Littérature scientifique sur le sujet « WGAN-GP »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « WGAN-GP ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "WGAN-GP"
Xu, Jialing, Jingxing He, Jinqiang Gu, Huayang Wu, Lei Wang, Yongzhen Zhu, Tiejun Wang, Xiaoling He et Zhangyuan Zhou. « Financial Time Series Prediction Based on XGBoost and Generative Adversarial Networks ». International Journal of Circuits, Systems and Signal Processing 16 (15 janvier 2022) : 637–45. http://dx.doi.org/10.46300/9106.2022.16.79.
Texte intégralYang, Kunlin, et Yang Liu. « Global Ionospheric Total Electron Content Completion with a GAN-Based Deep Learning Framework ». Remote Sensing 14, no 23 (29 novembre 2022) : 6059. http://dx.doi.org/10.3390/rs14236059.
Texte intégralQin, Jing, Fujie Gao, Zumin Wang, Lu Liu et Changqing Ji. « Arrhythmia Detection Based on WGAN-GP and SE-ResNet1D ». Electronics 11, no 21 (23 octobre 2022) : 3427. http://dx.doi.org/10.3390/electronics11213427.
Texte intégralArbat, Shivani, Vinodh Kumaran Jayakumar, Jaewoo Lee, Wei Wang et In Kee Kim. « Wasserstein Adversarial Transformer for Cloud Workload Prediction ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 11 (28 juin 2022) : 12433–39. http://dx.doi.org/10.1609/aaai.v36i11.21509.
Texte intégralDuan, Xintao, Baoxia Li, Daidou Guo, Kai Jia, En Zhang et Chuan Qin. « Coverless Information Hiding Based on WGAN-GP Model ». International Journal of Digital Crime and Forensics 13, no 4 (juillet 2021) : 57–70. http://dx.doi.org/10.4018/ijdcf.20210701.oa5.
Texte intégralHan, Baokun, Sixiang Jia, Guifang Liu et Jinrui Wang. « Imbalanced Fault Classification of Bearing via Wasserstein Generative Adversarial Networks with Gradient Penalty ». Shock and Vibration 2020 (21 juillet 2020) : 1–14. http://dx.doi.org/10.1155/2020/8836477.
Texte intégralFan, Hongwei, Jiateng Ma, Xuhui Zhang, Ceyi Xue, Yang Yan et Ningge Ma. « Intelligent data expansion approach of vibration gray texture images of rolling bearing based on improved WGAN-GP ». Advances in Mechanical Engineering 14, no 3 (mars 2022) : 168781322210861. http://dx.doi.org/10.1177/16878132221086132.
Texte intégralChang, Jiaxing, Fei Hu, Huaxing Xu, Xiaobo Mao, Yuping Zhao et Luqi Huang. « Towards Generating Realistic Wrist Pulse Signals Using Enhanced One Dimensional Wasserstein GAN ». Sensors 23, no 3 (28 janvier 2023) : 1450. http://dx.doi.org/10.3390/s23031450.
Texte intégralSun, Caihao, Xiaohua Zhang, Hongyun Meng, Xianghai Cao et Jinhua Zhang. « AC-WGAN-GP : Generating Labeled Samples for Improving Hyperspectral Image Classification with Small-Samples ». Remote Sensing 14, no 19 (1 octobre 2022) : 4910. http://dx.doi.org/10.3390/rs14194910.
Texte intégralLee, Junwon, et Heejo Lee. « Improving SSH detection model using IPA time and WGAN-GP ». Computers & ; Security 116 (mai 2022) : 102672. http://dx.doi.org/10.1016/j.cose.2022.102672.
Texte intégralThèses sur le sujet "WGAN-GP"
GIANSANTI, VALENTINA. « Integration of heterogeneous single cell data with Wasserstein Generative Adversarial Networks ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404516.
Texte intégralTissues, organs and organisms are complex biological systems. They are objects of many studies aiming at characterizing their biological processes. Understanding how they work and how they interact in healthy and unhealthy samples gives the possibility to interfere, correcting and preventing dysfunctions, possibly leading to diseases. Recent advances in single-cell technologies are expanding our capabilities to profile at single-cell resolution various molecular layers, by targeting the transcriptome, the genome, the epigenome and the proteome. The number of single-cell datasets, their size and the diverse modalities they describe is continuously increasing, prompting the need to develop robust methods to integrate multiomic datasets, whether paired from the same cells or, most challenging, from unpaired separate experiments. The integration of different source of information results in a more comprehensive description of the whole system. Most published methods allow the integration of limited number of omics (generally two) and make assumptions about their inter-relationships. They often impose the conversion of a data modality into the other one (e.g., ATAC peaks converted in a gene activity matrix). This step introduces an important level of approximation, which could affect the analysis later performed. Here we propose MOWGAN (Multi Omic Wasserstein Generative Adversarial Network), a deep-learning based framework to simulate paired multimodal data supporting high number of modalities (more than two) and agnostic about their relationships (no assumption is imposed). Each modality is embedded into feature spaces with same dimensionality across all modalities. This step prevents any conversion between data modalities. The embeddings are sorted based on the first Laplacian Eigenmap. Mini-batches are selected by a Bayesian ridge regressor to train a Wasserstein Generative Adversarial Network with gradient penalty. The output of the generative network is used to bridge real unpaired data. MOWGAN was prototyped on public data for which paired and unpaired RNA and ATAC experiments exists. Evaluation was conducted on the ability to produce data integrable with the original ones, on the amount of shared information between synthetic layers and on the ability to impose association between molecular layers that are truly connected. The organization of the embeddings in mini-batches allows MOWGAN to have a network architecture independent of the number of modalities evaluated. Indeed, the framework was also successfully applied to integrate three (e.g., RNA, ATAC and protein or histone modification data) and four modalities (e.g., RNA, ATAC, protein, histone modifications). MOWGAN’s performance was evaluated in terms of both computational scalability and biological meaning, being the latter the most important to avoid erroneous conclusion. A comparison was conducted with published methods, concluding that MOWGAN performs better when looking at the ability to retrieve the correct biological identity (e.g., cell types) and associations. In conclusion, MOWGAN is a powerful tool for multi-omics data integration in single-cell, which answer most of the critical issues observed in the field.
Chapitres de livres sur le sujet "WGAN-GP"
Li, Jun, Ke Niu, Liwei Liao, Lijie Wang, Jia Liu, Yu Lei et Minqing Zhang. « A Generative Steganography Method Based on WGAN-GP ». Dans Communications in Computer and Information Science, 386–97. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8083-3_34.
Texte intégralHuang, Wei, Mingyuan Luo, Xi Liu, Peng Zhang, Huijun Ding et Dong Ni. « Arterial Spin Labeling Images Synthesis via Locally-Constrained WGAN-GP Ensemble ». Dans Lecture Notes in Computer Science, 768–76. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32251-9_84.
Texte intégralHu, Jiayuan, et Yong Li. « Electrocardiograph Based Emotion Recognition via WGAN-GP Data Enhancement and Improved CNN ». Dans Intelligent Robotics and Applications, 155–64. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13844-7_16.
Texte intégralZhu, Shaojun, et Fei Han. « A Data Enhancement Method for Gene Expression Profile Based on Improved WGAN-GP ». Dans Neural Computing for Advanced Applications, 242–54. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5188-5_18.
Texte intégralHuang, Wei, Mingyuan Luo, Xi Liu, Peng Zhang, Huijun Ding et Dong Ni. « Novel Bi-directional Images Synthesis Based on WGAN-GP with GMM-Based Noise Generation ». Dans Machine Learning in Medical Imaging, 160–68. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32692-0_19.
Texte intégralKavran, Domen, Borut Žalik et Niko Lukač. « Comparing Beta-VAE to WGAN-GP for Time Series Augmentation to Improve Classification Performance ». Dans Lecture Notes in Computer Science, 51–73. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22953-4_3.
Texte intégralLee, WooHo, BongNam Noh, YeonSu Kim et KiMoon Jeong. « Generation of Network Traffic Using WGAN-GP and a DFT Filter for Resolving Data Imbalance ». Dans Internet and Distributed Computing Systems, 306–17. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34914-1_29.
Texte intégralActes de conférences sur le sujet "WGAN-GP"
Fu, Weiwei, Dezheng Zhang, Yu Fu, Jianyuan Li et Yonghong Xie. « Arrears prediction for electricity customer through Wgan-Gp ». Dans 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2017. http://dx.doi.org/10.1109/itnec.2017.8285078.
Texte intégralWu, Jianyuan, Zheng Wang, Hui Zeng et Xiangui Kang. « Multiple-Operation Image Anti-Forensics with WGAN-GP Framework ». Dans 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2019. http://dx.doi.org/10.1109/apsipaasc47483.2019.9023173.
Texte intégralLi, Yiteng, Xupeng He, Weiwei Zhu, Marwa AlSinan, Hyung Kwak et Hussein Hoteit. « Digital Rock Reconstruction Using Wasserstein GANs with Gradient Penalty ». Dans International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-21884-ms.
Texte intégralMoghadam, Atefeh Ziaei, Hamed Azarnoush et Seyyed Ali Seyyedsalehi. « Multi WGAN-GP loss for pathological stain transformation using GAN ». Dans 2021 29th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2021. http://dx.doi.org/10.1109/icee52715.2021.9544310.
Texte intégralMoghadam, Atefeh Ziaei, Hamed Azarnoush et Seyyed Ali Seyyedsalehi. « Multi WGAN-GP loss for pathological stain transformation using GAN ». Dans 2021 29th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2021. http://dx.doi.org/10.1109/icee52715.2021.9544310.
Texte intégralGe, Na, Wenhui Guo et Yanjiang Wang. « Globally Consistent Image Inpainting based on WGAN-GP Network optimization ». Dans 2022 16th IEEE International Conference on Signal Processing (ICSP). IEEE, 2022. http://dx.doi.org/10.1109/icsp56322.2022.9965358.
Texte intégralZhao, Kainan, Baoliang Dong et Cheng Yang. « Military Target Recognition Technology based on WGAN-GP and XGBoost ». Dans CSSE 2021 : 2021 4th International Conference on Computer Science and Software Engineering. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3494885.3494925.
Texte intégralwu, cheng-hsuan, Hsien-Tsung Chang et Ammar Amjad. « Eye in-painting using WGAN-GP for face images with mosaic ». Dans Third International Conference on Image, Video Processing and Artificial Intelligence, sous la direction de Ruidan Su. SPIE, 2020. http://dx.doi.org/10.1117/12.2580635.
Texte intégralWang, Jing-Tong, et Chih-Hung Wang. « High Performance WGAN-GP based Multiple-category Network Anomaly Classification System ». Dans 2019 International Conference on Cyber Security for Emerging Technologies (CSET). IEEE, 2019. http://dx.doi.org/10.1109/cset.2019.8904890.
Texte intégralQu, Lele, Yutong Wang, Tianhong Yang, Lili Zhang et Yanpeng Sun. « WGAN-GP-Based Synthetic Radar Spectrogram Augmentation in Human Activity Recognition ». Dans IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9554556.
Texte intégral