Littérature scientifique sur le sujet « Warm subduction »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Warm subduction ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Warm subduction"
Zhang, Weifeng (Gordon), et Dennis J. McGillicuddy. « Warm Spiral Streamers over Gulf Stream Warm-Core Rings ». Journal of Physical Oceanography 50, no 11 (novembre 2020) : 3331–51. http://dx.doi.org/10.1175/jpo-d-20-0035.1.
Texte intégralPeacock, Simon M. « Advances in the thermal and petrologic modeling of subduction zones ». Geosphere 16, no 4 (5 juin 2020) : 936–52. http://dx.doi.org/10.1130/ges02213.1.
Texte intégralLee, Mei-Man, et A. J. George Nurser. « Eddy Subduction and the Vertical Transport Streamfunction ». Journal of Physical Oceanography 42, no 11 (1 novembre 2012) : 1762–80. http://dx.doi.org/10.1175/jpo-d-11-0219.1.
Texte intégralBouilhol, Pierre, Valentina Magni, Jeroen van Hunen et Lars Kaislaniemi. « A numerical approach to melting in warm subduction zones ». Earth and Planetary Science Letters 411 (février 2015) : 37–44. http://dx.doi.org/10.1016/j.epsl.2014.11.043.
Texte intégralLee, Changyeol, et YoungHee Kim. « Role of warm subduction in the seismological properties of the forearc mantle : An example from southwest Japan ». Science Advances 7, no 28 (juillet 2021) : eabf8934. http://dx.doi.org/10.1126/sciadv.abf8934.
Texte intégralJohnston, Fraser K. B., Alexandra V. Turchyn et Marie Edmonds. « Decarbonation efficiency in subduction zones : Implications for warm Cretaceous climates ». Earth and Planetary Science Letters 303, no 1-2 (15 février 2011) : 143–52. http://dx.doi.org/10.1016/j.epsl.2010.12.049.
Texte intégralHonsberger, I. W., J. Laird et J. E. Johnson. « A Laurentian margin subduction perspective : Geodynamic constraints from phase equilibria modeling of barroisite greenstones, northern USA Appalachians ». GSA Bulletin 132, no 11-12 (20 avril 2020) : 2587–605. http://dx.doi.org/10.1130/b35456.1.
Texte intégralvan Keken, Peter E., Ikuko Wada, Geoffrey A. Abers, Bradley R. Hacker et Kelin Wang. « Mafic High-Pressure Rocks Are Preferentially Exhumed From Warm Subduction Settings ». Geochemistry, Geophysics, Geosystems 19, no 9 (septembre 2018) : 2934–61. http://dx.doi.org/10.1029/2018gc007624.
Texte intégralSmit, Matthijs A., et Philip A. E. Pogge von Strandmann. « Deep fluid release in warm subduction zones from a breached slab seal ». Earth and Planetary Science Letters 534 (mars 2020) : 116046. http://dx.doi.org/10.1016/j.epsl.2019.116046.
Texte intégralTopuz, Gültekin, Aral I. Okay, Rainer Altherr, Winfried H. Schwarz, Gürsel Sunal et Lütfi Altınkaynak. « Triassic warm subduction in northeast Turkey : Evidence from the Ağvanis metamorphic rocks ». Island Arc 23, no 3 (29 mai 2014) : 181–205. http://dx.doi.org/10.1111/iar.12068.
Texte intégralThèses sur le sujet "Warm subduction"
PELLEGRINO, LUCA. « Modelling of mechanical mixing and chemical interaction between the subducting crust and the overlying mantle at (ultra)high pressures : implications for the slab-to-mantle mass transfer ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/271024.
Texte intégralIn the Monte Duria area (Adula-Cima Lunga unit, Central Alps, N Italy) garnet peridotites occur in direct contact with migmatised orthogneiss (Mt. Duria) and eclogites (Borgo). Both crustal and ultramafic rocks share a common high pressure (HP) peak at 2.8 GPa and 750 °C and post-peak static equilibration at 0.8-1.0 GPa and 850 °C. Garnet peridotites show abundant amphibole, dolomite, phlogopite and orthopyroxene after olivine, suggesting that they experienced metasomatism by crust-derived agents enriched in SiO2, K2O, CO2 and H2O. Peridotites also display LREE fractionation (La/Nd = 2.4) related to LREE-rich amphibole and clinopyroxene grown in equilibrium with garnet, indicating that metasomatism occurred at HP conditions. Kfs+Pl+Qz+Cpx interstitial pocket aggregates and Cpx+Kfs thin films around symplectites after omphacite parallel to the Zo+Omp+Grt foliation in the eclogites suggest that they underwent partial melting at HP.The contact between garnet peridotites and associated eclogites is marked by a tremolitite layer, which also occurs as layers within the peridotite lens, showing a boudinage parallel to the garnet layering of peridotites, flowing in the boudin necks. This clearly indicates that the tremolitite boudins formed when peridotites were in the garnet stability field. Tremolitites also show Phl+Tc+Chl+Tr pseudomorphs after garnet, both crystallised in a static regime postdating the boudins formation, suggesting that they derive from a garnet-bearing precursor. Tremolitites have Mg# > 0.90 and Al2O3 = 2.75 wt.% pointing to ultramafic compositions but also show enrichments in SiO2, CaO, and LREE suggesting that they formed after the reaction between the eclogite-derived melt and the garnet peridotite at HP. To test this hypothesis, we performed a thermodynamic modelling at fixed P = 3 GPa and T = 750 °C to model the chemical interaction between the garnet peridotite and the eclogite-derived melt. Our results show that this interaction produces a Opx+Cpx+Grt assemblage + Amp+Phl, depending on the water activity in the melt, suggesting that tremolitites likely derive from a previous garnet websterite with amphibole and phlogopite. In the Ulten Zone (Tonale nappe, Eastern Alps, N Italy), peridotite bodies occur within high-grade crustal rocks. Peridotites show a transition from coarse spinel-lherzolites to mylonitic garnet-amphibole peridotites. Pyroxenites veins and dikes, transposed along the peridotite foliation, show a similar evolution from coarse garnet-free websterites to fine-grained garnet + amphibole clinopyroxenites. This coupled evolution has been interpreted to reflect cooling and pressure increase of pyroxenites and host peridotites from spinel- (1200 °C, 1.3-1.6 Gpa) to garnet-facies conditions (850 °C and 2.8 Gpa) likely induced by mantle corner flow. As a consequence, garnet formed coronas around spinel and exsolved from porphyroclastic, high-T pyroxenes, and finally crystallised along the pyroxenite and peridotite foliations. Textural evidences and CPO data indicate that the transition from spinel- to garnet-facies conditions was assisted by intense shearing and deformation. Pyroxene porphyroclasts in garnet clinopyroxenites show well-developed CPOs, high frequencies of low-angle misorientations, and non-random distribution of the low-angle misorientation axes, indicating that pyroxene porphyroclasts primarily deform by dislocation creep. Dislocation creep is accompanied by reaction-induced dynamic recrystallisation during the spinel to garnet phase transition, which promotes a sudden reduction of the grain size and a shift from dislocation creep in the porphyroclast to grain-size sensitive creep (GSS) in the recrystallised grains. This results in a dramatic rheological weakening of pyroxenites at HP peak conditions when pyroxenites and host peridotites were coupled with crustal rocks.
Chapitres de livres sur le sujet "Warm subduction"
Rushmer, Tracy. « The Influence of Dehydration and Partial Melting Reactions on the Seismicity and Deformation in Warm Subducting Crust ». Dans Subduction Top to Bottom, 299–306. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm096p0299.
Texte intégralHeron, Mal. « Detection and Warning of Tsunamis Generated by Marine Landslides ». Dans Landslides [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99914.
Texte intégralActes de conférences sur le sujet "Warm subduction"
Ao, Aliba. « Clockwise metamorphic P-T path of hornblende eclogite rock from Nagaland Ophiolite Complex, NE India : new evidence of warm subduction ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.8937.
Texte intégralRapports d'organisations sur le sujet "Warm subduction"
Kirby, S. H., E. R. Engdahl et A. Villaseñor. Warm-slab subduction as a global process. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/222517.
Texte intégral