Littérature scientifique sur le sujet « Whole-transcriptome sequencing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Whole-transcriptome sequencing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Whole-transcriptome sequencing"
Streets, A. M., X. Zhang, C. Cao, Y. Pang, X. Wu, L. Xiong, L. Yang et al. « Microfluidic single-cell whole-transcriptome sequencing ». Proceedings of the National Academy of Sciences 111, no 19 (29 avril 2014) : 7048–53. http://dx.doi.org/10.1073/pnas.1402030111.
Texte intégralHosokawa, Kohei, Sachiko Kajigaya, Keyvan Keyvanfar, Wangmin Qiao, Yanling Xie, Angelique Biancotto, Danielle M. Townsley, Xingmin Feng et Neal S. Young. « Whole transcriptome sequencing identifies increasedCXCR2expression in PNH granulocytes ». British Journal of Haematology 177, no 1 (1 février 2017) : 136–41. http://dx.doi.org/10.1111/bjh.14502.
Texte intégralYang, In Seok, et Sangwoo Kim. « Analysis of Whole Transcriptome Sequencing Data : Workflow and Software ». Genomics & ; Informatics 13, no 4 (2015) : 119. http://dx.doi.org/10.5808/gi.2015.13.4.119.
Texte intégralPetrini, Iacopo, Arun Rajan, Trung Pham, Donna Voeller, Sean Davis, James Gao, Yisong Wang et Giuseppe Giaccone. « Whole Genome and Transcriptome Sequencing of a B3 Thymoma ». PLoS ONE 8, no 4 (5 avril 2013) : e60572. http://dx.doi.org/10.1371/journal.pone.0060572.
Texte intégralSiezen, Roland J., Greer Wilson et Tilman Todt. « Prokaryotic whole-transcriptome analysis : deep sequencing and tiling arrays ». Microbial Biotechnology 3, no 2 (22 février 2010) : 125–30. http://dx.doi.org/10.1111/j.1751-7915.2010.00166.x.
Texte intégralRuan, Miaomiao, Jiying Liu, Xueyang Ren, Chu Li, Allan Z. Zhao, Lin Li, Haiyuan Yang, Yifan Dai et Ying Wang. « Whole transcriptome sequencing analyses of DHA treated glioblastoma cells ». Journal of the Neurological Sciences 396 (janvier 2019) : 247–53. http://dx.doi.org/10.1016/j.jns.2018.11.027.
Texte intégralSeliger, Sonja, Verena Geirhos, Torsten Haferlach, Wolfgang Kern, Wencke Walter, Manja Meggendorfer, Constance Baer, Anna Stengel et Claudia Haferlach. « Comprehensive Analysis of MYC Translocations in Multiple Myeloma By Whole Genome Sequencing and Whole Transcriptome Sequencing ». Blood 134, Supplement_1 (13 novembre 2019) : 1774. http://dx.doi.org/10.1182/blood-2019-124704.
Texte intégralCirulli, Elizabeth T., Abanish Singh, Kevin V. Shianna, Dongliang Ge, Jason P. Smith, Jessica M. Maia, Erin L. Heinzen, James J. Goedert et David B. Goldstein. « Screening the human exome : a comparison of whole genome and whole transcriptome sequencing ». Genome Biology 11, no 5 (2010) : R57. http://dx.doi.org/10.1186/gb-2010-11-5-r57.
Texte intégralMartin, Jeffrey, Wenhan Zhu, Karla D. Passalacqua, Nicholas Bergman et Mark Borodovsky. « Bacillus anthracis genome organization in light of whole transcriptome sequencing ». BMC Bioinformatics 11, Suppl 3 (2010) : S10. http://dx.doi.org/10.1186/1471-2105-11-s3-s10.
Texte intégralTang, Wei, et Ludmila Prokunina-Olsson. « Whole transcriptome sequencing of normal and tumor bladder tissue samples ». Genome Biology 12, Suppl 1 (2011) : P23. http://dx.doi.org/10.1186/gb-2011-12-s1-p23.
Texte intégralThèses sur le sujet "Whole-transcriptome sequencing"
Khan, Hamza. « De novo annotation of non-model organisms using whole genome and transcriptome shotgun sequencing ». Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60152.
Texte intégralClouse, Jared William. « The Amaranth (Amaranthus Hypochondriacus) Genome : Genome, Transcriptome and Physical Map Assembly ». BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5916.
Texte intégralRaykova, Doroteya. « Genetics of Two Mendelian Traits and Validation of Induced Pluripotent Stem Cell (iPSC) Technology for Disease Modeling ». Doctoral thesis, Uppsala universitet, Medicinsk genetik och genomik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-246228.
Texte intégralBARZAGO, CLAUDIA. « Identification of a new molecular signature in peripheral blood mononuclear cells from patients affected by myasthenia gravis ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/105298.
Texte intégralMyasthenia gravis (MG) is a T-cell dependent humoral-mediated autoimmune disease characterized by neuromuscular transmission impairment, resulting in fatigability and muscular weakness. In approximately 80% of MG patients, the disorder is associated with the production of autoantibodies against acetylcholine receptor (AChR) localized at the post-synaptic membrane of the neuromuscular junction. Growing body of evidences suggests that the autoimmune reaction develops in the thymus; nevertheless, the molecular mechanisms underlying the perpetuation of the autoimmune processes in the periphery are not fully characterized. We studied the transcriptional profile of peripheral blood mononuclear cells from AChR-positive early onset (< 50 years old) (AChR-EOMG) patients, the best studied clinical subgroup, and age- and sex-matched healthy controls, by using whole-transcriptome sequencing. Transcriptome data together with Ingenuity Pathway Analysis showed that 128 coding transcripts and 9 microRNA (miRNAs) precursors were differentially expressed between AChR-EOMG patients and healthy controls. In particular, 17% (22 out of 128) of the coding transcripts were related to ‘infectious disease’ category and 46% (59 out of 128) to ‘inflammatory disease’ and ‘inflammatory response’ categories. Selection of the genes of interest and further qPCR validation of the transcript levels revealed that among the ‘infectious disease-associated’ transcripts, ETF1, NFKB2, PLK3, and PPP1R15A were increased, whereas CLC and IL4 were decreased in AChR-EOMG patients versus healthy controls; in the ‘inflammation’ categories, ABCA1, FUS, and RELB were upregulated, suggesting of a possible loss of immunomodulatory function. Additional transcriptome data analysis and validation were also centered on miRNA-mRNA putative interactions. We observed that miR-612, miR-3651, and miR-3654 were upregulated, whereas miR-612-putative AKAp12 and HRH4 target transcripts and also miR-3651-predicted CRISP3 target were decreased in AChR-EOMG samples, further suggesting a loss of immunoregulatory processes. Taken together, our findings disclose a novel peripheral molecular signature associated with AChR-EOMG, and suggest a key role of ‘infectious’ and ‘inflammation-related’ molecules in disease pathogenesis. Future studies on the molecules discovered here will allow a better understanding of the molecular basis of AChR-EOMG pathogenesis that could be helpful for the development of new therapeutic interventions.
Burkert, Christian Martin. « Cis-regulation and genetic control of gene expression in neuroblastoma ». Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23008.
Texte intégralGene regulation controls phenotypes in health and disease. In cancer, the interplay between germline variation, genetic aberrations and epigenetic factors modulate gene expression in cis. The childhood cancer neuroblastoma originates from progenitor cells of the sympathetic nervous system. It is characterized by a sparsity of recurrent exonic mutations but frequent somatic copy-number alterations, including gene amplifications on extrachromosomal circular DNA. So far, little is known on how local genetic and epigenetic factors regulate genes in neuroblastoma to establish disease phenotypes. I here combine allele-specific analysis of whole genomes, transcriptomes and circular DNA from neuroblastoma patients to characterize genetic and cis-regulatory effects, and prioritize germline regulatory variants by cis-QTLs mapping and chromatin profiles. The results show that somatic copy-number dosage dominates local genetic effects and regulates pathways involved in telomere maintenance, genomic stability and neuronal processes. Gene amplifications show strong dosage effects and are frequently located on large but not small extrachromosomal circular DNAs. My analysis implicates 11q loss in the upregulation of histone variants H3.3 and H2A in tumors with alternative lengthening of telomeres and cooperative effects of somatic rearrangements and somatic copy-number gains in the upregulation of TERT. Both 17p copy-number imbalances and associated downregulation of neuronal genes as well as upregulation of the imprinted gene RTL1 by copy-number-independent allelic dosage effects is associated with an unfavorable prognosis. cis-QTL analysis confirms the previously reported regulation of the LMO1 gene by a super-enhancer risk polymorphism and characterizes the regulatory potential of additional GWAS risk loci. My work highlights the importance of dosage effects in neuroblastoma and provides a detailed map of regulatory variation active in this disease.
Tan, Yuxiang. « Computational approaches for whole-transcriptome cancer analysis based on RNA sequencing data ». Thesis, 2016. https://hdl.handle.net/2144/14502.
Texte intégralLin, Kuan-Ting, et 林冠廷. « Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/97773695842537346649.
Texte intégral國立陽明大學
生物醫學資訊研究所
102
There is an urgent need to identify biomarkers for hepatocellular carcinoma due to limited treatment options and the poor prognosis of this common lethal disease. Whole-transcriptome shotgun sequencing (RNA-Seq) provides new possibilities for biomarker identification. We sequenced ∼250 million pair-end reads from a pair of adjacent normal and tumor liver samples. With the aid of bioinformatics tools, we determined the transcriptome landscape and sought novel biomarkers by further empirical validations in 55 pairs of adjacent normal and tumor liver samples with various viral statuses such as HBV(+), HCV(+) and HBV(-)HCV(-). We identified a novel gene with coding regions, termed DUNQU1, which has a tissue-specific expression pattern in tumor liver samples of HCV(+) and HBV(-)HCV(-) hepatocellular carcinomas. Overexpression of DUNQU1 in Huh7 cell lines enhances the ability to form colonies in soft agar. Also, we identified three novel differentially-expressed protein-coding genes (ALG1L, SERPINA11 and TMEM82) that lack documented expression profiles in liver cancer and showed that the level of SREPINA11 is correlated with pathology stages. Moreover, we showed that the alternative splicing event of FGFR2 is associated with virus infection, tumor size, cirrhosis and tumor recurrence. The findings indicate that these new markers of hepatocellular carcinoma may be of value in improving prognosis and could have potential as new targets for developing new treatment options.
Radovich, Milan. « DECODING THE TRANSCRIPTIONAL LANDSCAPE OF TRIPLE-NEGATIVE BREAST CANCER USING NEXT GENERATION WHOLE TRANSCRIPTOME SEQUENCING ». Thesis, 2012. http://hdl.handle.net/1805/2745.
Texte intégralTriple-negative breast cancers (TNBCs) are negative for the expression of estrogen (ER), progesterone (PR), and HER-2 receptors. TNBC accounts for 15% of all breast cancers and results in disproportionally higher mortality compared to ER & HER2-positive tumours. Moreover, there is a paucity of therapies for this subtype of breast cancer resulting primarily from an inadequate understanding of the transcriptional differences that differentiate TNBC from normal breast. To this end, we embarked on a comprehensive examination of the transcriptomes of TNBCs and normal breast tissues using next-generation whole transcriptome sequencing (RNA-Seq). By comparing RNA-seq data from these tissues, we report the presence of differentially expressed coding and non-coding genes, novel transcribed regions, and mutations not previously reported in breast cancer. From these data we have identified two major themes. First, BRCA1 mutations are well known to be associated with development of TNBC. From these data we have identified many genes that work in concert with BRCA1 that are dysregulated suggesting a role of BRCA1 associated genes with sporadic TNBC. In addition, we observe a mutational profile in genes also associated with BRCA1 and DNA repair that lend more evidence to its role. Second, we demonstrate that using microdissected normal epithelium maybe an optimal comparator when searching for novel therapeutic targets for TNBC. Previous studies have used other controls such as reduction mammoplasties, adjacent normal tissue, or other breast cancer subtypes, which may be sub-optimal and have lead to identifying ineffective therapeutic targets. Our data suggests that the comparison of microdissected ductal epithelium to TNBC can identify potential therapeutic targets that may lead to be better clinical efficacy. In summation, with these data, we provide a detailed transcriptional landscape of TNBC and normal breast that we believe will lead to a better understanding of this complex disease.
Lin, Fang-Yu, et 林芳瑜. « Whole Genome Sequencing, Transcriptome Analysis of Acid Response, and Urease Gene Cluster Characterization of Klebsiella pneumoniae CG43 ». Thesis, 2013. http://ndltd.ncl.edu.tw/handle/72275031070553698724.
Texte intégral國立清華大學
分子醫學研究所
101
Klebsiella pneumoniae is an important opportunistic pathogen that causes various human diseases such as pneumonia, urinary tract infection, meningitis, bacteremia and septicemia. In Taiwan, K. pneumoniae is the predominant pathogen responsible for pyogenic liver abscess in diabetic patients and K1 and K2 serotypes account for the majority of the isolates. K. pneumoniae CG43 was originally isolated from a patient with pyogenic liver abscess in Taiwan. It is a highly virulent K2 serotype strain. In this study, the whole genome sequence of K. pneumoniae CG43 was determined and annotated. The genome is 5,166,857 bp in length. The similarity of the CG43 genome sequence with that of K. pneumoniae NTUH-K2044 and MGH 78578 are 93 % and 94 %, respectively. K. pneumoniae CG43 has 203 open reading frames distinct from K. pneumoniae NTUH-K2044 and K. pneumoniae MGH 78578. Furthermore, because the ability of acid resistance is important for Enterobacteriaceae, we also performed transcriptome analysis of K. pneumoniae CG43 gene expression profile under acidic growth conditions. The data indicate that 4.94 % genes in CG43 genome were induced, while 18.34 % genes were repressed. Most of the up-regulated genes are associated with chaperone-related function and many of the down-regulated genes belong to maltose regulon. Besides, there are two urease gene clusters in K. pneumoniae CG43, different from most of K. pneumoniae that has only one urease gene cluster. Urease catalyzes the hydrolysis of the urea into carbon dioxide and ammonia. Besides providing nitrogen sources, the reaction can neutralize acidic environments, allowing pathogenic bacteria to survive the acidic conditions. Three types of urease mutant strains (ΔureA1, ΔureA2 and ΔureA1 ΔureA2) were constructed in CG43. Growth of ΔureA1 and ΔureA1 ΔureA2 double mutant was reduced in M9 minimal medium using urea as the sole nitrogen source. The two mutant strains lack urease activity as determined by Christensen’s Urea Agar. In addition, the growth of wild type and three urease mutant strains has no difference under acidic environment. The result suggests that urease is not a major factor contributing to acid tolerance of K. pneumoniae CG43 under normal cultural condition. To sum up, the complete CG43 genome sequence will provide critical information for future analysis of the virulence factors in the bacterium.
Chow, Anthony. « Whole Transcriptome Analysis Reveals Established and Novel Associations with TMPRSS2:ERG Fusion in Prostate Cancer ». Thesis, 2012. http://hdl.handle.net/1807/33381.
Texte intégralChapitres de livres sur le sujet "Whole-transcriptome sequencing"
Benjak, Andrej, Claudia Sala et Ruben C. Hartkoorn. « Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis ». Dans Methods in Molecular Biology, 17–30. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2450-9_2.
Texte intégralSinjab, Ansam, Reem Daouk, Wassim Abou-Kheir et Humam Kadara. « Whole Transcriptome Sequencing Analysis of Cancer Stem/Progenitor Cells Obtained from Mouse Lung Adenocarcinomas ». Dans Methods in Molecular Biology, 187–98. New York, NY : Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1278-1_15.
Texte intégralDetera-Wadleigh, Sevilla D., Nirmala Akula et Liping Hou. « Basic Molecular Genetics Concepts and Tools ». Dans Psychiatric Genetics, 34–56. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190221973.003.0003.
Texte intégralAli, Irfan, Faiz Ahmad Joyia, Ghulam Mustafa, Safdar Ali Mirza et Muhammad Sarwar Khan. « Emerging Trends to Improve Tropical Plants : Biotechnological Interventions ». Dans Tropical Plant Species [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108532.
Texte intégralActes de conférences sur le sujet "Whole-transcriptome sequencing"
Darabi, Sourat, Andrew Elliott, David R. Braxton, Jia Zeng, Kelsey Poorman, Jeffrey Swensen, Geoffrey T. Gibney et al. « Abstract 2221 : Whole transcriptome sequencing reveals oncogenic fusions in melanoma ». Dans Proceedings : AACR Annual Meeting 2021 ; April 10-15, 2021 and May 17-21, 2021 ; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2221.
Texte intégralRadovich, Milan, Bradley A. Hancock, Nawal Kassem, Jin Zhu, Jarret Glasscock, Sunil Badve, Yunlong Liu, Kenneth A. Kesler, Patrick J. Loehrer et Bryan P. Schneider. « Abstract 4858 : Next-generation whole transcriptome sequencing of thymic malignancies ». Dans Proceedings : AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011 ; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4858.
Texte intégralMak, Cathy Ka-Yan, Grace Tin-Yan Chung, Kevin Yuk-Lap Yip, Ken Kai-Yuen Tso, Sau-Dan Lee, Siu-Tim Cheung, Sai-Wah Tsao, Pierre Busson, Ka-Fai To et Kwok-Wai Lo. « Abstract 3425 : Whole-transcriptome analyses of EBV-associated nasopharyngeal carcinoma using next-generation transcriptome sequencing ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3425.
Texte intégralTang, Wei, et Ludmila Prokunina-Olsson. « Abstract 2128 : Whole transcriptome sequencing in normal and cancer prostate tissue ». Dans Proceedings : AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010 ; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-2128.
Texte intégralKwon, Nak-Jung, Woo Chung Lee, Jiwoong Kim, Hyeri Kim, Ahreum Seong, Bong Cho Kim, Doo Hyun Park et Kap-Seok Yang. « Abstract 3574 : Analysis of whole genome and transcriptome sequencing in single cell ». Dans Proceedings : AACR Annual Meeting 2014 ; April 5-9, 2014 ; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3574.
Texte intégralKohno, Takashi, Hitoshi Ichikawa, Yasushi Totoki, Kazuki Yasuda, Masaki Hiramoto, Takao Nammo, Hiromi Sakamoto et al. « Abstract B93 : Gene fusions detected by whole transcriptome sequencing of lung adenocarcinoma. » Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics--Nov 12-16, 2011 ; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1535-7163.targ-11-b93.
Texte intégralSong, Seulki, Hyejoo Park, Daeyoon Kim, Sheehyun Kim, Hongseok Yun, Sungyoung Lee, Youngil Koh et Sung-Soo Yoon. « Abstract 145 : Comparison of whole transcriptome sequencing immune repertoire sequencing using RNA for tumor milieu analysis ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-145.
Texte intégralSong, Seulki, Hyejoo Park, Daeyoon Kim, Sheehyun Kim, Hongseok Yun, Sungyoung Lee, Youngil Koh et Sung-Soo Yoon. « Abstract 145 : Comparison of whole transcriptome sequencing immune repertoire sequencing using RNA for tumor milieu analysis ». Dans Proceedings : AACR Annual Meeting 2019 ; March 29-April 3, 2019 ; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-145.
Texte intégralDuitama, Jorge, Pramod K. Srivastava et Ion I. Mandoiu. « Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data ». Dans 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2011. http://dx.doi.org/10.1109/iccabs.2011.5729949.
Texte intégralShen, Yaoqing, Martin R. Jones, Erin Pleasance, Melika Bonakdar, Carolyn Ch'ng, Caralyn Reisle, Laura Williamson et al. « Abstract A184 : Clinical application of whole genome and transcriptome sequencing in cancer care ». Dans Abstracts : AACR-NCI-EORTC International Conference : Molecular Targets and Cancer Therapeutics ; October 26-30, 2017 ; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-a184.
Texte intégralRapports d'organisations sur le sujet "Whole-transcriptome sequencing"
Ghanim, Murad, Joe Cicero, Judith K. Brown et Henryk Czosnek. Dissection of Whitefly-geminivirus Interactions at the Transcriptomic, Proteomic and Cellular Levels. United States Department of Agriculture, février 2010. http://dx.doi.org/10.32747/2010.7592654.bard.
Texte intégralHovav, Ran, Peggy Ozias-Akins et Scott A. Jackson. The genetics of pod-filling in peanut under water-limiting conditions. United States Department of Agriculture, janvier 2012. http://dx.doi.org/10.32747/2012.7597923.bard.
Texte intégral