Littérature scientifique sur le sujet « Virtual power »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Virtual power ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Virtual power"

1

Kumagai, Jean. « Virtual power plants, real power ». IEEE Spectrum 49, no 3 (mars 2012) : 13–14. http://dx.doi.org/10.1109/mspec.2012.6156852.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Newman, Guy, et Joseph Mutale. « Characterising Virtual Power Plants ». International Journal of Electrical Engineering & ; Education 46, no 4 (octobre 2009) : 307–18. http://dx.doi.org/10.7227/ijeee.46.4.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mackenzie, Kenneth D. « Virtual Positions and Power ». Management Science 32, no 5 (mai 1986) : 622–42. http://dx.doi.org/10.1287/mnsc.32.5.622.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Janneck, Monique, et Henning Staar. « Playing Virtual Power Games ». International Journal of Social and Organizational Dynamics in IT 1, no 2 (avril 2011) : 46–66. http://dx.doi.org/10.4018/ijsodit.2011040103.

Texte intégral
Résumé :
Although virtual organizations and networks have been studied, there is still need for research regarding their inner dynamics and the mechanisms of leadership and governance. This paper investigates micro-political processes i.e. informal actions of individual actors to gain power and exert influence, which is a well-researched concept in traditional organizations with respect to inter-organizational networks. This study investigates structures and strategies of power within virtual networks. Results show that micro-political tactics known from research in traditional organizations are used in inter-organizational settings. Additional micro-political tactics, specific to virtual networks, are identified. The latter are related to the use of information and communication technology (ICT). A second quantitative study surveyed 359 members of inter-organizational networks on their use of micro-political tactics. Results confirm that micro-political strategies are widely used in virtual networks. The degree of virtuality was associated with the use of certain tactics. Possible implications for the structure and governance of virtual networks and the design of the technology that is used to support virtual cooperation are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fosdick, Roger. « Observations concerning virtual power ». Mathematics and Mechanics of Solids 16, no 6 (28 avril 2011) : 573–85. http://dx.doi.org/10.1177/1081286510387708.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pringle, Stewart. « The power of virtual ». New Scientist 234, no 3119 (avril 2017) : 45. http://dx.doi.org/10.1016/s0262-4079(17)30639-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ausubel, Lawrence M., et Peter Cramton. « Virtual power plant auctions ». Utilities Policy 18, no 4 (décembre 2010) : 201–8. http://dx.doi.org/10.1016/j.jup.2010.05.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chang, Ya Chin, Sung Ling Chen, Rung Fang Chang et Chan Nan Lu. « Optimal Virtual Power Plant Dispatching Approach ». Applied Mechanics and Materials 590 (juin 2014) : 511–15. http://dx.doi.org/10.4028/www.scientific.net/amm.590.511.

Texte intégral
Résumé :
As the integrator of energy resources (DERs), a virtual power plant (VPP) would be able to control the amount of the power access to the distribution transformers such that energy efficiency can be improved. Battery energy storage system (BESS) and demand response (DR) as DERs can entrust the VPP with certain controllability to regulate the power supply of the distribution system. This paper aims to maximize the benefit of the supplied powers over the 24 hours under VPP operation. Combining an iterative dynamic programming optimal BESS schedule approach and a PSO-based DR scheme optimization approach, an optimal VPP operational method is proposed to minimize the total electricity cost with respect to the power supply limit of the distribution transformers and the system security constraints, especially, within the peak load hours. With the TOU rate given each hour, test results had confirmed the validity of the proposed method with the obviously decreased power supply in each peak-load hours and the largely reduced electricity cost accordingly.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yang, Zhiping. « Power integrity and power consumption standards virtual Sandpit ». IEEE Electromagnetic Compatibility Magazine 9, no 2 (2020) : 80–81. http://dx.doi.org/10.1109/memc.2020.9133251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Xiaofeng, Guanlu Yang, Yajing Lv et Zehong Huang. « Power Management System Based on Virtual Power Plant ». IOP Conference Series : Earth and Environmental Science 356 (28 octobre 2019) : 012006. http://dx.doi.org/10.1088/1755-1315/356/1/012006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Virtual power"

1

Newman, Guy. « Characterisation of virtual power plants ». Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-virtual-power-plants(5e647750-5a44-40f0-8a33-763361d3a50b).html.

