Littérature scientifique sur le sujet « Water Purification Disinfection By-products »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Water Purification Disinfection By-products ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Water Purification Disinfection By-products"
Matsumoto, Takahiro, Ichiro Tatsuno et Tadao Hasegawa. « Instantaneous Water Purification by Deep Ultraviolet Light in Water Waveguide : Escherichia Coli Bacteria Disinfection ». Water 11, no 5 (9 mai 2019) : 968. http://dx.doi.org/10.3390/w11050968.
Texte intégralGibbons, J., et S. Laha. « Water purification systems : a comparative analysis based on the occurrence of disinfection by-products ». Environmental Pollution 106, no 3 (septembre 1999) : 425–28. http://dx.doi.org/10.1016/s0269-7491(99)00097-4.
Texte intégralSTRUTYNSKA, Lesya. « EVALUATION OF ECONOMIC EFFICIENCY OF INNOVATIVE WATER TREATMENT TECHNOLOGIES OF SWIMMING POOLS AND WATER PARKS ». Herald of Khmelnytskyi National University. Economic sciences 308, no 4 (28 juillet 2022) : 202–9. http://dx.doi.org/10.31891/2307-5740-2022-308-4-32.
Texte intégralSchmidt, Wido, Ute Böhme, Frank Sacher et Heinz-Jürgen Brauch. « Minimization Of Disinfection By-Products Formation In Water Purification Process Using Chlorine Dioxide — Case Studies ». Ozone : Science & ; Engineering 22, no 2 (janvier 2000) : 215–26. http://dx.doi.org/10.1080/01919510008547222.
Texte intégralReshnyak, Valerii I., Aleksandr I. Kaliaush et Ksenia V. Reshnyak. « DEVELOPMENT OF BALLAST WATER PURIFICATION AND DISINFECTION TECHNOLOGY ». Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 14, no 3 (2 septembre 2022) : 365–73. http://dx.doi.org/10.21821/2309-5180-2022-14-3-365-373.
Texte intégralMatsumoto, Takahiro, Tsuyoshi Hoshiai, Ichiro Tatsuno et Tadao Hasegawa. « Action Spectra of Bacteria and Purification of Pollutant Water at Faucets Using a Water Waveguide Method ». Water 14, no 9 (26 avril 2022) : 1394. http://dx.doi.org/10.3390/w14091394.
Texte intégralZhang, Shuo, et Ruhua Wang. « Study on the change of organic matter along the Processes of Drinking Water Plant ». E3S Web of Conferences 118 (2019) : 03023. http://dx.doi.org/10.1051/e3sconf/201911803023.
Texte intégralIannelli, R., S. Ripari, B. Casini, A. Buzzigoli, G. Privitera, M. Verani et A. Carducci. « Feasibility assessment of surface water disinfection by ultrafiltration ». Water Supply 14, no 4 (30 janvier 2014) : 522–31. http://dx.doi.org/10.2166/ws.2014.003.
Texte intégralDeng, Daosheng, Wassim Aouad, William A. Braff, Sven Schlumpberger, Matthew E. Suss et Martin Z. Bazant. « Water purification by shock electrodialysis : Deionization, filtration, separation, and disinfection ». Desalination 357 (février 2015) : 77–83. http://dx.doi.org/10.1016/j.desal.2014.11.011.
Texte intégralJung, Y. J., B. S. Oh, J. W. Kang, M. A. Page, M. J. Phillips et B. J. Mariñas. « Control of disinfection and halogenated disinfection byproducts by the electrochemical process ». Water Science and Technology 55, no 12 (1 juin 2007) : 213–19. http://dx.doi.org/10.2166/wst.2007.409.
Texte intégralThèses sur le sujet "Water Purification Disinfection By-products"
Liu, Jinlin, et 刘金林. « Wastewater organic as the precursors of disinfection byproducts in drinking water : characterization,biotransformation and treatment ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46289562.
Texte intégralMcAuley, Kimberley. « Disinfection by-products and public health concerns ». University of Western Australia. School of Population Health, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0070.
Texte intégralRinger, Erin E. « Reduction of trihalomethanes using ultrasound as a disinfectant ». Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-050307-084016/.
Texte intégralRanmuthugala, Geethanjali Piyawadani. « Disinfection by-products in drinking water and genotoxic changes in urinary bladder epithelial cells ». View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011207.110344/index.html.
Texte intégralLui, Yuen Shan. « Formation of disinfection by-products and mutagenicity upon chlorination of algal-derived organic materials ». HKBU Institutional Repository, 2010. http://repository.hkbu.edu.hk/etd_ra/1181.
Texte intégralPark, Sang Hyuck. « Effect of amine-based water treatment polymers on the formation of N-nitrosodimethylamine (NDMA) disinfection by-product ». Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22549.
Texte intégralFarren, Elizabeth Anne. « Reducing trihalomethane concentrations by using chloramines as a disinfectant ». Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0429103-095058.
Texte intégralHong, Huachang. « Characteristics of natural organic matter in Hong Kong's source drinking water and its association with the formation of disinfection by-products ». HKBU Institutional Repository, 2008. http://repository.hkbu.edu.hk/etd_ra/894.
Texte intégralAkande, Babatunde Cornelius. « Disinfection by-products and their biological influence on radicle development, biomass accumulation, nutrient concentration, oxidative response and lipid composition of two tomato (Solanum lycopersicum) cultivars ». Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2336.
Texte intégralTrihalomethanes are disinfection byproducts of chlorinated waters, and there is a growing interest to understand plant responses to organohalogens. This study investigates the effects of increasing trihalomethane dose on the physiology of tomato (Solanum lycopersicum) and determines whether the extent of physiological impacts of trihalomethane exposure on seedling radicle length, biomass accumulation, concentration levels of 12 key nutrients, oxidative stress, fatty acids and α-tocopherol content in membrane lipids of tomato correlated with either the number of bromine or chlorine atoms in the trihalomethane molecules. The 2 x 4 x 5 factorial experiment was laid out in CRD with four replications. Two cultivars of tomato were exposed to 4 levels of trihalomethanes (bromodichloromethane, bromoform, chloroform and dibromochloromethane) and 5 levels of concentration (0.0, 2.5, 5.0, 7.5, and 10.0 mg.L-1) in a green house. The decrease in seedling biomass and the inhibition of radicle growth increased with increasing trihalomethane concentrations in a dose dependent manner. Also, both these parameters decreased in response to an increase in the number of bromine atoms in the trihalomethane molecule. However, in growing plants the decrease in concentration levels of seven essential nutrients namely nitrogen (N), phosphorus (P), potassium (K), sulphur (S), copper (Cu), zinc (Zn) & boron (B) correlated to an increase in the number of chlorine atoms. Increase in trihalomethane dose also induced a decrease in all the above mentioned nutrients with the addition of manganese (Mn), although the decrease in P and S were not significant at P ≤ 0.05. The increase in trihalomethane dose induced an increase in oxidative stress parameters such as the total phenolic content, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and lipid peroxidation. The increase in the above parameters correlated to an increase in the number of chlorine atoms, however, no such correlations were observed in superoxide dismutase (SOD) activity, general lipid peroxidation, α-tocopherol content and totalsoluble proteins. In plant membrane lipids, increase in the saturated fat hexadecanoic acid was observed in both tomato cultivars that correlated to the degree of chlorination in the trihalomethane molecule. The increase in α-linolenic acid stress signaling correlated with an increase in the degree of chlorination in only one tomato cultivar suggesting variable tolerance between cultivars to chemical action. Membrane lipids adjustments in tomato plants exposed to increasing trihalomethane dose were based on two factors; first the adjustments of membrane fluidity with the increase in plant sterols and fatty acids content and secondly, the increase in lipophyllic antioxidants such as phenols, quinones and α-tocopherol content. The phenolic lipophyllic antioxidant was tentatively identified to be 2,2’-methylenebis [6-(1,1-dimethylethyl)-4-methyl] phenol. In conclusion, the magnitude of plant responses to trihalomethanes is more dependent on the halogenation number of the molecule and less on its concentration.
Gandhi, Varun N. « Visualization and quantification of hydrodynamics and dose in UV reactors by 3D laser induced fluorescence ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45895.
Texte intégralLivres sur le sujet "Water Purification Disinfection By-products"
Wobma, Paul C. UV disinfection and disinfection by-product characteristics of unfiltered water. Denver, CO : Awwa Research Foundation, 2004.
Trouver le texte intégralInternational Conference on Disinfection By-products : the Way Forward (1998 Cambridge, England). Disinfection by-products in drinking water : Current issues. Cambridge : Royal Society of Chemistry, 1999.
Trouver le texte intégralValentine, Richard Louis. Novel pathways for the formation of disinfection by-products. Denver, Colo : Water Research Foundation, 2011.
Trouver le texte intégralBriggs, David A. Advanced water treatment of estuarine water supplies. Denver, Colo : AWWA Research Foundation, 2008.
Trouver le texte intégralPlewa, Michael J., et Elizabeth D. Wagner. Mammalian cell cytotoxicity and genotoxicity of disinfection by-products. Denver, CO : Water Research Foundation, 2009.
Trouver le texte intégralDisinfection byproducts in drinking water : Formation, analysis, and control. Boca Raton, Fla : Lewis Publishers, 2004.
Trouver le texte intégralClark, Robert M., et Brenda K. Boutin. Controlling disinfection by-products and microbial contaminants in drinking water. Cincinnati, Ohio : National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 2001.
Trouver le texte intégralBouman, Dick. Smart disinfection solutions : Examples of small-scale disinfection products for safe drinking water. Amsterdam : KIT Publishers, 2010.
Trouver le texte intégralBull, Richard J. Health effects of disinfectants and disinfection by-products. Denver, CO : AWWA Research Foundation and American Water Works Association, 1991.
Trouver le texte intégralLi, Xing-Fang. Analytical methods for predicted DBPs of probable toxicological significance. Denver, CO : Water Research Foundation, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Water Purification Disinfection By-products"
Sokolowski, Aleksandra, Stephanie Gora et Susan Andrews. « Effects of Nanotechnologies on Disinfection By-product Formation ». Dans Nanotechnology for Water Treatment and Purification, 275–306. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06578-6_9.
Texte intégralRichardson, Susan D., et Cristina Postigo. « Drinking Water Disinfection By-products ». Dans The Handbook of Environmental Chemistry, 93–137. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/698_2011_125.
Texte intégralAlexandrou, Lydon D., Barry J. Meehan et Oliver A. H. Jones. « Disinfection By-products in Recycled Waters ». Dans Water Scarcity and Ways to Reduce the Impact, 135–49. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75199-3_8.
Texte intégralVidić, Radisav D. « Control of Disinfection By-Products in Drinking Water : Case Studies of Alternative Disinfection Technologies ». Dans Water Supply Systems, 275–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61187-2_15.
Texte intégralNaserun, Nur Izzati, et Nurul Hana Mokhtar Kamal. « Disinfection By-Products Precursors Removal by Simultaneous Coagulation and Disinfection in River Water ». Dans Proceedings of AICCE'19, 331–42. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32816-0_21.
Texte intégralKrasner, Stuart W., D. M. Owen et J. E. Cromwell. « Regulatory Impact Analysis of the Disinfectants—Disinfection By-Products Rule ». Dans Water Disinfection and Natural Organic Matter, 10–23. Washington, DC : American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0649.ch002.
Texte intégralVidić, Radisav D. « Control of Disinfection By-Products in Drinking Water : Regulations and Costs ». Dans Water Supply Systems, 259–73. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61187-2_14.
Texte intégralMcClellan, John N., David A. Reckhow, John E. Tobiason, James K. Edzwald et Alan F. Hess. « Empirical Models for Chlorination By-Products : Four Years of Pilot Experience in Southern Connecticut ». Dans Water Disinfection and Natural Organic Matter, 26–47. Washington, DC : American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0649.ch003.
Texte intégralTang, Hao L., Ricky J. Ristau et Yuefeng F. Xie. « Disinfection By-Products in Swimming Pool Water : Formation, Modeling, and Control ». Dans ACS Symposium Series, 381–403. Washington, DC : American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1190.ch020.
Texte intégralZwiener, Christian. « Trihalomethanes (THMs), Haloacetic Acids (HAAs), and Emerging Disinfection By-products in Drinking Water ». Dans Organic Pollutants in the Water Cycle, 251–86. Weinheim, FRG : Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/352760877x.ch10.
Texte intégralActes de conférences sur le sujet "Water Purification Disinfection By-products"
Boyle, Paul M., et Brent C. Houchens. « Hands-On Water Purification Experiments Using the Adaptive WaTER Laboratory for Undergraduate Education and K-12 Outreach ». Dans ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55108.
Texte intégralAbbas, S., I. Hashmi, I. A. Qazi, M. A. Awan et H. Nasir. « Monitoring of emerging drinking water disinfection by-products for microbial inactivation ». Dans Urban Water 2012. Southampton, UK : WIT Press, 2012. http://dx.doi.org/10.2495/uw120101.
Texte intégralHughes, K. D. « The Role of Ozone in Marine Environmental Protection ». Dans SNAME Maritime Convention. SNAME, 2014. http://dx.doi.org/10.5957/smc-2014-oc1.
Texte intégralFan, Zhiyun, Shaopo Wang et Guohua Hou. « Chlorination Disinfection By-Products and Its Control in Drinking Water ». Dans 2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5660448.
Texte intégralZHANG, Wei, Hai-yan JIANG et Ai-he WANG. « Pollution and control of chlorinated disinfection by-products in drinking water ». Dans The 2015 International Conference on Materials Engineering and Environmental Science (MEES2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759984_0075.
Texte intégralMenegaux, A. M. « The Water Treatment Tightrope : Balancing Disinfection By-Products Control and Pathogen Removal ». Dans World Water and Environmental Resources Congress 2003. Reston, VA : American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)81.
Texte intégralCuicui, Li, Xu Yongpeng, Shi Wenxin et Zhang Dong. « Control of halogenated disinfection by-products precursors by different drinking water treatment process ». Dans 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5769419.
Texte intégralShimazu, Haruki. « Developing a Model for Disinfection By-Products in a Water Distribution System ». Dans Eighth Annual Water Distribution Systems Analysis Symposium (WDSA). Reston, VA : American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40941(247)168.
Texte intégralBarkley, Robert, Charles Hurst, Andrew Dunham, JoAnn Silverstein et Gail M. Brion. « Generation of Iodine Disinfection By-Products (IDP's) in a Water Recycle System ». Dans International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1992. http://dx.doi.org/10.4271/921362.
Texte intégralBarkley, Robert, Andrew Dunham, Charles Hurst et JoAnn Silverstein. « Iodine Disinfection By-Products Generated in Water from Selected Organic Precursor Compounds ». Dans International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 1993. http://dx.doi.org/10.4271/932097.
Texte intégralRapports d'organisations sur le sujet "Water Purification Disinfection By-products"
Raymer, James, et Larry Michaels. Uptake of Water Disinfection By-Products Into Food. Research Triangle Park, NC : RTI Press, août 2010. http://dx.doi.org/10.3768/rtipress.2010.mr.0016.1008.
Texte intégralChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova et Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, janvier 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Texte intégral