Littérature scientifique sur le sujet « Volatile in magmas »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Volatile in magmas ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Volatile in magmas"
Degruyter, Wim, Andrea Parmigiani, Christian Huber et Olivier Bachmann. « How do volatiles escape their shallow magmatic hearth ? » Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2139 (7 janvier 2019) : 20180017. http://dx.doi.org/10.1098/rsta.2018.0017.
Texte intégralPerinelli, Cristina, Silvio Mollo, Mario Gaeta, Serena De Cristofaro, Danilo Palladino et Piergiorgio Scarlato. « Impulsive Supply of Volatile-Rich Magmas in the Shallow Plumbing System of Mt. Etna Volcano ». Minerals 8, no 11 (25 octobre 2018) : 482. http://dx.doi.org/10.3390/min8110482.
Texte intégralRasmussen, Daniel J., Terry A. Plank, Diana C. Roman et Mindy M. Zimmer. « Magmatic water content controls the pre-eruptive depth of arc magmas ». Science 375, no 6585 (11 mars 2022) : 1169–72. http://dx.doi.org/10.1126/science.abm5174.
Texte intégralNizametdinov, I. R., D. V. Kuzmin, S. Z. Smirnov, A. V. Rybin et I. Yu Kulakov. « Water in parental basaltic magmasof the Menshiy Brat volcano (Iturup Island, Kurile islands) ». Доклады Академии наук 486, no 1 (10 mai 2019) : 93–97. http://dx.doi.org/10.31857/s0869-5652486193-97.
Texte intégralBoudreau, Alan E. « The Stillwater Complex, Montana – Overview and the significance of volatiles ». Mineralogical Magazine 80, no 4 (juin 2016) : 585–637. http://dx.doi.org/10.1180/minmag.2016.080.063.
Texte intégralRussell, J. Kelly, R. Stephen J. Sparks et Janine L. Kavanagh. « Kimberlite Volcanology : Transport, Ascent, and Eruption ». Elements 15, no 6 (1 décembre 2019) : 405–10. http://dx.doi.org/10.2138/gselements.15.6.405.
Texte intégralHolloway, John R., et Sigurdur Jakobsson. « Volatile solubilities in magmas : Transport of volatiles from mantles to planet surfaces ». Journal of Geophysical Research : Solid Earth 91, B4 (30 mars 1986) : 505–8. http://dx.doi.org/10.1029/jb091ib04p0d505.
Texte intégralMartin, Audrey M., Etienne Médard, Kevin Righter et Antonio Lanzirotti. « Intraplate mantle oxidation by volatile-rich silicic magmas ». Lithos 292-293 (novembre 2017) : 320–33. http://dx.doi.org/10.1016/j.lithos.2017.09.002.
Texte intégralMacdonald, R., et B. Bagiński. « The central Kenya peralkaline province : a unique assemblage of magmatic systems ». Mineralogical Magazine 73, no 1 (février 2009) : 1–16. http://dx.doi.org/10.1180/minmag.2009.073.1.1.
Texte intégralMadon, Baptiste, Lucie Mathieu et Jeffrey H. Marsh. « Oxygen Fugacity and Volatile Content of Syntectonic Magmatism in the Neoarchean Abitibi Greenstone Belt, Superior Province, Canada ». Minerals 10, no 11 (28 octobre 2020) : 966. http://dx.doi.org/10.3390/min10110966.
Texte intégralThèses sur le sujet "Volatile in magmas"
Wayman, Matthew C. « The Transfer of Volatiles Within Interacting Magmas and its Effect on the Magma Mingling Process ». Kent State University Honors College / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1312924338.
Texte intégralLe, Gall Nolwenn. « Ascension et dégazage des magmas basaltiques : approche expérimentale ». Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2044/document.
Texte intégralFor a better understanding of the dynamics of ascent and eruption of basaltic magmas, we have performed high pressure (200–25 MPa) and high temperature (1200°C) decompression experiments specifically oriented to document gas bubble nucleation processes. Bubble nucleation occurs first during magma degassing and, so, it is critical to understand bubble nucleation processes to constrain the evolution of the gas phase (which is the driving force of explosive eruptions) in the volcanic conduit. Four main sets of experiments were conducted to better assess the role of the major volatiles (H2O, CO2, S), as well as the effects of ascent rate and crystals, on bubble vesiculation (nucleation, growth, coalescence) kinetics in basaltic magmas. The aim of the study is to understand the mechanisms which control the textural (number, size, shape of bubbles) and the chemical (dissolved volatile concentrations, gas composition) characteristics of natural products, and also to approach them experimentally. In this way, experimental melts, before and after decompression, were analysed texturally (by X-ray microtomography and MEB) and chemically (by FTIR and electron microprobe). Our results demonstrate a strong influence of CO2 on degassing mode (equilibrium vs. disequilibrium) and mechanisms, which are shown to be controlled by differences in solubility and diffusivity between the main volatile species. Finally, our data, obtained under conditions closely approaching natural eruptions, have volcanological implications for the interpretation of bubble textures and gas measurements, as well as, more specifically, for the dynamics of Strombolian paroxysms
Leroy, Clémence. « L'iode et le xénon dans les magmas : deux comportements différents ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066094/document.
Texte intégralThe presence of magmas at depth helps to constrain past and actual geological processes. Magmas (i.e. silicate melts) participate in geochemical cycles of volatile elements, as vectors of chemical transfers. We study two complementary volatile elements: iodine (I), a halogen, and xenon (Xe), a noble gas. Their extinct 129I/129Xe isotopic system (half-life of 15.7Ma) is used to date Hadean processes and Earth’s atmosphere formation since the atmosphere originated from the Magma Ocean’s evolution. However, little is known about the behavior of both iodine and xenon in silicate melts at depth, under HT and HP conditions. Our experimental protocol aims at elucidating the incorporation process of xenon and iodine in silicate melts, and their solubility. To understand the incorporation of iodine and xenon in magmas, the structure of silicate melts was investigated by in situ diamond anvil cells and Paris-Edinburgh press experiments coupled with X-ray diffraction characterization. Iodine and xenon’s solubility, along with water content are obtained by PIXE and ERDA methods using a nuclear microprobe. At high pressure, iodine has a high solubility (about few wt.%) in magmas. Preliminary results on iodine incorporation in basaltic melt show an absence of covalent bond. At high pressure and temperature conditions (T>300°C – P>1GPa), xenon forms a Xe-O covalent bond with the oxygens of the 6-membered-rings of the melt network. Its solubility in silicate melts is also high (about 4wt.% in haplogranite melts at 1600°C and 3.5GPa). Considering the xenon and iodine differential behavior in melts at depth, a revision of dating models in xenon and iodine cycles must be considered
Johnson, Emily Renee. « Volatiles in basaltic magmas from central Mexico : from subduction to eruption / ». Thesis, Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8331.
Texte intégralTypescript. Includes vita and abstract. Includes bibliographical references (leaves 153-167). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Hunt, Emma J. « Magma chamber dynamics in the peralkaline magmas of the Kakortokite Series, South Greenland ». Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6900.
Texte intégralESPOSITO, ROSARIO. « Geochemical study of the Solchiaro (Procida Island, Campi Flegrei) eruptive products by microthermometry and microanalysis of fluid and melt inclusions ». Doctoral thesis, Università degli Studi di Napoli Federico II, 2010. http://hdl.handle.net/10281/349383.
Texte intégralESPOSITO, ROSARIO. « Studies of volatile evolution in magmatic systems using melt inclusions ». Doctoral thesis, Virginia Polytechnic Institute and State University, 2012. http://hdl.handle.net/10281/349369.
Texte intégralChamboredon, René. « Caractérisation et origine des magmas alcalins et des fluides sous le massif volcanique du Jbel Saghro, Anti Atlas, Maroc ». Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS070/document.
Texte intégralVolatile-rich, silica-undersaturated alkaline lavas record the important role of fluids during fluid-rock and magma-rock interactions in the mantle, which are key processes to understand the dynamics of the convective mantle and lithosphere-asthenosphere interactions in intracontinental settings. The aim of this thesis is to bring new constraints on the genesis of alkaline magmas by characterizing the crystallization conditions, the source and the partial melting processes taking part in the genesis of olivine nephelinites, pyroxene nephelinites and basanites from the Jbel Saghro volcanic field in the Moroccan Anti Atlas. The petrological and geochemical study of rocks and minerals coupled with the analysis of fluid inclusions constrains the pre-eruptive conditions of Saghro nephelinites to 1.7–2.2 GPa and ~1350 °C. Minerals show that nephelinitic magmas are rich in volatile elements (Cl, F, S), and fluid inclusions indicate that magmas were saturated with a CO2-rich fluid at pressures > 590 MPa. The various mineralogical assemblages and the presence of peridotite xenoliths suggest a rapid ascent for olivine nephelinites and more complex processes at depth for pyroxene nephelinites. Fractional crystallization and partial melting modelling of Saghro mafic lavas indicate that they are low-degree melts (0.6–2.5 %) of an amphibole-bearing carbonated peridotite enriched in incompatible elements, at the garnet-spinel transition (~80–85 km). Saghro nephelinites display a temporal evolution with a slight increase of the degree of melting and a decrease of the amount of residual amphibole from the oldest (olivine nephelinites, 9.6 Ma) to the most recent (pyroxene nephelinites, 2.9 Ma). Basanites form a system that is independent from nephelinites and are slightly higher-degree melts. Important variations in their chemical composition suggest variable amounts of fractional crystallization during ascent. The peculiar characteristics of Saghro nephelinites and basanites (enrichment in incompatible elements, negative anomalies in K, Zr, Hf and Ti, high Ca/Al and Zr/Hf ratios) indicate that their source was affected by carbonatitic metasomatism. The influence of this metasomatism is stronger for pyroxene nephelinites than for olivine nephelinites. These results suggest fluid-rock interactions beneath the Northwest African Craton, leading to the formation of a metasomatized mantle by CO2-rich carbonatitic components at the lithosphere-asthenosphere transition. The origin of the metasomatism inducing source enrichment and the formation of amphibole veins could be attributed to the melting of relict subducted oce anic lithosphere. The relatively low melting temperatures (< 1350 °C) suggest the absence of a thermal anomaly beneath the Jbel Saghro, and thus support a lithosphere delamination model as precursor of Saghro volca0,3nism. However, the increasing degree of partial melting over time, also observed in the Middle Atlas, together with the isotopic and geochemical similarities with Canary Islands alkaline lavas does not allow us to discard the influence of a deviation of the Canary mantle plume beneath northwest Africa
Berg, Sylvia. « Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits : an Experimental Approach ». Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160266.
Texte intégralLaumonier, Mickaël. « Mélange de magmas à HP-HT : contraintes expérimentales et application au magmatisme d'arc ». Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-00859628.
Texte intégralLivres sur le sujet "Volatile in magmas"
Edmonds, M., Georg F. Zellmer et S. M. Straub. The role of volatiles in the genesis, evolution and eruption of arc magmas. London : The Geological Society, 2015.
Trouver le texte intégralR, Carroll Michael, et Holloway John R, dir. Volatiles in magmas. Washington, D.C : Mineralogical Society of America, 1994.
Trouver le texte intégralLloyd, Alexander. Timescales of magma ascent during explosive eruptions : Insights from the re-equilibration of magmatic volatiles. [New York, N.Y.?] : [publisher not identified], 2014.
Trouver le texte intégralJapan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems" (1991 Kagoshima-shi, Japan, and Ebino-shi, Japan). Magmatic contributions to hydrothermal systems : Extended abstracts of the Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems", held at Kagoshima and Ebino, November, 1991 and The behavior of volatiles in magma : abstracts of the 4th Symposium on Deep-crustal Fluids "The behavior of Volatiles in Magma", held at Tsukuba, November, 1991. Tsukuba-shi : Geological Survey of Japan, 1992.
Trouver le texte intégralCarroll, Michael R., et John R. Holloway, dir. Volatiles in Magmas. De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674.
Texte intégralHolloway, John R., et Michael R. Carroll. Volatiles in Magmas. de Gruyter GmbH, Walter, 2018.
Trouver le texte intégralVolaties in Magmas (Reviews in Mineralogy,). Mineralogical Society of America, 1994.
Trouver le texte intégralChapitres de livres sur le sujet "Volatile in magmas"
Watson, E. Bruce. « Chapter 10. DIFFUSION IN VOLATILE-BEARING MAGMAS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 371–412. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-016.
Texte intégralJambon, Albert. « Chapter 12. EARTH DEGASSING AND LARGE-SCALE GEOCHEMICAL CYCLING OF VOLATILE ELEMENTS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 479–518. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-019.
Texte intégralMétrich, Nicole. « 10. Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions ». Dans Minerals, Inclusions And Volcanic Processes, sous la direction de Keith D. Putirka et Frank J. Tepley III, 363–402. Berlin, Boston : De Gruyter, 2008. http://dx.doi.org/10.1515/9781501508486-011.
Texte intégralSymonds, Robert B., William I. Rose, Gregg J. S. Bluth et Terrrence M. Gerlach. « Chapter 1. VOLCANIC-GAS STUDIES : METHODS, RESULTS, AND APPLICATIONS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 1–66. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-007.
Texte intégralIhinger, Phillip D., Richard L. Hervig et Paul F. McMillan. « Chapter 2. ANALYTICAL METHODS FOR VOLATILES IN GLASSES ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 67–122. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-008.
Texte intégralBurnham, C. Wayne. « CHAPTER 3. DEVELOPMENT OF THE BURNHAM MODEL FOR PREDICTION OF H20 SOLUBILITY IN MAGMAS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 123–30. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-009.
Texte intégralMcMillan, Paul F. « Chapter 4. WATER SOLUBILITY AND SPECIATION MODELS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 131–56. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-010.
Texte intégralBlank, Jennifer G., et Richard A. Brooker. « Chapter 5. EXPERIMENTAL STUDIES OF CARBON DIOXIDE IN SILICATE MELTS : SOLUBILITY, SPECIATION, AND STABLE CARBON ISOTOPE BEHAVIOR ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 157–86. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-011.
Texte intégralHolloway, John R., et Jennifer G. Blank. « Chapter 6. APPLICATION OF EXPERIMENTAL RESULTS TO C-O-H SPECIES IN NATURAL MELTS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 187–230. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-012.
Texte intégralCarroll, Michael R., et James D. Webster. « Chapter 7. SOLUBILITIES OF SULFUR, NOBLE GASES, NITROGEN, CHLORINE, AND FLUORINE IN MAGMAS ». Dans Volatiles in Magmas, sous la direction de Michael R. Carroll et John R. Holloway, 231–80. Berlin, Boston : De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-013.
Texte intégralActes de conférences sur le sujet "Volatile in magmas"
Loewen, Matt, Adam Kent et Pavel Izbekov. « Tracking magmatic volatile and non-volatile trace elements with amphibole in arc magmas ». Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10654.
Texte intégralEconomos, Rita C. « APATITE AS A RECORDER OF CRYPTIC VOLATILE PROCESSES IN MAGMAS ». Dans 54th Annual GSA South-Central Section Meeting 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020sc-343727.
Texte intégralGibson, Sally, James Crosby, Matthew Gleeson et Charlotte Jackson. « The Role of Pyroxenites in the Volatile Budgets of Intraplate Magmas ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.824.
Texte intégralHernandez Nava, Andres, Benjamin A. Black et Sally Gibson. « SOURCES OF EARLY DECCAN TRAPS MAGMAS AND IMPLICATIONS FOR VOLATILE EVOLUTION ». Dans GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358263.
Texte intégralJiménez Mejías, María, Joan Andújar, Bruno Scaillet et Ramón Casillas. « Volatile contents in alkaline magmas from Tenerife, Canary Islands : insights from melt inclusions. » Dans Goldschmidt2022. France : European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.11915.
Texte intégralMoretti, Roberto, Charles Le Losq et Daniel Neuville. « The Mutual Interactions of Redox Species in Magmas : The Role of Differentiation and Volatile Degassing ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1846.
Texte intégralBrahm, Raimundo, Takeshi Kuritani, Naoya Sakamoto, Hisayoshi Yurimoto, Georg Florian Zellmer, Mitsushiro Nakagawa et Eiichi Sato. « Slab Temperature Control on Volatile Budgets of Arc Magmas Tracked from Melt Inclusion Halogen Contents ». Dans Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.253.
Texte intégralLente, Jenna L., et Emily R. Johnson. « VOLATILE CONTENTS AND PRE-ERUPTIVE CONDITIONS OF RHYOLITIC MAGMAS FROM THE ORGAN CALDERA, SOUTHERN NM ». Dans GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284230.
Texte intégralLente, Jenna, et Emily Johnson. « Volatile Contents and Pre-Eruptive Conditions of Rhyolitic Magmas From the Organ Caldera, Southern NM ». Dans 2016 New Mexico Geological Society Annual Spring Meeting. Socorro, NM : New Mexico Geological Society, 2016. http://dx.doi.org/10.56577/sm-2016.419.
Texte intégralHeinonen, Jussi, Ville Virtanen, Frank Spera et Wendy Bohrson. « Crustal heating and assimilation by LIP magmas : volatile perspectives from experimental petrology and thermodynamic modeling ». Dans Goldschmidt2021. France : European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5339.
Texte intégralRapports d'organisations sur le sujet "Volatile in magmas"
Vogel, T. A. Variations in volatiles in magma bodies based on studies of melt inclusions. Office of Scientific and Technical Information (OSTI), juin 1989. http://dx.doi.org/10.2172/5127090.
Texte intégralKunrat, Syegi. Soputan Volcano, Indonesia : Petrological Systematics of Volatiles and Magmas and Their Bearing on Explosive Eruptions of a Basalt Volcano. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.5722.
Texte intégral