Littérature scientifique sur le sujet « Viscoelastic Layers »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Viscoelastic Layers ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Viscoelastic Layers"
Pshenichnov, Sergey, Radan Ivanov et Maria Datcheva. « Transient Wave Propagation in Functionally Graded Viscoelastic Structures ». Mathematics 10, no 23 (29 novembre 2022) : 4505. http://dx.doi.org/10.3390/math10234505.
Texte intégralUngar, Eric E. « Damping by Viscoelastic Layers ». Applied Mechanics Reviews 53, no 6 (1 juin 2000) : R33—R38. http://dx.doi.org/10.1115/1.3097346.
Texte intégralYi, Sung, M. Fouad Ahmad et H. H. Hilton. « Dynamic Responses of Plates With Viscoelastic Free Layer Damping Treatment ». Journal of Vibration and Acoustics 118, no 3 (1 juillet 1996) : 362–67. http://dx.doi.org/10.1115/1.2888191.
Texte intégralHetnarski, Richard B., Ray A. West et Joseph S. Torok. « Damping of Vibrations of Layered Elastic-Viscoelastic Beams ». Applied Mechanics Reviews 46, no 11S (1 novembre 1993) : S305—S311. http://dx.doi.org/10.1115/1.3122651.
Texte intégralHujare, Pravin P., et Anil D. Sahasrabudhe. « Effect of Thickness of Damping Material on Vibration Control of Structural Vibration in Constrained Layer Damping Treatment ». Applied Mechanics and Materials 592-594 (juillet 2014) : 2031–35. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.2031.
Texte intégralIoannides, E., et P. Grootenhuis. « A Finite Element Analysis of the Harmonic Response of Damped Five-Layer Plates ». Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science 199, no 4 (octobre 1985) : 311–17. http://dx.doi.org/10.1243/pime_proc_1985_199_128_02.
Texte intégralGandhi, Farhan, et Brian Munsky. « Effectiveness of Active Constrained Layer Damping Treatments in Attenuating Resonant Oscillations ». Journal of Vibration and Control 8, no 6 (juin 2002) : 747–75. http://dx.doi.org/10.1177/1077546029188.
Texte intégralWang, Tao, Ryan Murphy, Jing Wang, Shyam S. Mohapatra, Subhra Mohapatra et Rasim Guldiken. « Perturbation Analysis of a Multiple Layer Guided Love Wave Sensor in a Viscoelastic Environment ». Sensors 19, no 20 (18 octobre 2019) : 4533. http://dx.doi.org/10.3390/s19204533.
Texte intégralHunt, G., H. Mühlhaus, B. Hobbs et A. Ord. « Localized folding of viscoelastic layers ». Geologische Rundschau 85, no 1 (1996) : 58. http://dx.doi.org/10.1007/s005310050052.
Texte intégralHandge, U. A., I. M. Sokolov et A. Blumen. « Fragmentation of viscoelastic surface layers ». Europhysics Letters (EPL) 40, no 3 (1 novembre 1997) : 275–80. http://dx.doi.org/10.1209/epl/i1997-00460-0.
Texte intégralThèses sur le sujet "Viscoelastic Layers"
Aumaitre, Elodie. « Viscoelastic properties of hydrophobin layers ». Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607660.
Texte intégralRavish, Masti Sarangapany. « Vibration damping analysis of cylindrical shells partially coated with constrained visco-elastic layers ». Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23000867.
Texte intégralRavish, Masti Sarangapany. « Vibration damping analysis of cylindrical shells partially coated withconstrained visco-elastic layers ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242169.
Texte intégralSlanik, Marta. « A numerical and experimental investigation of steel beams damped with constrained viscoelastic layers ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0027/MQ50664.pdf.
Texte intégralSher, Branca Rosa Ribeiro Leite de Sousa. « Optimisation of viscoelastic treatments using genetic algorithms ». Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12431.
Texte intégralViscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.
Os tratamentos viscoelásticos permitem amortecer estruturas finas e leves de uma forma bastante eficiente. Neste tipo de amortecimento passivo, parte da energia de deformação é dissipada pelo material viscoelástico sob a forma de calor. O material viscoelástico é aplicado à superfície de uma estrutura e pode ser, ou não, restringido por uma camada de restrição. Dentro destas duas possibilidades, o tratamento com restrição é o que apresenta maior eficiência. Isto deve-se ao facto de que o movimento relativo das camadas adjacentes impõe uma elevada deformação de corte ao material viscoelástico. De um modo geral, a minimização da extensão da aplicação do material viscoelástico sob a forma de tratamentos parciais localizados torna-se benéfico em termos de custo, quer económico, quer qualquer outra forma de custo associado à aplicação do tratamento. A aplicação de pequenas porções de material sobre áreas específicas e selecionadas torna o tratamento igualmente eficiente, segundo estudos e resultados apresentados por vários autores. Como mencionado anteriormente, o mecanismo de amortecimento do material viscoelástico baseia-se na dissipação de parte da energia de deformação. Este facto permite relacionar a eficiência do tratamento parcial com a energia de deformação modal da estrutura para cada um dos modos naturais. Não obstante os bons resultados obtidos na abordagem desta técnica, este método requer a aplicação de um processo de otimização que conduza a uma solução ótima. Todavia, a simulação numérica deste processo de otimização, exige um elevado custo computacional pois é baseado num processo evolutivo de redesenho da geometria e cálculo do amortecimento modal por forma a utilizar o mínimo de material possível. Baseado nestes pressupostos, este estudo utiliza elementos finitos de camada discreta adaptativos associados a um processo de otimização com base em Algoritmos Genéticos. Este procedimento permite desenvolver um método de otimização de baixo custo computacional e objetivo.
Hall, Braydon Day. « The Dynamic Analysis of a Composite Overwrapped Gun Barrel with Constrained Viscoelastic Damping Layers Using the Modal Strain Energy Method ». DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1972.
Texte intégralLázaro, Navarro Mario. « The Eigenvalue Problem in Linear Viscoelastic Structures : New Numerical Approaches and the Equivalent Viscous Model ». Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/30062.
Texte intégralLázaro Navarro, M. (2013). The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approaches and the Equivalent Viscous Model [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30062
TESIS
Sibley, David N. « Viscoelastic flows of PTT fluid ». Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518114.
Texte intégralSpears, Mark William. « Microgel-based coatings and their use as self-healing, dynamic substrates for bioapplications ». Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53060.
Texte intégralJeung, Yeun S. « Finite element analysis for sandwich structures with a viscoelastic-constrained layer / ». Thesis, Connect to this title online ; UW restricted, 1998. http://hdl.handle.net/1773/9999.
Texte intégralLivres sur le sujet "Viscoelastic Layers"
Borcherdt, Roger D. Viscoelastic waves in layered media. New York : Cambridge University Press, 2008.
Trouver le texte intégralBateman, Michael John. Constrained viscoelastic layer damping of thick aluminum plates : Design, analysis and testing. Monterey, Calif : Naval Postgraduate School, 1990.
Trouver le texte intégralBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Trouver le texte intégralBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Trouver le texte intégralBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Trouver le texte intégralBorcherdt, Roger. Viscoelastic Waves in Layered Media. Cambridge University Press, 2018.
Trouver le texte intégralBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Trouver le texte intégralBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Trouver le texte intégralBorcherdt, Roger. Viscoelastic Waves and Rays in Layered Media. University of Cambridge ESOL Examinations, 2020.
Trouver le texte intégralBorcherdt, Roger. Viscoelastic Waves and Rays in Layered Media. Cambridge University Press, 2020.
Trouver le texte intégralChapitres de livres sur le sujet "Viscoelastic Layers"
Argatov, Ivan, et Gennady Mishuris. « Frictionless Contact of Thin Viscoelastic Layers ». Dans Advanced Structured Materials, 99–147. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20083-5_4.
Texte intégralScholle, Markus, Marcel Mellmann, Philip H. Gaskell, Lena Westerkamp et Florian Marner. « Multilayer Modelling of Lubricated Contacts : A New Approach Based on a Potential Field Description ». Dans Springer Tracts in Mechanical Engineering, 359–75. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_16.
Texte intégralQin, Sheng, Xuefeng Tang, Xianbin Du, Lifei Zhu, Yifeng Wei, Osung Kwon, Jiajie Fang, Ping Wang et Da-Ming Zhu. « Mechanical and Viscoelastic Properties of Polymer Layers on Solid-Liquid Interfaces ». Dans IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 217–28. Dordrecht : Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_19.
Texte intégralAl Ali, Rana, Elhem Ghorbel, Mohamed Dallel et Boumediene Nedjar. « Mechanical Modelling of Ancient Textiles with a 2-layers Viscoelastic-Plastic Model ». Dans Lecture Notes in Mechanical Engineering, 251–59. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14615-2_29.
Texte intégralWang, Ping, Jiajie Fang, Yihong Kang, Sheng Qin, Osung Kwan et Da-Ming Zhu. « Probing Viscoelastic Properties of Polymer Solution Boundary Layers Using Quartz Crystal Resonator ». Dans IUTAM Symposium on Recent Advances of Acoustic Waves in Solids, 415–24. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9893-1_43.
Texte intégralRoussel, Jean-Marie, Hervé Di Benedetto, Cédric Sauzéat et Michaël Broutin. « Influence of Linear Viscoelastic Behaviour of Pavement Layers Interface for Heavy Weight Deflectometer Test ». Dans RILEM Bookseries, 1087–94. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-46455-4_138.
Texte intégralBiswal, Deepak Kumar, et Sukesh Chandra Mohanty. « Free Vibration Analysis of Multilayer Skew Sandwich Spherical Shell Panels with Viscoelastic Material Cores and Isotropic Constraining Layers ». Dans Vibration Engineering for a Sustainable Future, 201–7. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47618-2_25.
Texte intégralTownsend Valencia, Patrick Roger, Juan Carlos Suárez Bermejo, Paz Pinilla Cea et Estela Sanz Horcajo. « Evaluation of the Damage in Composite Materials Modified with Viscoelastic Layers for the Hull of Boats Subjected to Slamming Impacts ». Dans Proceeding of the VI International Ship Design & ; Naval Engineering Congress (CIDIN) and XXVI Pan-American Congress of Naval Engineering, Maritime Transportation and Port Engineering (COPINAVAL), 347–56. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35963-8_29.
Texte intégralPoliakov, A. N. B., P. A. Cundall, Y. Y. Podladchikov et V. A. Lyakhovsky. « An Explicit Inertial Method for the Simulation of Viscoelastic Flow : An Evaluation of Elastic Effects on Diapiric Flow in Two- and Three- Layers Models ». Dans Flow and Creep in the Solar System : Observations, Modeling and Theory, 175–95. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8206-3_12.
Texte intégralGusev, Boris V., et Alexander S. Faivusovich. « Forced Vibrations of the System : Structure – Viscoelastic Layer ». Dans Recent Advances in Mechanics, 79–89. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0557-9_6.
Texte intégralActes de conférences sur le sujet "Viscoelastic Layers"
Wang, Z., Z. B. Chen et M. Z. Li. « Added Viscoelastic Wheel Dampers for Reducing Railway Noise ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66310.
Texte intégralKoguchi, Hideo, et Atsushi Ueno. « Thermo-Viscoelastic Analysis for Warpage in CSP With Different Viscoelastic Properties for Several Layers ». Dans ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33591.
Texte intégralNayfeh, Samir A., et Alexander H. Slocum. « Flexural Vibration of a Viscoelastic Sandwich Beam in its Plane of Lamination ». Dans ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4071.
Texte intégralNilton, Maurício M., André V. Cavalieri, Maurício V. Donadon et William Wolf. « Acoustic scattering by laminated plates with viscoelastic layers ». Dans 25th AIAA/CEAS Aeroacoustics Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2529.
Texte intégralTepe, R., R. Gerhard-Multhaupt et W. Brinker. « Viscoelastic Control Layers For Solid-State Light Valves ». Dans 30th Annual Technical Symposium, sous la direction de William A. Penn. SPIE, 1986. http://dx.doi.org/10.1117/12.936475.
Texte intégralYi, Sung, M. Fouad Ahmad et Harry H. Hilton. « Dynamic Responses of Plates With Viscoelastic Damping Treatment ». Dans ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0133.
Texte intégralGeerligs, Marion, Gerrit W. M. Peters, Paul A. J. Ackermans, Cees W. J. Oomens et Frank P. T. Baaijens. « Linear Viscoelastic Behavior of Adipose Tissue ». Dans ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192712.
Texte intégralRenardy, Michael. « Corner Singularities and High Weissenberg Number Asymptotics for Viscoelastic Fluids ». Dans ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0230.
Texte intégralSakarya, Serhat, Gleb V. Vdovin et Lina Sarro. « Technology of spatial light modulators based on viscoelastic layers ». Dans Photonics, Devices, and Systems II, sous la direction de Miroslav Hrabovsky, Dagmar Senderakova et Pavel Tomanek. SPIE, 2003. http://dx.doi.org/10.1117/12.498467.
Texte intégralOh, J., S. Poh, M. Ruzzene et A. Baz. « Vibration Control of Beams Using Electro-Magnetic Damping Treatment ». Dans ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0558.
Texte intégralRapports d'organisations sur le sujet "Viscoelastic Layers"
Vecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond et Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), septembre 2022. http://dx.doi.org/10.21079/11681/45300.
Texte intégralKorovaytseva, Ekaterina A., Sergey G. Pshenichnov, Todor Zhelyazov et Maria Datcheva. On the Problem of Nonstationary Waves Propagation in a Linear-viscoelastic Layer. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, mai 2021. http://dx.doi.org/10.7546/crabs.2021.05.13.
Texte intégralRose, Luo et Minachi. ZZ44154 Circumferential Guided Waves for Defect Detection in Tar Coated Pipe. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), janvier 2008. http://dx.doi.org/10.55274/r0010958.
Texte intégralFisher, K., O. Mays, D. Obenauf et J. Chang. Exploring the feasibility of crack detection in plate weldments through an interposed layer of viscoelastic material. Office of Scientific and Technical Information (OSTI), juillet 2018. http://dx.doi.org/10.2172/1466114.
Texte intégral