Littérature scientifique sur le sujet « Wi-MAX APPLICATION »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Wi-MAX APPLICATION ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Wi-MAX APPLICATION"

1

S, Sachin Khade, et Badjate S.L. « Crescent Shape MIMO Monopole Antenna for Wi-Fi/Wi-MAX Application ». IJIREEICE 3, no 12 (15 décembre 2015) : 116–20. http://dx.doi.org/10.17148/ijireeice.2015.31224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Behera, Subhrakanta, et Debaprasad Barad. « Circular polarized dual-band antenna for WLAN/Wi-MAX application ». International Journal of RF and Microwave Computer-Aided Engineering 27, no 1 (13 septembre 2016) : e21046. http://dx.doi.org/10.1002/mmce.21046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mahfuz, M. M. Hasan, Md Rafiqul Islam, Mohamed Hadi Habaebi et Norun Abdul Malek. « SEMICIRCULAR SLOT BASED UWB MICROSTRIP PATCH ANTENNA FOR VARIABLE BAND NOTCHED APPLICATIONS ». ASEAN Engineering Journal 12, no 4 (29 novembre 2022) : 145–49. http://dx.doi.org/10.11113/aej.v12.17793.

Texte intégral
Résumé :
The patch antenna with Ultra-Wide Band (UWB) characteristics is a promising candidate for wireless communication. It is a major research problem to mitigate electromagnetic interference (EMI) with narrowband technologies such as 5G lower band, Wi-MAX, WLAN and satellite band, which are all in the UWB region. This study describes a UWB antenna with variable band rejection that can be used to avoid interference with Wi-MAX and 5G lower band applications. The UWB characteristics of a simple rectangle patch antenna with a faulty ground structure has been designed for operational bandwidth (2.7–13) GHz. A novel method semicircular slot (SCS) at the radiation patch creates a band notched from (3.25–3.80) GHz and (3.4–4) GHz. Variable band rejection between (2.95–4.40) GHz can be achieved by adjusting the “Wa” values. When measured over the band rejection frequency, the return loss (S11) and VSWR values are very close to 0 dB and larger than 2. The simulated and measured results such as return loss, VSWR, 2-D polar pattern and gain have almost similar agreement. The design of the suggested antenna is simple, compact and efficient for Wi-MAX application, this is an ideal UWB antenna with the band notch characteristics.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mandal, Bappaditya, et Susanta Kr Parui. « A miniaturized wearable button antenna for Wi-Fi and Wi-Max application using transparent acrylic sheet as substrate ». Microwave and Optical Technology Letters 57, no 1 (18 novembre 2014) : 45–49. http://dx.doi.org/10.1002/mop.28781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Allbadi, Yousif, Huda Ibrahim Hamd et Ilham H. Qaddoori. « Radiation effect of M-slot patch antenna for wireless application ». Bulletin of Electrical Engineering and Informatics 11, no 5 (1 octobre 2022) : 2657–62. http://dx.doi.org/10.11591/eei.v11i5.3801.

Texte intégral
Résumé :
Today, the specific absorption rate has become an important and necessary measurement when designing and implementing any type of antenna. In recent years, various devices have appeared that use different frequencies for wireless communication systems, which are a source of electromagnetic radiation. The M-slot antenna is designed in this paper to operate in multi-band frequencies for wireless communications using computer simulation technology (CST) software 2020. The radiation effect for this antenna is calculated for tissue mass of the human fingertips, which consists of three layers (skin, meat, and bone), over a mass of 1 g and 10 g according to the IEEE and International Commission on Non-Ionizing Radiation Protection (ICNIRP) organization. The results are shown three applications in the communication system, which are Wi-Fi, worldwide interoperability for microwave access (Wi-Max) and, satellite X-band and, the value of specific absorption rate (SAR) increase with increased frequency.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Selvaraj, Dr D. « Circularly Polarized Multi Band Patch Antenna for High Frequency Wi-Fi and Wi-MAX Application Simulated with CST Studio Suite ». International Journal for Research in Applied Science and Engineering Technology V, no IV (25 mars 2017) : 83–90. http://dx.doi.org/10.22214/ijraset.2017.4015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kumar, Gurpreet, Pankaj Kumar Keshri et Sunil Basra. « Wideband Patch Antenna Design for Wi-MAX and WLAN Application with Modified Ground Plane ». International Journal of Computer Applications 92, no 1 (18 avril 2014) : 21–25. http://dx.doi.org/10.5120/15973-4860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kaur, Amandeep, et Praveen Kumar Malik. « Adoption of Micro-Strip Patch Antenna for Wireless Communication ». International Journal of Electronics, Communications, and Measurement Engineering 10, no 1 (janvier 2021) : 1–21. http://dx.doi.org/10.4018/ijecme.2021010101.

Texte intégral
Résumé :
The tremendous growth in wireless technology boosts the need for data transmission at high rates and with fast speed. The invention of wireless data transmission techniques cut down infrastructure costs by omitting the need for wires for long-distance communication. In every wireless application like wi-fi, Bluetooth, wi-max, GPS, mobile communication, satellite communication, etc. needs an antenna for signal transmission using radio wave, so the antenna is highly regarded for this. In this research article, an overview of wireless communication and the need for a microstrip patch antenna is discussed for wireless applications with gain and bandwidth enhancement techniques discovered by researchers till now after an extensive literature survey. Antenna performance is analyzed in terms of antenna parameters like VSWR, bandwidth, return loss, gain, and radiation pattern. This extensive literature survey is done to provide benefit to researchers and to analyze how much antenna efficiency is obtained at different frequencies in terms of the above-mentioned antenna parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kumar, Sukhbir. « Design and Study of Compact and Wideband Microstrip U-Slot Patch Antenna for Wi-Max Application ». IOSR Journal of Electronics and Communication Engineering 5, no 2 (2013) : 45–48. http://dx.doi.org/10.9790/2834-0524548.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ghatak, Rowdra, C. Goswami, R. K. Mishra et D. R. Poddar. « A CPW FED planar monopole antenna with modified H shaped slot for WLAN/Wi-MAX application ». Microwave and Optical Technology Letters 54, no 5 (13 mars 2012) : 1296–301. http://dx.doi.org/10.1002/mop.26747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Wi-MAX APPLICATION"

1

SONY. « DESIGN AND IMPLEMENTATION OF VIVALDI ANTENNA ». Thesis, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18309.

Texte intégral
Résumé :
In the recent years the development in communication systems requires the development of low cost, minimal weight, low profile antennas that are capable of maintaining high performance over a wide spectrum of frequencies. This technological trend has focused much effort into the design of a Vivaldi Antenna. Since the release by the Federal Communications Commission (FCC) of a bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) wireless communication UWB is rapidly advancing as a high data rate wireless communication technology. The objective of the design is to achieve return loss better than -10 dB over the desired frequency range of WiMAX, with a gain ranging from 4-9 dB. The minimum half power beam width required in both Azimuth and Elevation planes is 50o , so that the designed Vivaldi Antenna element can be used for wide angle scanning. The designed Vivaldi Antenna has been fed by a strip line that helps in efficient coupling of microwave power to slot line. The triplicate structure of Vivaldi Antenna helps in reducing the spurious radiations from strip line feed. All the designs, simulations and analysis have been done in CST Microwave Studio Suite 2018. The Vivaldi Antenna is then fabricated. The simulated and fabricated results are compared. The Research Paper on “Design and Implementation on Vivaldi Antenna for Wi-MAX Applications” has been presented in the e-conference in National Conference on Recent Trends in IOT, Machine Learning, Artificial Intelligence and its Applications (NCRIMA 2020) organized by Department of Electronics and Communication Engineering on 19-20 June, 2020.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ye, Bo-Xian, et 葉柏賢. « A Variable FFT for MIMO-OFDM Systems over Wi-MAX Applications ». Thesis, 2008. http://ndltd.ncl.edu.tw/handle/26517664357905956928.

Texte intégral
Résumé :
碩士
國立交通大學
電機與控制工程系所
97
In this thesis, we present a variable FFT that it support multiple FFT size and multiple antennas for Wi-MAX systems. The 2048/1024/512/128-point variable FFT is based on radix-2 and radix-2^3 FFT algorithm. We propose a memory sharing method to reduce the memory size. This method can reduce the ROM table size from 1023N/1024 to N/4, where N is the FFT size, compared with R2SDF. Furthermore, we use the FFT algorithm to reduce the number of complex multipliers, and the modified complex multiplier leads to a smaller gate count. Thus, the power consumption can be to reduced as well. The proposed variable FFT is fabricated using a TSMC 0.18um CMOS technology with chip area 25 mm^2. The average dynamic power consumption is 181 mW at 40 MHz operating frequency.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Motamarri, Naveen. « High gain narrow band LNA design for Wi-max applications at 3.5GHZ ». Thesis, 2014. http://ethesis.nitrkl.ac.in/6470/1/E-43.pdf.

Texte intégral
Résumé :
The wireless communication has been experiencing tremendous growth in technology. The demand has been increased for low cost RFIC designs. Many researches are going on front end design of RF transceiver. The design of receiver path has become a challenging aspect, because of increased interferences around the communication path. Transmitter path design is easy because interference levels are very less compared to signal level. As the operating frequency is higher in RFIC design, receiver path also experiencing the internal noises in the system. The performance of transceiver depends on each of the individual blocks such as low noise amplifiers. In this thesis, Two RF CMOS narrow band LNAs (cascade and differential) are designed. They are designed for the IEEE 802.16 standard in the 3.5 GHz band for Wi-MAX applications. Low noise amplifier is used as the first block after the receiving antenna. This LNA is placed before the mixer in the receiver path for amplification. The LNA must have good gain and low NF to avoid further degradation of receiver path. This thesis focuses on design of a high gain LNAs with acceptable noise figure operating at 3.5GHz. Inductive Source degeneration method is used to match the circuit to source impedance in all the designs. All the circuits operate with 1.8v supply voltage. Here in this thesis, Enhanced cascode LNA exhibits a gain of 26.88dB and NF of 2.55dB and the Differential LNA exhibits a gain of 32.71dB and NF of 2.66dB. The circuits are designed using cadence 0.18µm RF CMOS technology.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Wi-MAX APPLICATION"

1

Kamble, Vivek D., et Mandar R. Jadhav. « Design of MIMO Antenna for WLAN and Wi-Max Application ». Dans Techno-Societal 2016, 1113–21. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53556-2_111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pal, Hina D., et Balamurugan Kavitha. « Multi-application Antenna for Indoor Distribution Antenna System like Wi-Fi, Wi-max and Bluetooth ». Dans Proceedings of 2nd International Conference on Intelligent Computing and Applications, 241–51. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1645-5_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vashisth, Siddharth, Sparsh Singhal et Chandan. « Low-Profile H Slot Multiband Antenna for WLAN/Wi-MAX Application ». Dans Innovations in Cyber Physical Systems, 727–35. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4149-7_67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mukherjee, Anish, Abhishek Kanaujia et Ravi Prakash Dwivedi. « Multiband High-Gain Antenna with CPW Feed for Wi-Fi, WI-MAX and X Band Application ». Dans Lecture Notes in Electrical Engineering, 145–52. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7293-2_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shirley Helen Judith, S., A. Ameelia Roseline et S. Hemajothi. « Design of Multiple Input and Multiple Output Antenna for Wi-Max and WLAN Application ». Dans Emerging Trends in Computing and Expert Technology, 1550–62. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32150-5_156.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Madhav, B. T. P., M. Ajay Babu, P. Farhana Banu, G. Harsha Sai Teja, P. Prashanth et K. L. Yamini. « Octagonal Shaped Frequency Reconfigurable Antenna for Wi-Fi and Wi-MAX Applications ». Dans Lecture Notes in Electrical Engineering, 581–88. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7329-8_59.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lin, Shirong, Zhijun Li et Shouxu Jiang. « Max-Weight Algorithm for Mobile Data Offloading through Wi-Fi Networks ». Dans Wireless Algorithms, Systems, and Applications, 773–82. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07782-6_69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shringi, Megha, Rajveer Singh et M. L. Meena. « Design of Compact Dual-Band Antenna for Wi-Max and WLAN Applications ». Dans Algorithms for Intelligent Systems, 353–60. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5077-5_32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Arora, Chirag, Shyam S. Pattnaik et R. N. Baral. « Microstrip Patch Antenna Array with Metamaterial Ground Plane for Wi-MAX Applications ». Dans Advances in Intelligent Systems and Computing, 665–71. New Delhi : Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2526-3_69.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Singh, Namrata, R. P. S. Gangwar et A. K. Arya. « A Compact Tri-band Microstrip Patch Antenna for WLAN and Wi-MAX Applications ». Dans Advances in Intelligent Systems and Computing, 655–62. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5520-1_58.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Wi-MAX APPLICATION"

1

Sagne, Dipika S., N. K. Choudhary et Prasanna L. Zade. « Broadband Equilatral Triangular Microstrip Antenna for Wi-Max Application ». Dans 2012 International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2012. http://dx.doi.org/10.1109/csnt.2012.9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Khade, Sachin S., et S. L. Badjate. « A spatial diversity MIMO antenna for Wi-max application ». Dans 2013 Annual IEEE India Conference (INDICON). IEEE, 2013. http://dx.doi.org/10.1109/indcon.2013.6726107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gupta, Priyanka, et Deepak Bhatia. « Bandpass filter using short circuited stubs for mobile Wi-Max application ». Dans 2014 International Conference on Advances in Engineering and Technology Research (ICAETR). IEEE, 2014. http://dx.doi.org/10.1109/icaetr.2014.7012848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bande, Vikrant, Puneeth T. R. Kumar et K. Krishnamoorthy. « Dual Band-Dual Sense Circularly Polarized Patch Antenna for Wi-Max Application ». Dans 2018 IEEE Indian Conference on Antennas and Propogation (InCAP). IEEE, 2018. http://dx.doi.org/10.1109/incap.2018.8770719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Das, Hangsa Raj, Rajesh Dey et Sumanta Bhattacharya. « DESIGN OF RECTANGULAR SHAPED SLOTTED MICRO STRIP ANTENNA FOR TRIPLE FREQUENCY OPERATION FOR WIRELESS APPLICATION ». Dans Topics in Intelligent Computing and Industry Design. Volkson Press, 2021. http://dx.doi.org/10.26480/etit.02.2020.169.172.

Texte intégral
Résumé :
This Paper represents the designing of the Tri- Band Rectangular Printed micro strip Antenna. One amongst the simplest feeding technique is employed i.e. coaxial feeding technique for feeding the antenna Tri band antenna is obtained by etching two quarter wavelength rectangular shaped slots inside the patch at the proper position to resonate over GSM, Bluetooth and Wi- MAX. The proposed antenna is realized on FR-4 dielectric substrate having a dielectric constant of 4.4 and loss tangent of 0.02, with dimensions of 46x38x1.6mm3. The design calculations are done for the frequency of 2.4 GHz. The designed antenna is simulated using EM simulation software CAD FEKO suite (7.0). The antenna covers the three bands of operation i.e. GSM (1.834-1.858GHz), Bluetooth (2.422- 2.487GHz), Wi-Max (3.519-3.583GHz) with reflection coefficient ≤-10dB. The overall simulation results shows that the antenna gives good impedance matching at desired frequencies with VSWR≤2.Also the radiation pattern, efficiency,gain and impedance for all four frequencies are investigated using simulation results.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shivhare, Rupal, et Rachit Jain. « An irregular polygon slotted rectangular microstrip antenna for WI-MAX and WLAN application ». Dans 2015 International Conference on Communication Networks (ICCN). IEEE, 2015. http://dx.doi.org/10.1109/iccn.2015.75.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bhise, Suvarna, et UdayPandit Khot. « Design of multipathand random phase Ricean fading channel simulator for Wi-MAX application ». Dans 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC). IEEE, 2017. http://dx.doi.org/10.1109/iccpeic.2017.8290410.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Qadeer, Abdul, et Khalid Khan. « Pre-Coordination mechanism for self configuration of neighborhood cells in mobile Wi-Max ». Dans 2011 5th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2011. http://dx.doi.org/10.1109/icaict.2011.6110976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Surendar, U., et G. Brenie Sekar. « A novel CPW bandpass filter based on negative indexed materials for Wi-Max application ». Dans 2014 International Conference on Information Communication and Embedded Systems (ICICES). IEEE, 2014. http://dx.doi.org/10.1109/icices.2014.7034045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rawat, Sanyog, et K. K. Sharma. « Design of modified pentagonal patch antenna on defective ground for Wi-Max/WLAN application ». Dans 5TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES : (NCTP‐09). American Institute of Physics, 2016. http://dx.doi.org/10.1063/1.4945215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie