and the cometary tail leads to an extended egress from transit. The crucial features of the wind–wind interaction are, therefore, encapsulated in the light curve of He 1083 nm equivalent width as a function of time. The possibility of extended He 1083 nm absorption well beyond the optical transit carries important implications for planning out-of-transit observations that serve as a baseline for in-transit data.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jin, Xin, Changming Dong, Jaison Kurian, James C. McWilliams, Dudley B. Chelton et Zhijin Li. « SST–Wind Interaction in Coastal Upwelling : Oceanic Simulation with Empirical Coupling ». Journal of Physical Oceanography 39, no 11 (1 novembre 2009) : 2957–70. http://dx.doi.org/10.1175/2009jpo4205.1.

Texte intégral
Résumé :
Abstract Observations, primarily from satellites, have shown a statistical relationship between the surface wind stress and underlying sea surface temperature (SST) on intermediate space and time scales, in many regions inclusive of eastern boundary upwelling current systems. In this paper, this empirical SST–wind stress relationship is utilized to provide a simple representation of mesoscale air–sea coupling for an oceanic model forced by surface winds, namely, the Regional Oceanic Modeling System (ROMS). This model formulation is applied to an idealized upwelling problem with prevailing equatorward winds to determine the coupling consequences on flow, SST, stratification, and wind evolutions. The initially uniform wind field adjusts through coupling to a cross-shore profile with weaker nearshore winds, similar to realistic ones. The modified wind stress weakens the nearshore upwelling circulation and increases SST in the coastal zone. The SST-induced wind stress curl strengthens offshore upwelling through Ekman suction. The total curl-driven upwelling exceeds the coastal upwelling. The SST-induced changes in the nearshore wind stress field also strengthen and broaden the poleward undercurrent. The coupling also shows significant impact on the developing mesoscale eddies by damaging cyclonic eddies more than anticyclonic eddies, which leads to dominance by the latter. Dynamically, this is a consequence of cyclones with stronger SST gradients that induce stronger wind perturbations in this particular upwelling problem and that are therefore generally more susceptible to disruption than anticyclones at finite Rossby number. The net effect is a weakening of eddy kinetic energy.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Scherer, K., A. Noack, J. Kleimann, H. Fichtner et K. Weis. « The interaction of multiple stellar winds in stellar clusters : potential flow ». Astronomy & ; Astrophysics 616 (août 2018) : A115. http://dx.doi.org/10.1051/0004-6361/201832696.

Texte intégral
Résumé :
Context. While several studies have investigated large-scale cluster winds resulting from an intra-cluster interaction of multiple stellar winds, as yet they have not provided details of the bordering flows inside a given cluster. Aims. The present work explores the principal structure of the combined flow resulting from the interaction of multiple stellar winds inside stellar clusters. Methods. The theory of complex potentials is applied to analytically investigate stagnation points, boundaries between individual outflows, and the hydrodynamic structure of the asymptotic large-scale cluster wind. In a second part, these planar considerations are extended to fully three-dimensional, asymmetric configurations of wind-driving stars. Results. We find (i) that one can distinguish regions in the large-scale cluster wind that are determined by the individual stellar winds, (ii) that there are comparatively narrow outflow channels, and (iii) that the large-scale cluster wind asymptotically approaches spherical symmetry at large distances. Conclusions. The combined flow inside a stellar cluster resulting from the interaction of multiple stellar winds is highly structured.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Zhi, et Margaret Galland Kivelson. « Asteroid interaction with solar wind ». Journal of Geophysical Research : Space Physics 101, A11 (1 novembre 1996) : 24479–93. http://dx.doi.org/10.1029/96ja02019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sauer, K., A. Lipatov, K. Baumgärtel et E. Dubinin. « Solar wind-Pluto interaction revised ». Advances in Space Research 20, no 2 (janvier 1997) : 295–99. http://dx.doi.org/10.1016/s0273-1177(97)00551-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "WIND INTERACTION"

1

Westerberg, Lars-Göran. « Solar wind interaction with the terrestrial magnetopause ». Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26691.

Texte intégral
Résumé :
The solar wind interaction with the terrestrial magnetosphere is a source for many spectacular phenomena on or close the Earth's surface. A key question during the last fifty years have been how the solar wind plasma can enter the terrestrial magnetic shield represented by the magnetosphere and its outermost layer called the magnetopause. This have been the seed for many controversies among researchers throughout the years. Today we know that there are several possibilities for the solar wind to break through the magnetic boundary of the Earth. The main plasma transport mechanism at the magnetopause is called magnetic reconnection, where the magnetic energy stored in the solar wind is converted to kinetic energy through a localized break-down of the ideal frozen-in condition of the magnetic field within the plasma. Since its introduction to the space-physical community in the late 1950's, reconnection research have had its primary focus on understanding the onset mechanisms inside the diffusion region where the solar wind magnetic field is reconnected with the magnetospheric magnetic field. In this thesis work we put the context well out of the diffusion region and focuses on the implications of magnetic reconnection onto the surrounding solar wind plasma, rather than on the main mechanisms which initiates the process. We present solutions for the structure of the plasma flow through the magnetopause surface during conditions of ongoing reconnection. This is done through viscous-resistive reconnection models together with models where finite gyro-radius effects are considered. In order to validate the viscous-resistive model we also couple the analytical solutions with \textit{in situ} measurements made by the Cluster spacecraft fleet. This results in an entirely new way of determining the magnetopause transition layer thickness and the location of the reconnection site from spacecraft data.
Godkänd; 2007; 20070904 (pafi)
Styles APA, Harvard, Vancouver, ISO, etc.
2

Westerberg, Lars G. « Solar wind interaction with the terrestrial magnetopause / ». Luleå : Luleå University of Technology, 2005. http://epubl.luth.se/1402-1757/2005/31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mabon, Lynne. « The interaction of wind and fabric structures ». Thesis, University of Bath, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nativi, Lorenzo. « Jet-wind interaction in neutron star mergers ». Licentiate thesis, Stockholms universitet, Institutionen för astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-189245.

Texte intégral
Résumé :
Besides being sources of gravitational waves, there has been evidence that neutron starmergers release neutron-rich material suitable for the production of heavy r-process nuclei.The radioactive decay of these freshly synthesised elements powers a rapidly evolvingthermal transient, the “macronova” (also known as “kilonova”). Its spectral propertiesstrongly depend on the ejecta composition, since neutron rich material synthesises heavyr-process elements that can efficiently trap radiation inside the ejecta producing a longlasting signal peaking in the red part of the spectrum. The first detection of a binaryneutron star merger was also accompanied by the evidence of a relativistic jet. Despitebeing ascertained the presence of these two dynamical components, neutron-rich ejectaand ultra-relativistic jet, the observational consequences of the interplay between the twois still unclear. In the paper we investigate such interaction through dedicated specialrelativistic hydrodynamic simulations, starting from a realistic environment obtained byprevious works. Light curves are then constructed up to the time scale of days by postprocessing the hydrodynamic results adopting proper radiative transfer. I show thatjet propagation within such environment can significantly affect the observation of theradioactive transient. A relativistic outflow can in fact “punch-away” a fraction of highopacity material before the brightening of the macronova, resulting in the transient beingbrighter and bluer for on-axis observers in the first few days. In this way the jet impactsboth time scale and luminosity of the macronova peak, that are the two main observablesallowing the estimate of the ejecta properties.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Westerberg, Lars-Göran. « Solar wind interaction with the terrestrial magnetopause ». Licentiate thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17955.

Texte intégral
Résumé :
Magnetic reconnection plays an important role in the transfer of mass, energy and momentum from the solar wind to the terrestrial magnetosphere. The earliest contributions to the theory of magnetic reconnection dates from the beginning of the 1930's. However, it took until the end of the 1950's when Sweet and Parker made their first reconnection model, for the concept to reach a somewhat solid ground. During the years since then magnetic reconnection has walked through the phase of reaching mythical proportions where some researchers believed in it, and some not, to the acceptance it has today where the main issue not is whether the process happens or not, but rather the main physical properties and the implications of it. During the last fifteen years much of the research due to the rapid increase in computer capacity, treats numerical simulations of magnetic reconnection. Theoretical analysis keeps though its position as a cornerstone for the understanding of the process. But also for the base of new implemented models. Much of the theoretical work accomplished to this day has its focus on magnetic reconnection itself; applications for different conditions, and the onset of the process - something which still is under much discussion among researchers. This work focuses on the implications of magnetic reconnection in combination with the outer magnetosheath flow. The analysis treats a two-dimensional and three-dimensional case. For the 3D case, the magnetosheath plasma flow is considered to be incompressible, while we for the 2D case also treat a compressible magnetosheath plasma. Magnetic reconnection is assumed to occur in a region stretching from the sub-solar point to the north, at an arbitrary point for the 2D case, and along a line parallel to the y-axis for the 3D case. The analysis is based on the MHD equations including dissipative effects such as viscosity and resistivity, where the equations are solved approximately by the use of an ordinary perturbation expansion for large Reynolds and Lundqvist numbers. The objective of the 2D study treating an incompressible plasma flow, is to get a description of the current transition layer in combination with the outer magnetosheath and boundary layer flow. The solutions are asymptotically matched with an existing model for the magnetosheath magnetic field. For the 2D compressible case and 3D analysis, the objective is to study the development of the magnetic field and total velocity during the transition from the magnetosheath to the magnetosphere.
Godkänd; 2005; 20070116 (ysko)
Styles APA, Harvard, Vancouver, ISO, etc.
6

Song, Qingtao. « Surface wind response to oceanic fronts / ». View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3225330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Szabo, Adam 1965. « The interaction of Neptune with the solar wind ». Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29865.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nilsson, Karl. « Numerical computations of wind turbine wakes and wake interaction ». Doctoral thesis, KTH, Stabilitet, Transition, Kontroll, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166658.

Texte intégral
Résumé :
When wind turbines are placed in farms, wake effects reduce the overall power production. Also, turbine loads are significantly increased since turbulence levels are high within the wake flow. Therefore, when planning for a wind farm, it is imperative to have an understanding of the flow conditions in the farm in order to estimate the power losses and to optimize the durability of the turbines to be selected for the farm. The possibilities granted by numerical modeling and the development of computational capabilities give an opportunity to study these flow conditions in detail, which has been the key focus of this doctoral work. The actuator disc method is used for predicting the power production of the Lillgrund wind farm. The results of the simulations are compared to measurements from the actual wind farm, which are found to be in very good agreement. However, some uncertainties are identified in the modeling of the turbine. One of the uncertainties is that a generic rotor is used in the Lillgrund case. In order to quantify the errors resulting from this generalization three different rotor configurations are simulated in various flow conditions. Generally, it can be stated that the choice of rotor configuration is not crucial if the intention of the simulations is to compute the mean wake characteristics subject to turbulent inflow. Another uncertainty is that the turbines in the Lillgrund case were simulated without a power controller. Therefore, a power controller is implemented and used in simulations. Generally, the controller reduces the thrust of the turbines, reduces turbulence intensity and increases velocity levels in the wake flow. However, the use of a controller was observed to have a small impact on the power production. The effects of using the technique of imposing pregenerated turbulence and a prescribed boundary layer in the simulation are analyzed in order to verify its applicability in very long domains. It is observed that close to the plane of imposed turbulence, the conditions are mainly dependent on the imposed turbulence while far downstream the turbulence, regardless of its initial characteristics, is in near equilibrium with the prescribed wind shear. The actuator line method is validated using measurements of the near wake behind the MEXICO rotor. The analysis is performed by comparing position, size and circulation of the tip vortices, as well as velocity distributions in the wake flow. The simulations and measurements are generally found to be in good agreement apart from the tip vortex size, which is greatly overestimated in the simulations.

QC 20150519

Styles APA, Harvard, Vancouver, ISO, etc.
9

Huddleston, Debbie Ellen. « The interaction between a comet and the solar wind ». Thesis, University College London (University of London), 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Xystouris, George. « Pressure balance in the Martian ionosphere - Solar Wind interaction ». Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274537.

Texte intégral
Résumé :
Mars is the fourth planet from the Sun and its interaction with the solar wind is a quite interesting subject tostudy. While it is a rocky planet it doesn't have an intrinsic magnetic eld, but an ionosphere, created by thephotoionization of a relatively thin atmosphere. In addition there are magnetic "patches" on its surface, remnantsof an ancient fossilized magnetic eld. All these factors make the study of its interaction with the solar wind quiteintriguing. In this work we tried to extract information about the electron population and the magnetic eld intensity aroundthe planet, but also about the corresponding pressures to those magnitudes: electron -thermal- and magneticpressure respectively. Also, we tried to determine the position of the magnetic pileup boundary (MPB) andcompare it to the theoretical one, and lastly, we search for any possible structures along the MPB -both aboveand below it- by analyzing the ratio of the above mentioned pressures.We used data collected by Mars AdvancedRadar for Subsurface andIonosphereSounding (MARSIS), in a period of almost 9 years - December 2005 to May2014.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "WIND INTERACTION"

1

Jones, Ian, et Y. Toba. Wind stress over the ocean. Cambridge : Cambridge University Press, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ian, Jones, et Toba Y. 1931-, dir. Wind stress over the ocean. Cambridge : Cambridge University Press, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kelley, Neil D. Turbulence-turbine interaction : The basis for the development of the TurbSim Stochastic Simulator. Golden, CO : National Renewable Energy Laboratory, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Winterhalter, Daniel, Mario Acuña et Alexander Zakharov, dir. Mars’ Magnetism and Its Interaction with the Solar Wind. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-0-306-48604-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Daniel, Winterhalter, Acuña M. H et Zakharov Alexander, dir. Mars' magnetism and its interaction with the solar wind. Dordrecht : Kluwer Academic Publishers, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gauer, Peter. Blowing and drifting snow in Alpine terrain : A physically-based numerical model and related field measurements. Davos : Eidgenössisches Institut für Schnee- und Lawinenforschung, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

1941-, Linsky J. L., et United States. National Aeronautics and Space Administration., dir. The local ISM and its interaction with the winds of nearby late-type stars. [Washington, DC : National Aeronautics and Space Administration, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

1941-, Linsky J. L., et United States. National Aeronautics and Space Administration., dir. The local ISM and its interaction with the winds of nearby late-type stars. [Washington, DC : National Aeronautics and Space Administration, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

1941-, Linsky J. L., et United States. National Aeronautics and Space Administration., dir. The local ISM and its interaction with the winds of nearby late-type stars. [Washington, DC : National Aeronautics and Space Administration, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Halpern, D. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS ... wind components during 1990. Pasadena, Calif : National Aeronautics and Space Administration, Jet Propulsion Laboratory, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "WIND INTERACTION"

1

Fujimoto, M., W. Baumjohann, K. Kabin, R. Nakamura, J. A. Slavin, N. Terada et L. Zelenyi. « Hermean Magnetosphere-Solar Wind Interaction ». Dans Mercury, 347–68. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77539-5_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baumjohann, Wolfgang, et Gerhard Haerendel. « Dayside Convection, Viscous Interaction and Magnetic Merging ». Dans Solar Wind — Magnetosphere Coupling, 415–21. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4722-1_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tomić, Teodor. « Wind Estimation ». Dans Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence, 69–97. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15393-8_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lemaire, J. « Simulation of Solar Wind-Magnetosphere Interaction ». Dans The Polar Cusp, 33–46. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5295-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chalikov, Dmitry V. « Numerical Modeling of Wind–Wave Interaction ». Dans Numerical Modeling of Sea Waves, 175–212. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32916-1_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Amtmann, R. « Data Acquisition System for Wind Induced Tree Vibration ». Dans The Forest-Atmosphere Interaction, 149–59. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5305-5_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Crowther, J. M., et N. J. Hutchings. « Correlated Vertical Wind Speeds in a Spruce Canopy ». Dans The Forest-Atmosphere Interaction, 543–61. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5305-5_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hartle, R. E. « Interaction of the Solar Wind with Venus ». Dans Physics of Solar Planetary Environments : Proceedings Of the International Symposium on Solar-Terrestrial Physics, June 7-18,1976 Boulder, Colorado Volume II, 889–903. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/sp008p0889.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kämpchen, M., H. Korsch, A. Dafnis et H. G. Reimerdes. « Design, Qualification and Experimental Investigation on Flexible Wind Tunnel Wing Models ». Dans Flow Modulation and Fluid—Structure Interaction at Airplane Wings, 377–96. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44866-2_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tomić, Teodor. « Tracking and Interaction Control ». Dans Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence, 41–67. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15393-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "WIND INTERACTION"

1

Kóta, J., et J. R. Jokipii. « Numerical simulation of corotating interaction regions ». Dans Proceedings of the eigth international solar wind conference : Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zank, G. P. « The interaction of turbulence with shock waves ». Dans SOLAR WIND TEN : Proceedings of the Tenth International Solar Wind Conference. AIP, 2003. http://dx.doi.org/10.1063/1.1618625.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Classen, H. T., G. Mann, R. J. Forsyth et E. Keppler. « Particle acceleration at corotating interaction regions ». Dans The solar wind nine conference. AIP, 1999. http://dx.doi.org/10.1063/1.58707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Romashets, E. « Interaction Of Magnetic Clouds In The Inner Heliosphere ». Dans SOLAR WIND TEN : Proceedings of the Tenth International Solar Wind Conference. AIP, 2003. http://dx.doi.org/10.1063/1.1618712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

González-Esparza, Américo. « Geometry and radial width of interaction regions ». Dans The solar wind nine conference. AIP, 1999. http://dx.doi.org/10.1063/1.58702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Démoulin, Pascal, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet et F. Pantellini. « Interaction of ICMEs with the Solar Wind ». Dans TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3395866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zank, G. P., I. A. Kryukov, N. V. Pogorelov, D. Shaikh, M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet et F. Pantellini. « The Interaction of Turbulence with Shock Waves ». Dans TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3395927.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Williams, L. L., H. L. Pauls, G. P. Zank et D. T. Hall. « Dynamical interaction of solar wind and local interstellar cloud ». Dans Proceedings of the eigth international solar wind conference : Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Siregar, Edouard, et Melvyn L. Goldstein. « A model for cyclotron interaction effects on large scales ». Dans Proceedings of the eigth international solar wind conference : Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shaler, Kelsey, Krista M. Kecskemety et Jack J. McNamara. « Wake Interaction Effects Using a Parallelized Free Vortex Wake Model ». Dans 34th Wind Energy Symposium. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "WIND INTERACTION"

1

He, Ruoying. Eddy-Wind-Topography Interaction Dynamics. Fort Belvoir, VA : Defense Technical Information Center, septembre 2010. http://dx.doi.org/10.21236/ada542451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hand, M. M. Mitigation of Wind Turbine/Vortex Interaction Using Disturbance Accommodating Control. Office of Scientific and Technical Information (OSTI), décembre 2003. http://dx.doi.org/10.2172/15006832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Brand, A. G., N. M. Komerath et H. M. McMahon. Wind Tunnel Data from a Rotor Wake/Airframe Interaction Study. Fort Belvoir, VA : Defense Technical Information Center, juillet 1986. http://dx.doi.org/10.21236/ada171333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Banner, Michael L., Russel P. Morison, William L. Peirson et Peter P. Sullivan. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada574611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Yingchen, Jin Tan, Ibrahim Krad, Rui Yang, Vahan Gevorgian et Erik Ela. Investigating Power System Primary and Secondary Reserve Interaction under High Wind Power Penetration. Office of Scientific and Technical Information (OSTI), décembre 2016. http://dx.doi.org/10.2172/1337537.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Jiayan. Modeling the Wind and Buoyancy Driven Circulation and Ice Interaction in the Okhotsk Sea. Fort Belvoir, VA : Defense Technical Information Center, septembre 1998. http://dx.doi.org/10.21236/ada353929.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wiser, Ryan, Mark Bolinger et Troy Gagliano. Analyzing the interaction between state tax incentives and the federal production tax credit for wind power. Office of Scientific and Technical Information (OSTI), septembre 2002. http://dx.doi.org/10.2172/805145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xie, L., L. J. Pietrafesa et S. Raman. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model. Office of Scientific and Technical Information (OSTI), mars 1997. http://dx.doi.org/10.2172/481532.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bergua, Roger, Amy Robertson, Jason Jonkman et Andy Platt. Specification Document for OC6 Phase II : Verification of an Advanced Soil-Structure Interaction Model for Offshore Wind Turbines. Office of Scientific and Technical Information (OSTI), juillet 2021. http://dx.doi.org/10.2172/1811648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Emmitt, G. D., K. Godwin et S. Greco. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar : Analyses of the HRDL Data Taken during DYNAMO. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada567757.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie