Articles de revues sur le sujet « Waveguide polarizer »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Waveguide polarizer.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Waveguide polarizer ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Piltyay, S. І., А. V. Bulashenko, А. V. Polishchuk et О. V. Bulashenko. « Microwave waveguide polarizer for satellite communication antennas with circular polarization ». Kosmìčna nauka ì tehnologìâ 28, no 3 (18 juillet 2022) : 43–61. http://dx.doi.org/10.15407/knit2022.03.043.

Texte intégral
Résumé :
The volumes of information transmitted in modern satellite telecommunication systems are constantly increasing. Antennas with signal polarization processing, which is performed by polarizers, are the fundamental elements of such systems. Therefore, the development of methods for the analysis of new polarizers is an important problem. From a technological point of view, polarizers based on waveguides with irises are the simplest. Analysis and optimization of electromagnetic characteristics of a polarizer based on a square waveguide with irises are the goals of the presented research. To solve this optimization problem, we have created a new mathematical model, which allows investigating the influence of the design parameters of the polarizer on its electromagnetic characteristics. A mathematical model of the waveguide polarizer with irises was created by the method of decomposition using wave transmission and scattering matrices. Besides, the new mathematical model takes into account the thickness of the irises using their equivalent T- and П-shaped substitution circuits. The general wave scattering matrix is the basis of a new mathematical model of a waveguide polarizer. This matrix was determined using the theory of microwave circuits. The main characteristics of the waveguide polarizer were determined through the elements of this matrix. Here, we perform the optimization of the polarizer characteristics in the Ku-band 10.7–12.8 GHz. The developed new mathematical model of a waveguide polarizer with irises makes it possible to take into account the heights of the irises, distances between them and their thickness. The new mathematical model determines the electromagnetic characteristics of the polarizer in a simpler and faster way compared to the finite integration technique, which is often used for the analysis of microwave devices for various purposes
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xiao, Jun, Jin Tian, Tongyu Ding, Hongmei Li et Qiubo Ye. « Broadband Circularly Polarized Conical Corrugated Horn Antenna Using a Dielectric Circular Polarizer ». Micromachines 13, no 12 (3 décembre 2022) : 2138. http://dx.doi.org/10.3390/mi13122138.

Texte intégral
Résumé :
In this paper, a broadband left-handed circularly polarized (LHCP) corrugated horn antenna using a dielectric circular polarizer is proposed. Circularly polarized (CP) waves are generated by inserting an improved dovetail-shaped dielectric plate into the circular waveguide. Compared with the traditional dovetail-shaped circular polarizer, the proposed improved dovetail-shaped circular polarizer has a wider impedance bandwidth and 3 dB axial ratio bandwidth. A substrate-integrated waveguide (SIW) structure is designed as a wall to eliminate the influence of fixed grooves on the circular polarizer. The simulated reflection coefficient of the dielectric plate circular polarizer is less than −20 dB in the frequency band from 17.57 to 33.25 GHz. Then, a conical corrugated horn antenna with five corrugations and a four-level metal stepped rectangular-circular waveguide converter are designed and optimized. The simulated −10 dB impedance and 3 dB axial ratio (AR) bandwidths of the circularly polarized horn antenna integrated with the polarizer are 61% (17.1–32.8 GHz) and 60.9% (17.76–33.32 GHz), respectively. The simulated peak gain is 17.34 dBic. The measured −10 dB impedance is 52.7% (17.2–27.5 GHz).
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kazanskiy, Nikolai Lvovich, et Muhammad Ali Butt. « One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices ». Photonics Letters of Poland 12, no 3 (30 septembre 2020) : 85. http://dx.doi.org/10.4302/plp.v12i3.1044.

Texte intégral
Résumé :
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF ReferencesB. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). CrossRef
Styles APA, Harvard, Vancouver, ISO, etc.
4

Piltyay, S. « Square Waveguide Polarizer with Diagonally Located Irises for Ka-Band Antenna Systems ». Advanced Electromagnetics 10, no 3 (26 octobre 2021) : 31–38. http://dx.doi.org/10.7716/aem.v10i3.1780.

Texte intégral
Résumé :
This article presents the results of development and optimization of a new square waveguide polarizer with diagonally located square irises. The application of suggested geometrical modification of irises form and location instead of a standard wall-to-wall irises configuration allows to exclude 45-degree twists between wideband waveguide polarizer and orthomode transducer of a dual-polarized antenna feed system. In addition, a waveguide polarizer and polarization duplexer can be manufactured by milling technology as two single details, which makes the proposed engineering solution reliable, simple for simulation, development and application. Suggested new polarizer design was developed for the satellite operating Ka-band. It contains 12 irises, which are symmetrically located in the diagonal corners of a square waveguide. Obtained optimal polarization converter provides excellent matching and polarization performance. The maximum level of VSWR is less than 1.04 for both orthogonal polarizations. Values of cross-polarization discrimination are higher than 32 dB in the operating Ka-band. Developed square waveguide polarizer with diagonally located irises can be applied in modern wideband satellite antennas.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fantauzzi, S., L. Valletti et F. Di Paolo. « Virtual Prototype of Innovative Ka-Band Power Amplifier Based on Waveguide Polarizer ». Advanced Electromagnetics 9, no 2 (14 octobre 2020) : 60–65. http://dx.doi.org/10.7716/aem.v9i2.1497.

Texte intégral
Résumé :
This paper outlines an innovative approach to design a spatial power-combining structure based on waveguide polarizers. It presents the 3D CAD model of the new structure with the transversal probes and considerations in positioning and optimization of them. Exploiting the transformation of the dominant input mode TE10 into an elliptically polarized wave, provided by the polarizer, it has been possible to achieve a division of power by eight, completely carried out in space. With the insertion of the transversal probes made by microstrips, the RF signal can be sent to the MMIC solid state power amplifiers, and then recombined in the output section. Thanks to the large number of power divisions made in the waveguide section, the insertion loss of the power divider/combiner is less than 0.5 dB across the 32-34 GHz band, achieving a great power density as well. At the Author’s best knowledge, this is the first work where a waveguide polarizer is used in Spatial Power Combining technology.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Piltyay, S., A. Bulashenko, V. Shuliak et O. Bulashenko. « Electromagnetic Simulation of New Tunable Guide Polarizers with Diaphragms and Pins ». Advanced Electromagnetics 10, no 3 (26 octobre 2021) : 24–30. http://dx.doi.org/10.7716/aem.v10i3.1737.

Texte intégral
Résumé :
In this article we present the results of mathematical simulation, development and optimization of a waveguide polarizer with a diaphragm and pins. A mathematical model was developed using the proposed approach on the example of a waveguide polarizer with one diaphragm and two pins. The diaphragm and pins were modeled as inductive or capacitive elements for two types of linear polarization of the fundamental modes. The applied model uses a wave scattering matrix. The total matrix of a polarizer was obtained using wave matrices of transmission of individual elements of the device structure. Using the elements of the common S-parameters the electromagnetic characteristics of the device, which is considered, were obtained. To check the performance of the developed mathematical model, it was simulated in a software using the finite element technique in the frequency domain. The designed structure of the polarizer is adjustable due to mechanical change in the length of the pins. The developed waveguide polarizer with one diaphragm and two pins provides a reflection coefficient of less than 0.36 and a transmission coefficient of more than 0.93 for two types of polarizations. Therefore, a new theoretical method was developed in the article for analysis of scattering matrix elements of a waveguide polarizer with diaphragms and pins. It can also be used for the development of new tunable waveguide polarizers, filters and other components with diaphragms and pins.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Binbin, Sylvain Blaize et Rafael Salas-Montiel. « Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics ». Nanoscale 11, no 43 (2019) : 20685–92. http://dx.doi.org/10.1039/c9nr06948h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fujita, J., M. Levy, R. Scarmozzino, R. M. Osgood, L. Eldada et J. T. Yardley. « Integrated multistack waveguide polarizer ». IEEE Photonics Technology Letters 10, no 1 (janvier 1998) : 93–95. http://dx.doi.org/10.1109/68.651119.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Piltyay, S., A. Bulashenko, I. Fesyuk et O. Bulashenko. « Comparative Analysis of Compact Satellite Polarizers Based on a Guide with Diaphragms ». Advanced Electromagnetics 10, no 2 (31 juillet 2021) : 44–55. http://dx.doi.org/10.7716/aem.v10i2.1713.

Texte intégral
Résumé :
In this article we carry out the comparative analysis of new compact satellite polarisers based on a square guide with diaphragms. The main electromagnetic parameters of the developed microwave guide devices with various amount of diaphragms were obtained within the satellite frequency interval from 10.7 GHz to 12.75 GHz. Waveguide polarization converters with different amount of diaphragms from 2 to 5 have been designed and optimized. The main parameters of the presented polarizer were calculated applying the numerical method of finite integration in the frequency domain. Optimization of the electromagnetic parameters of the developed waveguide devices was carried out using the software CST Microwave Studio. As a result, sizes of the device designs have been optimized for the provision of improved polarization and phase parameters. The performed analysis showed that a waveguide polarizer with five diaphragms has the best electromagnetic parameters. The developed compact polarizer with five diaphragms based on a square guide provides a minimum deviation of the output phase difference from 90 degrees and high level of isolation between linear polarization over the entire operating frequency range. Presented in the article compact waveguide polarization converters can be applied in satellite systems, which require efficient polarization separation of signals.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lin, Baizhu, Tianhang Lian, Shijie Sun, Mu Zhu, Yuanhua Che, Xueqing Sun, Xibin Wang et Daming Zhang. « Ultra-Broadband and Compact TM-Pass Polarizer Based on Graphene-Buried Polymer Waveguide ». Polymers 14, no 7 (6 avril 2022) : 1481. http://dx.doi.org/10.3390/polym14071481.

Texte intégral
Résumé :
We report an ultra-broadband and compact TM-pass polarizer based on graphene-buried polymer waveguides. The characteristic parameters of the polarizer were carefully designed and optimized. The standard microfabrication processes were employed to fabricate the device. The presented polarizers exhibit high polarization-dependent transmission imposing a TE mode cutoff while leaving the TM mode almost unaffected. We experimentally demonstrated the polarizer that has an ultra-high extinction ratio of more than 22.9 dB and 41.9 dB for the monolayer graphene film placed on the surface of core layer and buried in the center of core layer, respectively, and as low insertion loss as ~4.0 dB for the TM mode with the bandwidth over 110 nm. The presented polarizer has the advantages of high extinction ratio, ultra-broadband, low cost, and easy integration with other polymer-based planar lightwave devices.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Fan, Jiao Jiao, Jian Li, Dan Song, Li Wu et Shu Sheng Peng. « A New Design of Ka-Band Circularly-Polarized Antenna ». Applied Mechanics and Materials 631-632 (septembre 2014) : 383–86. http://dx.doi.org/10.4028/www.scientific.net/amm.631-632.383.

Texte intégral
Résumé :
A new ka-band circularly-polarized antenna is presented in this paper, in which a linearly-polarized wave is conversed into a circularly-polarized wave with a circular waveguide polarizer. After simulation and optimization with HFSS (High Frequency Structure Simulator), a compact circularly-polarized antenna is designed with a total height less than 25mm. More simple and easier structure is adopted to achieve a low-profile circularly-polarized antenna.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Yu, Haiyang, Junsheng Yu, Xiaoming Liu, Yuan Yao et Xiaodong Chen. « A circularly polarized horn antenna with elliptical waveguide polarizer ». Microwave and Optical Technology Letters 61, no 12 (24 juillet 2019) : 2681–86. http://dx.doi.org/10.1002/mop.31949.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

DUDA, SERHII, et HRYHORII KHYMYCH. « ELABORATION OF THE POLARIZER’S CONSTRUCTION FOR WORK IN Ka-RANGE ». HERALD OF KHMELNYTSKYI NATIONAL UNIVERSITY 297, no 3 (2 juillet 2021) : 131–35. http://dx.doi.org/10.31891/2307-5732-2021-297-3-131-135.

Texte intégral
Résumé :
The problems of polarizer`s construction over the basis of the circular waveguide for a work in Ka – range are highlighted in the article. The purpose of the article is to establish the possibility of using the proposed design for the construction of high-tech Ka-band polarizers and to prove the correctness of analytical expressions for determining the structural dimensions by experimentally obtained characteristics. The analysis of the current decisions from the point of view of construction and technology is held. On the conclusion had been drawn more technological polarizer`s construction with the calculation of the main constructive sizes is proposed. Theoretical principles of construction and calculation of structural dimensions of the C and Ku ranges polarizers’ phase-shifting sections are covered in detail in the works of modern researchers and tested on real devices . However, while constructing AFT elements designed to operate in higher frequency operating bands, such as the Ka – band (20/30 GHz), there are certain difficulties, the solution of which continues. In order to check the proposed decision experimental model of polarizer was made and investigation of the main characteristics corroborating the right theoretical assumption was held. For a practical study of the proposed design, a mock-up of a polarizer based on a round waveguide with an inner diameter of 11 millimeters was made. In the prototype, the rod structure was implemented in the form of five pairs of adjusting screws with a diameter of one millimeter. The final length of the polarizing plate, taking into account the smooth transitions designed to align the plate with the waveguide, was defined as the sum of the lengths of its regular part and one smooth transition multiplied by 0.9. The experimentally obtained characteristics confirm the possibility of using the proposed design for the construction of high-tech Ka-band polarizers, and the correctness of analytical expressions for the determining the structural dimensions. A further development of the proposed solution may be the analysis and finding the necessary analytical relationships between the structural dimensions of the rod and dielectric structures in order to expand the operating range of the polarizer.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yu, L. S., Z. F. Guan, Q. Z. Liu, F. Deng, S. A. Pappert, P. K. L. Yu, S. S. Lau, L. T. Florez et J. P. Harbison. « Photoelastic AlGaAs/GaAs waveguide polarizer ». Applied Physics Letters 63, no 15 (11 octobre 1993) : 2047–49. http://dx.doi.org/10.1063/1.110587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kim, Jin Tae, et Choon-Gi Choi. « Graphene-based polymer waveguide polarizer ». Optics Express 20, no 4 (30 janvier 2012) : 3556. http://dx.doi.org/10.1364/oe.20.003556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Virone, Giuseppe, Riccardo Tascone, Oscar Antonio Peverini, Giuseppe Addamo et Renato Orta. « Combined-Phase-Shift Waveguide Polarizer ». IEEE Microwave and Wireless Components Letters 18, no 8 (août 2008) : 509–11. http://dx.doi.org/10.1109/lmwc.2008.2001005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Monebi, Ayodeji Matthew, Delger Otgonbat, Bierng-Chearl Ahn, Chan-Soo Lee et Jae-Hyeong Ahn. « Conceptual Design of a Semi-Dual Polarized Monopulse Antenna by Computer Simulation ». Applied Sciences 13, no 5 (25 février 2023) : 2960. http://dx.doi.org/10.3390/app13052960.

Texte intégral
Résumé :
Presented in this paper is a conceptual design by computer simulation of a monopulse reflector antenna with dual-circularly polarized sum patterns and linearly polarized azimuth and elevation difference patterns, which can be called a semi-dual polarized antenna. The proposed antenna consists of a five-element monopulse feed and a prime-focus parabolic reflector. The novelty of the proposed antenna is a monopulse feed consisting of a dual-circularly polarized square waveguide sum channel radiator and linearly polarized rectangular waveguide azimuth and elevation difference channel radiators. The separation of dual circular polarization is realized by a septum polarizer. The difference pattern is obtained by feeding two rectangular waveguides in opposite directions using a coaxial probe. The proposed monopulse feed geometry requires only two power combiners for a monopulse comparator network while providing dual-polarized performance comparable to the full dual-polarized sum and difference channel monopulse scheme. The concept of the proposed antenna is shown in a conceptual design by computer simulation. The monopulse feed is designed first, and then combined with a parabolic reflector. The designed monopulse reflector antenna operates at 14.5–16.0 GHz, and shows excellent sum and difference pattern characteristics: 36.1–36.7 dBc sum channel directivity with 0.65 dB boresight axial ratio and 32.6–32.9 dBi difference channel directivity with 1.56–1.66° crossover angle.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Gao, Jianfeng, Junqiang Sun, Jialin Jiang et Yi Zhang. « Demonstration of biaxially tensile-strained Ge/SiGe multiple quantum well (MQW) electroabsorption modulators with low polarization dependence ». Nanophotonics 9, no 14 (6 août 2020) : 4355–63. http://dx.doi.org/10.1515/nanoph-2020-0321.

Texte intégral
Résumé :
AbstractWe demonstrate a novel biaxially tensile-strained Ge/SiGe multiple quantum well (MQW) electroabsorption modulator with low polarization dependence. The device is waveguide integrated and has a length of 900 μm. Suspended microbridge structure is utilized to introduce biaxial tensile strain to the Ge/Si0.19Ge0.81 MQWs. Light is coupled into and out of the waveguide through deeply etched facets at the ends of the waveguide. Both TE and TM polarized electroabsorption contrast ratios are tested by the use of polarization maintaining focusing lensed fiber and a linear polarizer. A polarization irrelevant contrast ratio of 4.3 dB is achieved under 0 V/2 V operation. Both simulations and experiments indicate that the demonstrated device has potential in waveguide integrated utilizations that have high requirements on polarization uniformity.
Styles APA, Harvard, Vancouver, ISO, etc.
19

LIN Ling, 林灵, 杨小君 YANG Xiao-jun, 白晶 BAI Jing, 龙学文 LONG Xue-wen, 吕百达 LV Bai-da, Razvan Stoian Razvan Stoian, 惠荣庆 HUI Rong-qing et 程光华 CHENG Guang-hua. « Femtosecond Laser Photoinscription of Waveguide Polarizer ». ACTA PHOTONICA SINICA 40, no 6 (2011) : 818–22. http://dx.doi.org/10.3788/gzxb20114006.0818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chang, Chao, Sami G. Tantawi, Sarah Church, Jeffery Neilson et Patricia Voll Larkoski. « NOVEL COMPACT WAVEGUIDE DUAL CIRCULAR POLARIZER ». Progress In Electromagnetics Research 136 (2013) : 1–16. http://dx.doi.org/10.2528/pier12121003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Dobrusin, Vadim. « Fabrication of integrated Ti:LiNbO3 waveguide polarizer ». Optical Engineering 47, no 12 (1 décembre 2008) : 120504. http://dx.doi.org/10.1117/1.3046714.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Thyagarajan, K., S. D. Seshadri et A. K. Ghatak. « Waveguide polarizer based on resonant tunneling ». Journal of Lightwave Technology 9, no 3 (mars 1991) : 315–17. http://dx.doi.org/10.1109/50.70005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Pei, Chongyang, Longzhi Yang, Gencheng Wang, Yuehai Wang, Xiaoqing Jiang, Yinlei Hao, Yubo Li et Jianyi Yang. « Broadband Graphene/Glass Hybrid Waveguide Polarizer ». IEEE Photonics Technology Letters 27, no 9 (1 mai 2015) : 927–30. http://dx.doi.org/10.1109/lpt.2015.2398452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

YU, BO, et YUNDONG ZHANG. « FLATBAND SLOW LIGHT PHOTONIC CRYSTAL WAVEGUIDE IN BOTH TE AND TM POLARIZATIONS ». Journal of Nonlinear Optical Physics & ; Materials 18, no 04 (décembre 2009) : 641–47. http://dx.doi.org/10.1142/s0218863509004865.

Texte intégral
Résumé :
The flatband slow light properties of a honeycomb photonic crystal waveguide in both TE and TM polarizations are discussed. By structure tuning, the waveguide may have obviously different group velocities for the TE and TM modes, which gives it the characteristics of a polarizer.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bulashenko, A. V., S. I. Piltyay, H. S. Kushnir et O. V. Bulashenko. « Compact Waveguide Polarizer with Three Antiphase Posts ». Visnyk of Vinnytsia Politechnical Institute 152, no 5 (2020) : 97–104. http://dx.doi.org/10.31649/1997-9266-2020-152-5-97-104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chen, Chyong-Hua, Lin Pang, Chia-Ho Tsai, Uriel Levy et Yeshaiahu Fainman. « Compact and integrated TM-pass waveguide polarizer ». Optics Express 13, no 14 (2005) : 5347. http://dx.doi.org/10.1364/opex.13.005347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Stange, Torsten. « Simple Broadband Circular Polarizer in Oversized Waveguide ». Journal of Infrared, Millimeter, and Terahertz Waves 37, no 2 (6 novembre 2015) : 137–46. http://dx.doi.org/10.1007/s10762-015-0213-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Xu, Chen, Sami Tantawi et Juwen Wang. « NOVEL X-BAND WAVEGUIDE DUAL CIRCULAR POLARIZER ». Progress In Electromagnetics Research C 64 (2016) : 79–87. http://dx.doi.org/10.2528/pierc16040713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ansari, Z. A., R. N. Karekar et R. C. Aiyer. « Cladded optical glass waveguide as planar polarizer ». Microwave and Optical Technology Letters 23, no 6 (20 décembre 1999) : 337–42. http://dx.doi.org/10.1002/(sici)1098-2760(19991220)23:6<337 ::aid-mop5>3.0.co;2-#.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Twu, Ruey-Ching, Chia-Chih Huang et Way-Seen Wang. « TE-pass Zn-diffused LiNbO3 waveguide polarizer ». Microwave and Optical Technology Letters 48, no 11 (2006) : 2312–14. http://dx.doi.org/10.1002/mop.21923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Yu, Hai-Yang, Junsheng Yu, Xiaoming Liu, Yuan Yao et Xiaodong Chen. « A Wideband Circularly Polarized Horn Antenna With a Tapered Elliptical Waveguide Polarizer ». IEEE Transactions on Antennas and Propagation 67, no 6 (juin 2019) : 3695–703. http://dx.doi.org/10.1109/tap.2019.2905789.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cheng, Guanghua, Ling Lin, Konstantin Mishchik et Razvan Stoian. « Polarization-Dependent Scattering of Nanogratings in Femtosecond Laser Photowritten Waveguides in Fused Silica ». Materials 15, no 16 (18 août 2022) : 5698. http://dx.doi.org/10.3390/ma15165698.

Texte intégral
Résumé :
The properties of polarization-selective, light-guiding systems upon subwavelength nanogratings formation in the case of type II refractive index traces induced by femtosecond laser pulses in bulk fused silica were studied. Polarization-dependent scattering is analyzed both in simulation using a finite-difference, time-domain method and in experiments. We argue that the polarization-sensitive optical guiding of type II waveguides is due to polarization-dependent scattering of nanogratings. Optical designs can then be suggested where the guiding efficiency of type I traces can be combined with type II anisotropies. A low-loss waveguide polarizer is demonstrated based on the modulation of the evanescent field emerging from type I waveguides using polarization-dependent scattering of neighboring nanogratings.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Himmler, Aaron, Mohammed M. Albannay, Gevin von Witte, Sebastian Kozerke et Matthias Ernst. « Electroplated waveguides to enhance DNP and EPR spectra of silicon and diamond particles ». Magnetic Resonance 3, no 2 (6 octobre 2022) : 203–9. http://dx.doi.org/10.5194/mr-3-203-2022.

Texte intégral
Résumé :
Abstract. Electroplating the waveguide of a 7 T polarizer in a simple innovative way increased microwave power delivered to the sample by 3.1 dB. Silicon particles, while interesting for hyperpolarized MRI applications, are challenging to polarize due to inefficient microwave multipliers at the electron Larmor frequency at high magnetic fields and fast electronic relaxation times. Improving microwave transmission directly translates to more efficient EPR excitation at high-field, low-temperature conditions and promises faster and higher 29Si polarization buildup through dynamic nuclear polarization (DNP).
Styles APA, Harvard, Vancouver, ISO, etc.
34

Эгамов, Ш. В., А. М. Хидиров, Х. О. Уринов et Х. А. Жуманов. « Волноводные логические вентили для магнитооптических кубитов ». Письма в журнал технической физики 46, no 19 (2020) : 7. http://dx.doi.org/10.21883/pjtf.2020.19.50035.18058.

Texte intégral
Résumé :
Results of magneto-optical waveguide logic gates properties investigation are presented. Simple logic operations can be realized using photon properties in modulated magnetic field. Changing the magnetic field amplitude and its orientation relating to light propagation direction, choosing polarizer and analyzer orientation and proper waveguide geometry, we can design logic gates avoiding small coherence time of regular optic qubits.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Kamenev, Yu Ye, Ye M. Kuleshov et A. A. Filimonova. « Waveguide HCN-Laser With an Internal Linear Polarizer ». Telecommunications and Radio Engineering 52, no 2 (1998) : 18–20. http://dx.doi.org/10.1615/telecomradeng.v52.i2.40.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Behe, R., et P. Brachat. « Compact duplexer-polarizer with semicircular waveguide (antenna feed) ». IEEE Transactions on Antennas and Propagation 39, no 8 (1991) : 1222–24. http://dx.doi.org/10.1109/8.97358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kirilenko, Anatoliy A., Sergiy O. Steshenko, Vadim N. Derkach et Yevhenii M. Ostryzhnyi. « A Tunable Compact Polarizer in a Circular Waveguide ». IEEE Transactions on Microwave Theory and Techniques 67, no 2 (février 2019) : 592–96. http://dx.doi.org/10.1109/tmtt.2018.2881089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

SANGSTER, A. J. « Waveguide slot radiator feeding a parallel plate polarizer ». International Journal of Electronics 70, no 6 (juin 1991) : 1093–108. http://dx.doi.org/10.1080/00207219108921351.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Son, Geun-Sik, Woo-Kyung Kim, Woo-Seok Yang, Hyung-Man Lee, Han-Young Lee, Sung-Dong Lee, Woo-Jin Jeong, Soon-Woo Kwon, Ye-na Kim et Sang-Shin Lee. « Birefringent waveguide sensor using a polarizer rotating technique ». Optics Letters 34, no 13 (29 juin 2009) : 2045. http://dx.doi.org/10.1364/ol.34.002045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Yu, L. S., Z. F. Guan, Q. Z. Liu et S. S. Lau. « Silicon on insulator photoelastic optical waveguide and polarizer ». Applied Physics Letters 66, no 16 (17 avril 1995) : 2016–18. http://dx.doi.org/10.1063/1.113677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yu, T., et Y. Wu. « Theoretical study of metal-clad optical waveguide polarizer ». IEEE Journal of Quantum Electronics 25, no 6 (juin 1989) : 1209–13. http://dx.doi.org/10.1109/3.29249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kato, Isamu, Ryoichi Hara et Yasuyuki Sugiyama. « Multilayer thin-film waveguide polarizer with metal cladding ». Electronics and Communications in Japan (Part II : Electronics) 71, no 5 (1988) : 48–52. http://dx.doi.org/10.1002/ecjb.4420710506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kato, Isamu, Kazutomi Mori et Koki Sato. « A Thin-Film Waveguide Polarizer with SiN Clad ». Electronics and Communications in Japan (Part II : Electronics) 76, no 4 (1993) : 51–59. http://dx.doi.org/10.1002/ecjb.4420760406.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kim, Jin Tae, et Hongkyw Choi. « Polarization Control in Graphene-Based Polymer Waveguide Polarizer ». Laser & ; Photonics Reviews 12, no 10 (8 août 2018) : 1800142. http://dx.doi.org/10.1002/lpor.201800142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Dong, Yue, Yu Liu, Yin Xu et Bo Zhang. « An Ultra-Broadband Design of TM-Pass/TE-Stop Polarizer Based on Multistage Bragg Gratings ». Photonics 9, no 6 (10 juin 2022) : 409. http://dx.doi.org/10.3390/photonics9060409.

Texte intégral
Résumé :
In this paper, a multistage Bragg grating with various kinds of periods is introduced in the design of a reflection-based TM-pass/TE-stop polarizer. The cascade grating sections reflect a wide wavelength range of the TE polarization state. Additionally, on the other hand, the TM polarization state always passes through the waveguide. Such a design facilitates the polarizer working bandwidth, which is defined as the wavelength range with an extinction ratio of greater than 20 dB, and can reach 231 nm using only three grating sections. Meanwhile, the incision loss is always less than 0.42 dB over the working wavelength band. Furthermore, if a slightly higher loss is permitted, the polarizer working bandwidth can be extended to further than 310 nm using five grating sections.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Malekzadeh, Peyman, Gholam-Mohammad Parsanasab, Hamed Nikbakht, Ezeddin Mohajerani, Majid Taghavi et Hamid Latifi. « A high extinction ratio plasmonic SU-8 waveguide polarizer ». Optics Communications 487 (mai 2021) : 126798. http://dx.doi.org/10.1016/j.optcom.2021.126798.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bulashenko, Andrew, Stepan Piltyay et Oleksandr Bulashenko. « Mathematical Model of a Square Waveguide Polarizer with Diaphragms ». Journal of Microwaves, Optoelectronics and Electromagnetic Applications 20, no 4 (décembre 2021) : 883–95. http://dx.doi.org/10.1590/2179-10742021v20i41368.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sinha, Ravindra K., et Yogita Kalra. « Design of optical waveguide polarizer using photonic band gap ». Optics Express 14, no 22 (2006) : 10790. http://dx.doi.org/10.1364/oe.14.010790.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhao, Dengtao, Bin Shi, Zuimin Jiang, Yongliang Fan et Xun Wang. « Silicon-based optical waveguide polarizer using photonic band gap ». Applied Physics Letters 81, no 3 (15 juillet 2002) : 409–11. http://dx.doi.org/10.1063/1.1494454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Chyong-Hua Chen et Likarn Wang. « Design of finite-length metal-clad optical waveguide polarizer ». IEEE Journal of Quantum Electronics 34, no 7 (juillet 1998) : 1089–97. http://dx.doi.org/10.1109/3.687849.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie