Littérature scientifique sur le sujet « Wet and Dry cycles »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Wet and Dry cycles ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Wet and Dry cycles"
Ye, Wanjun, Yang Bai, Chenyang Cui et Xu Duan. « Deterioration of the Internal Structure of Loess under Dry-Wet Cycles ». Advances in Civil Engineering 2020 (16 juillet 2020) : 1–17. http://dx.doi.org/10.1155/2020/8881423.
Texte intégralLiu, Kai, Tianfeng Gu, Xingang Wang et Jiading Wang. « Time-Dependence of the Mechanical Behavior of Loess after Dry-Wet Cycles ». Applied Sciences 12, no 3 (24 janvier 2022) : 1212. http://dx.doi.org/10.3390/app12031212.
Texte intégralLiang-Xiao, Xiong, et Song Xiao-Gang. « Mechanical Properties of Cement Mortar after Dry–Wet Cycles and High Temperature ». Civil Engineering Journal 6, no 5 (1 mai 2020) : 1031–38. http://dx.doi.org/10.28991/cej-2020-03091526.
Texte intégralZhu, Rui, Ying-hao Huang, Zhu Song et Feng Zhou. « Volume Changes and Mechanical Properties of Expansive Mudstone below Canals under Wet-Dry/Wet-Dry-Freeze-Thaw Cycles ». Advances in Civil Engineering 2021 (5 juin 2021) : 1–11. http://dx.doi.org/10.1155/2021/3791692.
Texte intégralJiang, Ping, Xuhui Zhou, Jian Qian et Na Li. « Experimental Study on the Influence of Dry–Wet Cycles on the Static and Dynamic Characteristics of Fiber-Modified Lime and Fly Ash-Stabilized Iron Tailings at Early Curing Age ». Crystals 12, no 5 (19 avril 2022) : 568. http://dx.doi.org/10.3390/cryst12050568.
Texte intégralXu, Jian, Chang Ren, Songhe Wang, Jingyu Gao et Xiangang Zhou. « Permeability and Microstructure of a Saline Intact Loess after Dry-Wet Cycles ». Advances in Civil Engineering 2021 (10 mars 2021) : 1–18. http://dx.doi.org/10.1155/2021/6653697.
Texte intégralQi, Yanli, MingZhou Bai, Hao Zhou, Hai Shi, Pengxiang Li et Bohu He. « Study on the Mechanical Properties of Red Clay under Drying-Wetting Cycles ». Advances in Materials Science and Engineering 2021 (15 juin 2021) : 1–16. http://dx.doi.org/10.1155/2021/8665167.
Texte intégralSong, Zhaoyang, Lihui Sun, Shouye Cheng, Zhiqiang Liu, Jie Tan et Fangbo Ning. « Experimental Study on the Property Degradation and Failure Mechanism of Weakly Cemented Sandstone under Dry-Wet Cycles ». Advances in Materials Science and Engineering 2022 (18 janvier 2022) : 1–16. http://dx.doi.org/10.1155/2022/9431319.
Texte intégralWang, Linzhi, Mingzhong Gao et Jiqiang Zhang. « Effect of Continuous Loading Coupled with Wet–Dry Cycles on Strength Deterioration of Concrete ». Sustainability 14, no 20 (18 octobre 2022) : 13407. http://dx.doi.org/10.3390/su142013407.
Texte intégralLi, S. N., Z. H. Huang, Q. Liang, J. Liu, S. L. Luo et W. Q. Zhou. « Evolution Mechanism of Mesocrack and Macrocrack Propagation in Carbonaceous Mudstone under the Action of Dry-Wet Cycles ». Geofluids 2022 (19 juillet 2022) : 1–8. http://dx.doi.org/10.1155/2022/6768370.
Texte intégralThèses sur le sujet "Wet and Dry cycles"
Olshansky, Yaniv, Robert A. Root et Jon Chorover. « Wet–dry cycles impact DOM retention in subsurface soils ». COPERNICUS GESELLSCHAFT MBH, 2018. http://hdl.handle.net/10150/627113.
Texte intégralwet–drytreatment) before introduction of the following DOM solution or were maintained under constant wetness (
continually wettreatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil environment, where wet–dry cycles occur at different frequencies from site to site and along the soil profile, different interactions between DOM and soil surfaces are expected and need to be considered for the overall assessment of carbon dynamics.
Al-Hussaini, Osama. « Volume change behaviour of some geomaterials under combined influence of freeze-thaw and wet-dry cycles : an experimental investigation ». Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/110778/.
Texte intégralO'Keefe, Sorche. « The recovery of soils after compaction : a laboratory investigation into the effect of wet/dry cycles on bulk density and soil hydraulic functions ». Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/4493.
Texte intégralMarchi, Fabio. « Effect of moisture susceptibility on different bituminous mastics ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17619/.
Texte intégralFoerster, Verena Elisabeth [Verfasser], Frank [Akademischer Betreuer] Schäbitz et Olaf [Akademischer Betreuer] Bubenzer. « Late Quaternary climate variability in the source region of Homo sapiens. Dry-wet cycles in Chew Bahir, southern Ethiopia / Verena Elisabeth Foerster. Gutachter : Frank Schäbitz ; Olaf Bubenzer ». Köln : Universitäts- und Stadtbibliothek Köln, 2014. http://d-nb.info/1071369873/34.
Texte intégralJi, Xiaoyan. « Thermodynamic properties of humid air and their application in advanced power generation cycles ». Doctoral thesis, Stockholm : Department of Chemical and Engineering and Technology, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4129.
Texte intégralBAJNI, GRETA. « STATISTICAL METHODS TO ASSESS ROCKFALL SUSCEPTIBILITY IN AN ALPINE ENVIRONMENT : A FOCUS ON CLIMATIC FORCING AND GEOMECHANICAL VARIABLES ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/913511.
Texte intégralThouin, Hugues. « Transfert de polluants inorganiques dans un technosol de brûlage d’armes organo-arséniées soumis à un apport de matière organique et à des cycles de saturation/désaturation : expérimentation en mésocosme ». Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2069/document.
Texte intégralThe thermal destruction of chemical munitions from World War I, on the site of “Place-à-Gaz”, induced intense local top soil contamination by arsenic and heavy metals. The heat treatment mineralized As from organoarsenic warfare agents, resulting in a singular mineral assemblage, composed of Zn, Cu and Fe arsenates and of an amorphous phase rich in Fe, As, Zn, Cu and Pb. The amorphous material was the principal carrier of As and metals in the central part of the site. The site undergoes environmental changes which may alter the stability of inorganic contaminants. To assess the impact of water saturation episodes and input of bioavailable organic matter on the biogeochemical cycles of metal(loid)s, a mesocosm study was conducted. Results showed that amorphous phase was instable in saturated conditions, and released contaminants in soil water. As previously observed on site, the most mobile contaminants were Zn and As. The addition of organic matter induced the immobilization of As by trapping of As V onto hydrous ferric oxides in the saturated soil. Microbial characterizations including counting, bacterial community structure, respiration, and determination of As IIIoxidizing activities were performed. Results showed that microorganisms actively contribute to the metabolisms of C and As.The addition of organic matter induced the increase of As III-oxidizing and As V-reducing microorganisms concentrations and modified the bacterial diversity. However, a negative effect of organic matter on the activity of As III oxidation was observed resulting in higher As III concentration in soil water. This study showed that the natural deposition of forest organic litter on the site, induced antagonist effects on the transfer of inorganic pollutants did not immobilize all the Zn and As and even contributed to As III transport to the surrounding environment. These results provide more information about the environmental impact of the Great War and more generally about the processes driving the behavior of metals/metalloids on polluted sites
Cowan, Linda J. « The use of wet-to-dry dressings ». [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008780.
Texte intégralTypescript. Title from title page of source document. Document formatted into pages; contains 73 pages. Includes Vita. Includes bibliographical references.
Susna, David. « Návrh chladícího okruhu pro odvod tepla z kondenzátoru parní turbíny ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378737.
Texte intégralLivres sur le sujet "Wet and Dry cycles"
Challoner, Jack. Wet and dry. Austin, Tex : Raintree Steck-Vaughn, 1997.
Trouver le texte intégralWet and dry. Mankato, Minn : Riverstream Publishing, 2013.
Trouver le texte intégralDoudna, Kelly. Wet and dry. Edina, Minn : Abdo Pub., 2000.
Trouver le texte intégralLeacock, Stephen. Wet or dry ? [Canada ? : s.n.], 1997.
Trouver le texte intégralMcMillan, Bruce. Dry or wet ? New York : Lothrop, Lee & Shepard, 1988.
Trouver le texte intégralKincaid, Doug. Wet and dry. 2e éd. Walton-on-Thames : Nelson, 1989.
Trouver le texte intégralWet and dry. Mankato, Minn : Capstone Press, 2006.
Trouver le texte intégralThe wet dry book. New York : Random House, 2002.
Trouver le texte intégralBoelts, Maribeth. Dry days, wet nights. Morton Grove, Ill : Whitman, 1994.
Trouver le texte intégralGordon, Sharon. Wet dry = : Mojado seco. New York : Marshall Cavendish Benchmark, 2007.
Trouver le texte intégralChapitres de livres sur le sujet "Wet and Dry cycles"
De Camillis, M., G. Di Emidio, A. Bezuijen et R. D. Verastegui-Flores. « Hydraulic Conductivity of Modified Bentonites After Wet and Dry Cycles ». Dans Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2, 470–80. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2224-2_58.
Texte intégralFang, Renyi, Bo Fan et Lei Yu. « Compression damage in high-toughness cementitious composites after dry-wet cycles ». Dans Advances in Civil Engineering and Environmental Engineering, Volume 1, 345–50. London : CRC Press, 2023. http://dx.doi.org/10.1201/9781003349563-49.
Texte intégralBergin, M. H., C. I. Davidson, H. D. Kuhns, J. L. Jaffrezo, J. E. Dibb, R. Hillamo et T. Makela. « The Contributions of Wet, Fog, and Dry Deposition to the Summer SO4 2− Flux at Summit, Greenland ». Dans Ice Core Studies of Global Biogeochemical Cycles, 121–38. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-51172-1_6.
Texte intégralYin, Shi-Ping, Xiang-Qian Hu et Chi Peng. « Compressive Performance of TRC-Strengthened Column with Small Eccentricity Under Chloride-Wet-Dry Cycles ». Dans Strain-Hardening Cement-Based Composites, 651–58. Dordrecht : Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_75.
Texte intégralCheng, Peng, Xie Yangfa et Li Anran. « Study on strength of red clay under dry-wet cycle ». Dans Advances in Civil Function Structure and Industrial Architecture, 333–37. London : CRC Press, 2022. http://dx.doi.org/10.1201/9781003305019-48.
Texte intégralBeriha, Brundaban, Dipti Ranjan Biswal et Umesh Chandra Sahoo. « Effect of Wet-Dry Cycles on Mechanical Strength Properties of Cement Stabilized Granular Lateritic Soil ». Dans Sustainable Civil Infrastructures, 112–21. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01917-4_9.
Texte intégralAhmed, Ameer Hamza, Marco Liebscher et Viktor Mechtcherine. « Mechanical Performance of Strain Hardening Limestone Calcined Clay Cementitious Composites (SHLC4) Subject to Wet-Dry Cycles ». Dans RILEM Bookseries, 3–12. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-15805-6_1.
Texte intégralGraus, Sandra, Graça Vasconcelos et Carlos Palha. « Experimental Characterization of the Deterioration of Masonry Materials Due to Wet and Dry and Salt Crystallization Cycles ». Dans RILEM Bookseries, 687–95. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99441-3_74.
Texte intégralZou, Weilie. « Evolution of soil-water characteristics of expansive soils under dry-wet and freeze-thaw cycles and slope stabilization practice ». Dans Advances in Frontier Research on Engineering Structures Volume 1, 9. London : CRC Press, 2023. http://dx.doi.org/10.1201/9781003336631-7.
Texte intégralKobayashi, K., Shinichi Komazaki, Toshihei Misawa et T. Fukuzumi. « Susceptibility of Automobile Spring Steels to Wet-Dry Cyclic Corrosion Induced Environmental Embrittlement ». Dans Key Engineering Materials, 933–38. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.933.
Texte intégralActes de conférences sur le sujet "Wet and Dry cycles"
Khalil, Ibrahim, Aaron Sahm et Robert Boehm. « Wet or Dry Cooling ? » Dans ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99082.
Texte intégralKhoury, Naji, Musharraf Zaman et Joakim Laguros. « Behavior of Stabilized Aggregate Bases Subjected to Cyclic Loading and Wet-Dry Cycles ». Dans Geo-Frontiers Congress 2005. Reston, VA : American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40776(155)5.
Texte intégralChen, Kaisheng, et Zhen Lu. « The Crack Evolution of Red Clay under Wet and Dry Cycles ». Dans 2015 International Forum on Energy, Environment Science and Materials. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/ifeesm-15.2015.33.
Texte intégralShi, Beixiao, Shengshui Chen et Guoli Wang. « Computation Module of Expansive Soil Crack Depth Considering Dry-Wet Cycles ». Dans Geo-Hubei 2014 International Conference on Sustainable Civil Infrastructure. Reston, VA : American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784478509.005.
Texte intégralMatsui, Y., T. Suzuki, P. Deevanhxay, S. Tsushima et S. Hirai. « Crack Generation in Catalyst Layer and Micro Porous Layer by Wet-Dry Cycles and its Impact on PEMFC Performance ». Dans ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fuelcell2013-18099.
Texte intégralCheng, Xiaokang, Jianxin Peng et Jianren Zhang. « Influence of Environmental Variables on Chloride Ion Distribution on Concrete Surface under Dry-Wet Cycle ». Dans IABSE Congress, Nanjing 2022 : Bridges and Structures : Connection, Integration and Harmonisation. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/nanjing.2022.2008.
Texte intégralLi, Han, Yunhui Zhu, Fuxue Sun et Yi Xiao. « Research on Chloride Ion Diffusion Performance in Early Age Concrete under Dry-Wet Cycles ». Dans The Joint Conferences of 2015 International Conference on Computer Science and Engineering Technology (CSET2015) and 2015 International Conference on Medical Science and Biological Engineering (MSBE2015). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814651011_0086.
Texte intégralTheivakularatnam, Mathanraj, et Carthigesu T. Gnanendran. « Durability of Lightly Stabilised Granular Material Subjected to Freeze-Thaw and Wet-Dry Cycles ». Dans IFCEE 2015. Reston, VA : American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479087.127.
Texte intégralGuang, Jianji, Jun Deng, Tonghua Liu et Yan Xie. « Flexural capacity of overloading damaged RC T-beams strengthened with CFRP subjected to wet-dry cycles ». Dans International Conference on Performance-based and Life-cycle Structural Engineering. School of Civil Engineering, The University of Queensland, 2015. http://dx.doi.org/10.14264/uql.2016.1146.
Texte intégralShekhawat, P., N. Shrivastava et S. Shrivastava. « Experimental Investigation on Durability of Soil Reinforced with Sustainable Fibers Subjected to Wet-Dry Cycles ». Dans ASCE India Conference 2017. Reston, VA : American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482032.025.
Texte intégralRapports d'organisations sur le sujet "Wet and Dry cycles"
Kelly, B. Nexant Parabolic Trough Solar Power Plant Systems Analysis ; Task 2 : Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005. Office of Scientific and Technical Information (OSTI), juillet 2006. http://dx.doi.org/10.2172/887344.
Texte intégralSchiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component Test Program : Wet Specimens I (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/dqhf2112.
Texte intégralSchiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component Test Program : Wet Specimens II (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/ldbn4070.
Texte intégralOhta, Taisuke. LaB6 nanostructures - wet vs dry etch. Office of Scientific and Technical Information (OSTI), janvier 2019. http://dx.doi.org/10.2172/1491599.
Texte intégralSpeed, D. L. Wet/dry sounding reel tape. Final report. Office of Scientific and Technical Information (OSTI), novembre 1994. http://dx.doi.org/10.2172/57948.
Texte intégralAllemann, R., B. Johnson et E. Werry. Wet-dry cooling demonstration : A transfer of technology : Final report. Office of Scientific and Technical Information (OSTI), janvier 1987. http://dx.doi.org/10.2172/7173655.
Texte intégralSchiller, Brandon, Tara Hutchinson et Kelly Cobeen. Cripple Wall Small-Component - Test Program : Comparisons (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembre 2020. http://dx.doi.org/10.55461/lohh5109.
Texte intégralHartle, Jennifer C., Ossama (Sam) A. Elrahman, Cara Wang, Daniel A. Rodriguez, Yue Ding et Matt McGahan. Assessing Public Health Benefits of Replacing Freight Trucks with Cargo Cycles in Last Leg Delivery Trips in Urban Centers. Mineta Transportation Institute, juin 2022. http://dx.doi.org/10.31979/mti.2022.1952.
Texte intégralBlau, P. J., R. L. Martin, M. H. Weintraub, Ho Jang et W. Donlon. Frictional behavior of automotive brake materials under wet and dry conditions. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/442128.
Texte intégralDexter, W. 2010 Dry and 2009 - 2010 Wet Season Branchiopod Survey Report, Site 300. Office of Scientific and Technical Information (OSTI), mars 2011. http://dx.doi.org/10.2172/1021550.
Texte intégral