Texte intégral
Résumé :
The growing number of micro generation devices in the electrical network is leading many to consider that these devices can no longer be considered as fit and forget, but should instead be considered as having a demonstrable network impact which should be predicted and utilised. One of the techniques for considering the impacts of these devices is the Virtual Power Plant (VPP). The VPP is the aggregation of all the Distributed Generation (DG) connected into the network up to and including the connection voltage of the VPP, such that the cumulative power up the voltage levels can be seen in the single VPP unit, rather than across a broad spread of devices. One of the crucial tasks in characterising the VPP, developed in this work, is the ability to correctly predict and then aggregate the behaviour of several technology types which are weather driven, as a large proportion of DG is weather driven. Of this weather driven DG, some can only typically be dispatched with modification and the rest cannot be dispatched at all. The aggregation of the VPP as part of the electrical network is also developed, as the constraints of the network and the reliability of the network cannot be overlooked when considering the aggregation of the VPP. From a distribution network operator's (DNO) perspective, these characterisation models can be used to highlight problems in the network introduced by the addition of DG, but are also generally utilitarian in their role of predicting the power output (or negative load) found throughout the network due to DG. For a commercial agent interested in selling energy, these models allow for accurate predictions of energy to be determined for the trading period. A VPP agent would also be adversely affected by line failure in the network, leading to the development of an N-1 analysis based upon reliability rates of the network, which is used as the basis for a discussion on the impacts of single line failure and the mitigation available through feedback from the DNO.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tai, Sio Un. « Power quality study in Macau and virtual power analyzer ». Thesis, University of Macau, 2012. http://umaclib3.umac.mo/record=b2586277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Squillaci, Carmen. « Gestione dell’energia in Virtual Power Plants ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Trouver le texte intégral
Résumé :
I confini delle risorse di energia distribuita sono in continua espansione negli ultimi anni con conseguenti cambiamenti nella gestione ottimizzata di energia nelle Smart Grid per soddisfare la domanda di energia, apportare miglioramenti alle condizioni ambientali e minimizzare i prezzi. Per raggiungere questo obiettivo si utilizza un Virtual Power Plant con al suo interno un gestore di energia che coordina le unit`a distribuite relative al sistema di energia elettrico. Questo lavoro di tesi sviluppa un modello per la gestione energetica all’interno di un Virtual Power Plant per decidere come e con quali fonti energetiche soddisfare la domanda di energia elettrica. Le decisioni riguardanti le quantita` ed il tipo di risorse energetiche utilizzate ad intervalli orari nell’arco di una giornata avvengono dinamicamente e dipendono da fattori variabili provenienti dalla disponibilit`a delle risorse di energia rinnovabili, dal costo dell’energia elettrica acquistata dalla rete esterna, dal costo del diesel, dai carichi associati ad utenze domestiche e dalla possibilit`a di immagazzinare o rilasciare energia all’interno dell’unit`a di storage. La soluzione `e calcolata mediante l’utilizzo di una funzione costo minimizzata la quale prende in considerazione solo i costi diretti relativi all’impianto VPP. Le conclusioni teoriche e le aspettative sono verificate mediante una simulazione di uno scenario reale.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Setiawan, Eko Adhi. « Concept and controllability of virtual power plant ». Kassel : Kassel Univ. Press, 2007. http://www.uni-kassel.de/hrz/db4/extern/dbupress/publik/abstract.php?978-3-89958-309-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Zhenwei. « Virtual Power Plant Simulation and Control Scheme Design ». Thesis, KTH, Industriella informations- och styrsystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116752.

Texte intégral
Résumé :
Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and the intermit-ted natural characteristics of renewable energy sources like wind and solar. The whole system can be viewed as a single large-capacity power plant from the system‘s point of view. In this project, the literature review of VPP concept, architecture, existed project and the survey of VPP in Sweden are being conducted first. Secondly, the simplified VPP model is built on MATLAB/Simulink software. The simplified system contains a wind farm, a hydro power plant, a dynamic system load and an infinite bus representing the large transmission grid. During the simulation process, the generation and consump-tion unites are running according to the real history data located in external database. In the third place, optimized control schemes for the hydro unit in VPP model to decrease its effects on transmission grid are implemented in Simulink model. At the same time, hydro turbine should be controlled in an optimized way that without large turbulence. Basically, the hydro power plant is responsible for balancing the active power between the wind farm and dynamic load. Since there is a limit for the hydro turbine output, the rest of either power shortage or surplus power need to be com-pensated by the grid. This is the fundamental control scheme, so called run time con-trol scheme. The advanced control schemes here are based on the moving average control method and forecast compensation control method. The forecast compensa-tion control method use the 24 hours ahead load forecasting data generated by Artifi-cial Neural Network. Later on, analysis of those three control schemes will be pre-sented. The last part of the project is the conclusion of the different control schemes according to comparison of their control results.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Khalsa, N. S. « Virtual Cables at the Nevada Test Site ». International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/611425.

Texte intégral
Résumé :
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California
Shrinking budgets and labor pools have impacted our ability to perform experiments at the Nevada Test Site (NTS) as we did previously. Specifically, we could no longer run heavy cables to remote data acquisition sites, so we replaced the cables with RF links that were transparent to the existing system, as well as being low-cost and easy to deploy. This paper details how we implemented the system using mostly commercial off-the-shelf components.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Setiawan, Eko Adhi [Verfasser]. « Concept and controllability of virtual power plant / Eko Adhi Setiawan ». Kassel : Kassel Univ. Press, 2007. http://d-nb.info/989833518/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gillie, Mary. « Operation and regulation of a 'virtual wind/gas' power plant ». Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dong, Xuzhu. « Study of Power Transformer Abnormalities and IT Applications in Power Systems ». Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/26034.

Texte intégral
Résumé :
With deregulation, diagnosis and maintenance of power equipment, especially power transformers, become increasingly important to keep power systems in reliable operation. This dissertation systematically studied two kinds of transformer failure and abnormality cases, and then developed a new Internet based Virtual Hospital (VH) for power equipment to help power equipment diagnosis and maintenance. A practical case of generator-step-up (GSU) transformer failures in a pumped storage plant was extensively studied. Abnormal electrical phenomena associated with GSU transformers, including switching transients and very fast transients (VFT), and lightning, were analyzed. Simulation showed that circuit breaker restriking could be a major cause of transformer successive failures, and current surge arrester configuration did not provide enough lightning protection to GSU transformers. Mitigation of abnormal electrical phenomena effects on GSU transformers was proposed and discussed. The study can be a complete reference of troubleshooting of other similar transformer failures. Geomagnetically induced current (GIC) is another possible cause of transformer abnormality. A simplified method based on the equivalent magnetizing curve for transformers with different core design was developed and validated to estimate harmonic currents and MVar drawn by power transformers with a given GIC. An effective indicator was proposed using partial harmonic distortion, PHD, to show when the transformer begins saturating with the input GIC. The developed method has been applied to a real time GIC monitoring system last year for a large power network with thousands of transformers. A new Internet based Virtual Hospital (VH) for Power Equipment was conceptually developed to share experience of power equipment diagnosis and maintenance, and update the existing diagnostic techniques and maintenance strategies, and a comprehensive information model was developed for data organization, access, and archiving related to equipment diagnosis and maintenance. An Internet based interactive fault diagnostic tool has been launched for power transformers based on dissolved gas analysis (DGA). The above results and findings can help improving power equipment diagnosis and utility maintenance strategies.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Le, Louarn Theobald. « Optimization Of A Virtual Power Plant In The German Electricity Market ». Thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217380.

Texte intégral
Résumé :
Distributed energy sources are becoming more and more important in the German electricitynetwork. One solution to manage this growing number of distributed assets liesin the Virtual Power Plant concept. A Virtual Power Plant aggregates decentralizedgenerators and loads to behave like a large power plant. Based on new technologies, ituses advanced communication technologies to provide different services (generation ofenergy, steering of power systems, balancing services ...). This thesis proposes a mixedintegerstochastic model of a Virtual Power Plant. The participation to different productsis being studied: selling power on day-ahead basis on the spot market, providingflexibility to the secondary and tertiary reserve market. The particularity of this modelis to consider the revenue generated by the stochastic activation of the reserve market.An operational tool named AlocaBid is implemented in Python, based on the developedmathematical model. The performance of the model is being evaluated using four studycases, representing typical market situations. The results demonstrate the advantage ofthe proposed model over state-of-the-art method for bids’ allocation.
Distribuerade energik¨allor blir allt viktigare i det tyska eln¨atverket. En l¨osning f¨or atthantera det v¨axande antalet distribuerade tillg°angar ¨ar Virtual Power Plant-konceptet.Ett virtuellt kraftverk styr decentraliserade generatorer och laster f¨or att efterlikna ettnormalt kraftverk. Baserat p°a ny teknik anv¨ander det avancerad kommunikationsteknikf¨or att tillhandah°alla olika tj¨anster (generering av energi, styrning av kraftsystem, balanseringstj¨anster ...). Denna avhandling f¨oresl°ar en stokastisk blanda heltalsmodell avett virtuellt kraftverk. Deltagandet i olika produkter studeras: F¨ors¨aljning av maktp°a daglig basis p°a spotmarknaden, vilket ger flexibilitet till den sekund¨ara och terti¨arareservmarknaden. Det speciella med denna modell ¨ar att den tar h¨ansyn till de int¨aktersom genereras av den stokastiska aktiveringen av reservmarknaden. Ett operationsverktygmed namnet AlocaBid implementeras i Python, baserat p°a den utvecklade matematiskamodellen. Modellens prestanda utv¨arderas med fyra studiefall, som representerartypiska marknadssituationer. Resultaten visar f¨ordelen med den f¨oreslagna modelleframf¨or den senaste tekniken f¨or budgivningens f¨ordelning.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Virtual power"

1

Ninagawa, Chuzo. Virtual Power Plant System Integration Technology. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6148-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baringo, Luis, et Morteza Rahimiyan. Virtual Power Plants and Electricity Markets. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

The virtual American empire : War, faith, and power. New Brunswick, NJ : Transaction Publishers, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bowditch, John, Eric R. Williams et Adonis Durado. The Power of Virtual Reality Cinema for Healthcare Training. New York : Productivity Press, 2021. http://dx.doi.org/10.4324/9781003168683.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Heydarian-Forushani, Ehsan, Hassan Haes Alhelou et Seifeddine Ben Elghali. Virtual Power Plant Solution for Future Smart Energy Communities. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003257202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jia, Heping, Xuanyuan Wang, Xian Zhang et Dunnan Liu. Business Models and Reliable Operation of Virtual Power Plants. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7846-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mien-Win, Wu, et He neng yan jiu suo., dir. Pulsed high-power microwaves from a virtual-cathode reflex triode. Lung-Tan, Taiwan, Republic of China : Institute of Nuclear Energy Research, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wershler-Henry, Darren S. Commonspace : Beyond virtual community : seize the power of the collective. [Don Mills, Ont.] : FT.com, Pearson Education Canada, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Budi, Darmawan, et International Business Machines Corporation. International Technical Support Organization., dir. Power systems and SOA synergy. [Poughkeepsie, NY] : International Technical Support Organization, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Budi, Darmawan, et International Business Machines Corporation. International Technical Support Organization., dir. Power systems and SOA synergy. [Poughkeepsie, NY] : International Technical Support Organization, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Virtual power"

1

Morales, Juan M., Antonio J. Conejo, Henrik Madsen, Pierre Pinson et Marco Zugno. « Virtual Power Plants Virtual power plant ». Dans International Series in Operations Research & ; Management Science, 243–87. Boston, MA : Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-9411-9_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Larsen, Fridrik. « Virtual Power ». Dans Sustainable Energy Branding, 159–70. London : Routledge, 2022. http://dx.doi.org/10.4324/9781003351030-14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bilbao, Javier, Eugenio Bravo, Carolina Rebollar, Concepcion Varela et Olatz Garcia. « Virtual Power Plants and Virtual Inertia ». Dans Power Systems, 87–113. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23723-3_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Buchner, Dietrich, Ulrich Hofmann et Stephan Magnus. « Virtual Corporate University ». Dans Change Power, 252–58. Wiesbaden : Gabler Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-82318-2_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Baringo, Luis, et Morteza Rahimiyan. « Virtual Power Plants ». Dans Virtual Power Plants and Electricity Markets, 1–7. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pereira, Gonçalo, Rui Prada et Pedro A. Santos. « Conceptualizing Social Power for Agents ». Dans Intelligent Virtual Agents, 313–24. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40415-3_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Baringo, Luis, et Morteza Rahimiyan. « Virtual Power Plant Model ». Dans Virtual Power Plants and Electricity Markets, 9–37. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47602-1_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Edoli, Enrico, Stefano Fiorenzani et Tiziano Vargiolu. « Virtual Power Plant Contracts ». Dans Optimization Methods for Gas and Power Markets, 105–13. London : Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/9781137412973_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ninagawa, Chuzo. « Virtual Power Plant System ». Dans Virtual Power Plant System Integration Technology, 33–53. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ninagawa, Chuzo. « Virtual Power Plant Performance ». Dans Virtual Power Plant System Integration Technology, 139–206. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6148-8_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Virtual power"

1

Platt, Glenn, Ying Guo, Jiaming Li et Sam West. « The Virtual Power Station ». Dans 2008 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE, 2008. http://dx.doi.org/10.1109/icset.2008.4747064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lu, Nan, Hongfeng Qin, Changyin Sun et Fan Jiang. « Power Splitting and Virtual Power Allocation for Virtual Cell in Ultra-Dense Networks ». Dans 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2018. http://dx.doi.org/10.1109/wcsp.2018.8555632.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Morais, H., M. Cardoso, H. Khodr, I. Praca et Z. Vale. « Virtual Power Producers Market Strategies ». Dans 2008 5th International Conference on the European Electricity Market (EEM 2008). IEEE, 2008. http://dx.doi.org/10.1109/eem.2008.4579099.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Palensky, Peter, et Dietmar Bruckner. « Anticipative virtual storage power plants ». Dans IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zwaenepoel, Brecht, Joannes I. Laveyne, Lieven Vandevelde, Tine L. Vandoorn, Bart Meersman et Greet Van Eetvelde. « Solar Commercial Virtual Power Plant ». Dans 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ramos, Lucas Feksa, et Luciane Neves Canha. « Uncertainties in Virtual Power Plants ». Dans 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). IEEE, 2019. http://dx.doi.org/10.1109/isgt-la.2019.8895401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ignat, S., H. Valean et D. Capatina. « Virtual instrumentation in power engineering ». Dans 2012 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2012). IEEE, 2012. http://dx.doi.org/10.1109/aqtr.2012.6237734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Brittingham, J. « Minimizing a Class of Azimuthal Power Tilts ». Dans Transactions - 2020 Virtual Conference. AMNS, 2020. http://dx.doi.org/10.13182/t122-32579.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brittingham, J. « Minimizing a Class of Azimuthal Power Tilts ». Dans Transactions - 2020 Virtual Conference. AMNS, 2020. http://dx.doi.org/10.13182/t32579.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bao, Yueshuang, Xueting Cheng, Jun Pi, Yifan Zhang, Chenjia Hou et Yucun Guo. « Selection Strategy of Virtual Power Plant Members Considering Power Grid Security and Economics of Virtual Power Plant ». Dans 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021. http://dx.doi.org/10.1109/ei252483.2021.9713381.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Virtual power"

1

Johnson, Jay Tillay. Full State Feedback Control for Virtual Power Plants. Office of Scientific and Technical Information (OSTI), septembre 2017. http://dx.doi.org/10.2172/1395431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bockelie, Mike, Dave Swensen et Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), juillet 2001. http://dx.doi.org/10.2172/786011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bockelie, Mike, Dave Swensen et Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), janvier 2002. http://dx.doi.org/10.2172/791707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bockelie, Mike, Dave Swensen et Martin Denison. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), avril 2002. http://dx.doi.org/10.2172/807228.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bockelie, Mike, Dave Swensen, Martin Denison, Connie Senior, Adel Sarofim et Bene Risio. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), juillet 2002. http://dx.doi.org/10.2172/807229.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Johnson, Jay Tillay. Design and Evaluation of a Secure Virtual Power Plant. Office of Scientific and Technical Information (OSTI), septembre 2017. http://dx.doi.org/10.2172/1395430.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mike Bockelie, Dave Swensen, Martin Denison, Adel Sarofim et Connie Senior. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), décembre 2004. http://dx.doi.org/10.2172/837892.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mike Bockelie, Dave Swensen, Martin Denison, Zumao Chen, Mike Maguire, Adel Sarofim, Changguan Yang et Hong-Shig Shim. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), janvier 2004. http://dx.doi.org/10.2172/822914.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mike Bockelie, Dave Swensen, Martin Denison, Zumao Chen, Temi Linjewile, Mike Maguire, Adel Sarofim, Connie Senior, Changguan Yang et Hong-Shig Shim. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION. Office of Scientific and Technical Information (OSTI), avril 2004. http://dx.doi.org/10.2172/825385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mike Bockelie, Dave Swensen, Martin Denison et Stanislav Borodai. A Virtual Engineering Framework for Simulating Advanced Power System. Office of Scientific and Technical Information (OSTI), juin 2008. http://dx.doi.org/10.2172/947100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie