Articles de revues sur le sujet « Vinyl chlorides »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Vinyl chlorides.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Vinyl chlorides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Herman, Jan A., Rodica Neagu-Plesu et Leszek Wójcik. « Réactions ion/molécule de l'ion C2H3Cl+ dans le mélange gazeux : chlorure de vinyle – chlorure d'éthyle ». Canadian Journal of Chemistry 67, no 1 (1 janvier 1989) : 97–103. http://dx.doi.org/10.1139/v89-017.

Texte intégral
Résumé :
Ion/molecule reactions of C2H3Cl+ have been studied in a mixture of vinyl and ethyl chlorides. The ionic processes have been followed using two mass spectrometers; one is based on the ionic cyclotronic resonance (ICR) while the other is based on photo-ionization at high pressure. The results obtained on these two instruments are complementary and they indicate that the ion C2H3Cl+ does not react directly with ethyl chloride. However, the ions C4H3Cl+ and C4H6Cl+, which are formed following the decomposition of the excited ion-dimer of vinyl chloride, do react with ethyl chloride in a series of condensation reactions involving in each step an elimination of HCl or of Cl. In a mixture of the two chlorides, the most important ions are the C8H13+ and C8H14+; at a pressure of 1 Tonr, their total intensity is equal to 50%. Keywords: ion/molecule reactions of C2H3Cl+, vinyl and ethyl chloride mixtures, mass spectrometry. [Journal translation]
Styles APA, Harvard, Vancouver, ISO, etc.
2

Davis, Stephanie C. « Vinyl chlorides and phthalates ». Environmental Quality Management 12, no 1 (2002) : 91–96. http://dx.doi.org/10.1002/tqem.10056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lehr, Marvin H. « Miscibility in poly(vinyl chloride)/chlorinated poly(vinyl chloride) blends, and blends of different chlorinated poly(vinyl chlorides) ». Polymer Engineering and Science 25, no 17 (décembre 1985) : 1056–68. http://dx.doi.org/10.1002/pen.760251703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hadi, Angham G., Sadiq J. Baqir, Dina S. Ahmed, Gamal A. El-Hiti, Hassan Hashim, Ahmed Ahmed, Benson M. Kariuki et Emad Yousif. « Substituted Organotin Complexes of 4-Methoxybenzoic Acid for Reduction of Poly(vinyl Chloride) Photodegradation ». Polymers 13, no 22 (15 novembre 2021) : 3946. http://dx.doi.org/10.3390/polym13223946.

Texte intégral
Résumé :
Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ghani, Hassan, Emad Yousif, Dina S. Ahmed, Benson M. Kariuki et Gamal A. El-Hiti. « Tin Complexes of 4-(Benzylideneamino)benzenesulfonamide : Synthesis, Structure Elucidation and Their Efficiency as PVC Photostabilizers ». Polymers 13, no 15 (23 juillet 2021) : 2434. http://dx.doi.org/10.3390/polym13152434.

Texte intégral
Résumé :
Poly(vinyl chloride) (PVC) suffers from photo-oxidation and photodegradation when exposed to harsh conditions. Application of PVC thus relies on the development of ever more efficient photostabilizers. The current research reports the synthesis of new complexes of tin and their assessment as poly(vinyl chloride) photostabilizers. The three new complexes were obtained in high yields from reaction of 4-(benzylideneamino)benzenesulfonamide and tin chlorides. Their structures were elucidated using different tools. The complexes were mixed with poly(vinyl chloride) at a very low concentration and thin films were made from the blends. The effectiveness of the tin complexes as photostabilizers has been established using a variety of methods. The new tin complexes led to a decrease in weight loss, formation of small residues, molecular weight depression, and surface alteration of poly(vinyl chloride) after irradiation. The additives act by absorption of ultraviolet light, removal the active chlorine produced through a dehydrochlorination process, decomposition of peroxides, and coordination with the polymeric chains. The triphenyltin complex showed the greatest stabilizing effect against PVC photodegradation as a result of its high aromaticity.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bates, Gordon S., Michael D. Fryzuk et Charles Stone. « Convenient synthesis and cycloaddition reactions of 2-phenylseleno-1,3-butadiene and 2-trialkylstannyl-1,3-butadienes ». Canadian Journal of Chemistry 65, no 11 (1 novembre 1987) : 2612–17. http://dx.doi.org/10.1139/v87-431.

Texte intégral
Résumé :
The facile preparation of 2-trialkylstannyl-1,3-butadienes and 2-phenylseleno-1,3-butadiene by reaction of 2-(1,3-butadienyl)magnesium chloride with trialkylstannyl chlorides and phenylselenium chloride, respectively, is reported. The Diels–Alder reactivity of these dienes with a variety of activated dienophiles is also described. Finally, a novel transmetallation of tin, in vinyl stannanes, to selenium by use of phenylselenium chloride is outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Datta, Gopal K., et Mats Larhed. « High stereoselectivity in chelation-controlled intermolecular Heck reactions with aryl chlorides, vinyl chlorides and vinyl triflates ». Organic & ; Biomolecular Chemistry 6, no 4 (2008) : 674. http://dx.doi.org/10.1039/b719131f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shpariy, M. V., P. Y. Shapoval, I. P. Poliuzhyn, S. V. Kolobych et V. Ye Stadnik. « Composition of ash from combustion and solution of technological problems of chlororganic wastes utilization from direct ethylene chlorination to 1,2- dichlorethane ». Chemistry, Technology and Application of Substances 3, no 2 (1 novembre 2020) : 17–22. http://dx.doi.org/10.23939/ctas2020.02.017.

Texte intégral
Résumé :
During organochlorine wastes thermal utilization formed at direct chlorination of ethylene to 1,2-dichloroethane in the production of vinyl chloride at Karpatnaftohim LLC, the ash is formed, which clogs gas pipelines and heat exchange elements of the steam generator, causes disruption of normal technological process and leads to emergency shutdowns.The composition of this ash was determined by chemical methods of quantitative analysis and flame photometry for such macrocomponents as Fe2O3 (28%) and FeCl3 (5%), as well as magnesium chlorides (30%) and sodium (4%), the rest (about 32% ) probably resinous highly chlorinated unburned components of VAT residues, carbon particles and nitric acid-insoluble iron compounds. Utilization methods and possible ways to reduce the amount of ash from the organochlorine waste combustion formed at the production of vinyl chloride are briefly considered.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mormann, Werner, et Thomas Wagner. « Acylation of (partially) silylated poly(vinyl alcohol)s with acyl chlorides. Vinyl chloride/vinyl ester copolymers by polymer analogous reaction ». Macromolecular Chemistry and Physics 197, no 10 (octobre 1996) : 3463–71. http://dx.doi.org/10.1002/macp.1996.021971031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Arimitsu, Satoru, Kazuto Terukina et Tatsuro Ishikawa. « Stereoselective Synthesis of 4-Substituted 2,4-Dichloro-2-butenals by α- and γ-Regioselective Double Chlorination of Dienamine Catalysis ». Synlett 29, no 14 (20 juillet 2018) : 1887–91. http://dx.doi.org/10.1055/s-0037-1609559.

Texte intégral
Résumé :
The l-proline-catalyzed reaction of enolizable α,β-unsaturated aldehydes with N-chlorosuccinimide (NCS) gave the corresponding 4-substituted 2,4-dichloro-2-butenals with moderate yields and excellent diastereoselectivities (Z/E = >20/1) through consecutive double chlorination at the α- and γ-positions of the dienamine intermediate. The corresponding 2,4-dichloro-2-butenals contain a multireactive 1,3-dichloro allylic unit useful for the construction of Z-vinyl chlorides; the chloride on the allylic position was replaced with mild nucleophiles such as MeOH and EtOH via an SN2 substitution reaction, and its aldehyde moiety was used as a synthetic handle and transformed into an alcohol or a vinyl group. All products obtained after those synthetic manipulations maintained excellent diastereoselectivities (Z/E = >20/1).
Styles APA, Harvard, Vancouver, ISO, etc.
11

Reddish, W. « Dielectric study of the transition temperature regions for poly (vinyl chloride) and some chlorinated poly(vinyl chlorides) ». Journal of Polymer Science Part C : Polymer Symposia 14, no 1 (7 mars 2007) : 123–37. http://dx.doi.org/10.1002/polc.5070140113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ren, Li-Qing, Yu-Shuai He, Yu-Ting Yang, Zhao-Feng Li, Zhi-Yong Xue, Qing-Hua Li et Tang-Lin Liu. « Chlorocyclization/cycloreversion of allylic alcohols to vinyl chlorides ». Organic Chemistry Frontiers 8, no 23 (2021) : 6628–35. http://dx.doi.org/10.1039/d1qo01218e.

Texte intégral
Résumé :
Unprecedented chlorination of allylic alcohols: a simple mix-and-go procedure for the cyclization/cycloreversion of secondary and tertiary allylic alcohols with chloronium ions under mild conditions and practical access to remote carbonyl vinyl chlorides.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Du, Shizhen, Xinxin Wang, Wenjuan Zhang, Zygmunt Flisak, Yang Sun et Wen-Hua Sun. « A practical ethylene polymerization for vinyl-polyethylenes : synthesis, characterization and catalytic behavior of α,α′-bisimino-2,3:5,6-bis(pentamethylene)pyridyliron chlorides ». Polymer Chemistry 7, no 25 (2016) : 4188–97. http://dx.doi.org/10.1039/c6py00745g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Flid, M. R. « Oxidative chlorination of hydrocarbons. Part 1. The Deacon reaction. Oxidative chlorination of saturated hydrocarbons C1 and C2 ». Kataliz v promyshlennosti 24, no 1 (23 janvier 2024) : 5–33. http://dx.doi.org/10.18412/1816-0387-2024-1-5-33.

Texte intégral
Résumé :
The review paper considers main regularities of the hydrogen chloride oxidation (the Deacon reaction) and oxidative chlorination of methane and ethane. The most efficient catalysts for these processes were shown to be the copper chloride systems on various supports, which contain also chlorides of alkaline and rare-earth metals that decrease the carry-over of the active phase from the catalyst surface and increase the activity. The main kinetic and technological regularities of the oxychlorination processes were considered. The conditions that promote an increase in the yield of target products – lower chloromethanes at oxychlorination of methane and vinyl chloride at oxychlorination of ethane – were revealed. Variants of technological schemes for the oxychlorination processes were proposed.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ping, Zhong, et Huang Xian. « Stereoselective synthesis of (E)-vinyl alkyl sulfides via hydrozirconation of terminal alkynes ». Journal of the Serbian Chemical Society 69, no 3 (2004) : 175–78. http://dx.doi.org/10.2298/jsc0403175p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhang, Ronghua, Yuguo Cai, Deli Sun, Song Xu et Qiguang Zhou. « Eosin Y-Sensitized Photocatalytic Reaction of Tertiary Aliphatic Amines with Arenesulfonyl Chlorides under Visible-Light Irradiation ». Synlett 28, no 13 (10 mai 2017) : 1630–35. http://dx.doi.org/10.1055/s-0036-1588828.

Texte intégral
Résumé :
A mild, practical, and environmentally friendly route to vinyl sulfones and sulfonamides has been developed based on the reaction of aliphatic amines with arenesulfonyl chlorides in the presence of eosin Y as a photocatalyst under visible light. The method permits the selective formation of vinyl sulfones or sulfonamides, depending on the oxidation environment and solvent. A wide range of products were obtained in moderate to good yields under the optimized conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Su, W., et C. Jin. « Catalytic Synthesis of (Z)-Vinyl Chlorides from Ketones ». Synfacts 2007, no 5 (mai 2007) : 0497. http://dx.doi.org/10.1055/s-2007-968445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hudrlik, Paul F., et Ashok K. Kulkarni. « Regioselective preparation of vinyl chlorides from 2-methylcyclohexanone ». Tetrahedron 41, no 7 (janvier 1985) : 1179–82. http://dx.doi.org/10.1016/s0040-4020(01)96518-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Kunda, Sastry A., Terri L. Smith, Mark D. Hylarides et G. W. Kabalka. « Chlorination of organoboranes : synthesis of (z)-vinyl chlorides ». Tetrahedron Letters 26, no 3 (janvier 1985) : 279–80. http://dx.doi.org/10.1016/s0040-4039(01)80796-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Yanwei, Xiaomei Jiang et Baiquan Wang. « Cobalt-catalyzed carboxylation of aryl and vinyl chlorides with CO2 ». Chemical Communications 56, no 92 (2020) : 14416–19. http://dx.doi.org/10.1039/d0cc06451c.

Texte intégral
Résumé :
Cobalt-catalyzed carboxylation of aryl and vinyl chlorides and bromides with CO2 has been developed. These transformations proceed under mild conditions and exhibit a broad substrate scope and high efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Cai, Mingzhong, Jun Xia et Pingping Wang. « A Facile Stereoselective Synthesis of (E)-1,2-disubstituted Vinyl Sulfides via Hydromagnesiation of Alkylarylacetylenes ». Journal of Chemical Research 2005, no 9 (septembre 2005) : 583–84. http://dx.doi.org/10.3184/030823405774308989.

Texte intégral
Résumé :
Hydromagnesiation of alkylarylacetylenes 1 in diethyl ether gave (E)-α-arylvinyl Grignards reagents 2, which reacted with arylsulfenyl chlorides 3 to afford stereoselectively (E)-1,2-disubstituted vinyl sulfides 4 in good yields.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Gerrard, D. L., C. Y. Ho, J. S. Shapiro et W. F. Maddams. « Degradation of oriented poly(vinyl chloride) films in the presence of metal chlorides ». Polymer 32, no 17 (janvier 1991) : 3126–29. http://dx.doi.org/10.1016/0032-3861(91)90131-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shakhmaev, Rinat N., Alisa Sh Sunagatullina et Vladimir V. Zorin. « SYNTHESIS OF INDIVIDUAL ISOMERS OF 2-(3-CHLOROPROP-2-EN-1-YL)CYCLOHEXANONE ». IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 62, no 8 (19 août 2019) : 66–70. http://dx.doi.org/10.6060/ivkkt.20196208.5897.

Texte intégral
Résumé :
Recently, vinyl chlorides has been increasingly used as electrophilic partners in various cross-coupling reactions. In contrast to inaccessible and expensive vinyl bromides and iodides, in many cases vinyl chlorides are highly active in the presence of not only traditional palladium complexes, but also economical and safe compounds of iron, cobalt and nickel. Earlier, we reported on the development of new approaches to the getting of stereochemically pure (E)- and (Z)-vinyl chlorides and their successful use at the synthesis of medicines and insect pheromones. Continuing this work, an effective method of the synthesis of (E)- and (Z)-isomers of 2-(3-chloroprop-2-en-1-yl)cyclohexanone - convenient precursors of 2-(alk-2-en-1-yl)cyclohexanones, known flavors and intermediates in the synthesis of polycyclic compounds was developed. In the reaction of ethyl 2-oxocyclohexanecarboxylate with the (E)- and (Z)-isomers of 1,3-dichloropropene under the phase-transfer catalysis conditions in the presence of K2CO3, the corresponding (E)- and (Z)-isomers of ethyl 1-(3-chloroprop-2-en-1-yl)-2-oxocyclohexanecarboxylate were obtained in high yields (80-86%), without allyl rearrangement. The complete retention of the configuration of the chlorovinyl group is observed. Standard methods of the decarboxylation of isomers of ethyl 1-(3-chloroprop-2-en-1-yl)-2-oxocyclohexanecarboxylate under acidic or basic conditions result in very average yields of the corresponding chlorovinyl ketones. The best results were obtained by their decarbalkoxylation in slightly modernized Krapcho conditions. Carrying out reaction in N-methylpyrrolidone at 140-150 °C in the presence of 3 eq. LiCl and 2 eq. of H2O leads to individual (E)- and (Z)-isomers of 2-(3-chloroprop-2-en-1-yl)cyclohexanone in 79-82% yields and a stereochemical purity of ~ 99%. The structure of the obtained compounds were confirmed by HRGC, NMR, and GC/MS data. The configuration of the vinyl group was proved by the coupling constants of the vinyl hydrogens, equal to 13.2-13.4 and 7.0-7.3 Hz for the (E)- and (Z)-products, respectively, as well as by the downfield shift of the allyl carbon atom of trans-isomers by ~4 ppm as compared to the cis-analogs.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Beng, Timothy K., Abdikani Omar Farah et Victoria Shearer. « Modular synthesis and transition metal-free alkynylation/alkenylation of Castagnoli–Cushman-derived N,O- and N,S-heterocyclic vinyl chlorides ». RSC Advances 10, no 61 (2020) : 37153–60. http://dx.doi.org/10.1039/d0ra06619b.

Texte intégral
Résumé :
A functional group-tolerant and transition metal-free coupling of novel N,O- and N,S-heterocyclic vinyl chlorides, which affords fully carbosubstituted dihydro-1,4-oxazines/thiazines as well as bicyclic morpholines, is described.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wang, Zheng, Yanping Ma, Jingjing Guo, Qingbin Liu, Gregory A. Solan, Tongling Liang et Wen-Hua Sun. « Bis(imino)pyridines fused with 6- and 7-membered carbocylic rings as N,N,N-scaffolds for cobalt ethylene polymerization catalysts ». Dalton Transactions 48, no 8 (2019) : 2582–91. http://dx.doi.org/10.1039/c8dt04892d.

Texte intégral
Résumé :
Mixed carbocyclic-fused bis(arylimino)pyridine-cobalt(ii) chlorides, on activation with either MAO or MMAO, displayed high activities for ethylene polymerization affording linear polyethylene waxes; high selectivity for vinyl end-groups is a feature of MAO-promoted systems.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Kamei, Katsuhide, Noriko Maeda et Toshio Tatsuoka. « A practical synthetic method for vinyl chlorides and vinyl bromides from ketones via the corresponding vinyl phosphate intermediates ». Tetrahedron Letters 46, no 2 (janvier 2005) : 229–32. http://dx.doi.org/10.1016/j.tetlet.2004.11.075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ding, Xiancai, Jianming Wen, Jianqiang Wang, Jun Yu et Jing-Hua Li. « Synthesis of Vinyl Sulfoxides Using Sulfinyl Chlorides and Olefins ». Journal of Chemical Research 39, no 5 (mai 2015) : 282–85. http://dx.doi.org/10.3184/174751915x14304098020793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Takeda, Takeshi, Fumio Kanamori, Hideki Matsusita et Tooru Fujiwara. « The Friedel-Crafts reaction of 1-(phenylthio)vinyl chlorides ». Tetrahedron Letters 32, no 45 (novembre 1991) : 6563–66. http://dx.doi.org/10.1016/0040-4039(91)80222-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Fernández, M. D., et M. J. Fernández. « Cyclic ureas as solvents for esterification of poly(vinyl alcohol) and vinyl acetate-vinyl alcohol copolymers with acid chlorides ». Journal of Applied Polymer Science 107, no 4 (2007) : 2509–19. http://dx.doi.org/10.1002/app.27362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zawia, Eman, et Wesley Moran. « Aqueous DMSO Mediated Conversion of (2-(Arylsulfonyl)vinyl)iodonium Salts to Aldehydes and Vinyl Chlorides ». Molecules 21, no 8 (16 août 2016) : 1073. http://dx.doi.org/10.3390/molecules21081073.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Smolyakova, I. P., V. A. Smit et A. I. Lutsenko. « Adducts of vinyl ethers with arylsulfenyl chlorides as reagents for electrophilic alkylation of vinyl ethers ». Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 36, no 1 (janvier 1987) : 104–10. http://dx.doi.org/10.1007/bf00953857.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xu, Hao, Baochang Man et Guohua Luo. « Catalytic Mechanism Comparison Between 1,2-Dichloroethane-Acetylene Exchange Reaction and Acetylene Hydrochlorination Reaction for Vinyl Chloride Production : DFT Calculations and Experiments ». Catalysts 10, no 2 (8 février 2020) : 204. http://dx.doi.org/10.3390/catal10020204.

Texte intégral
Résumé :
The catalytic mechanism and activation energies of metal chlorides RuCl3, AuCl3, and BaCl2 for 1,2-dichloroethane (DCE)-acetylene exchange reaction were studied with a combination of density functional theory (DFT) calculations and experiments. Two reported reaction pathways were discussed and acetylene-DCE complex pathway was supported through adsorption energy analysis. The formation of the second vinyl chloride monomer (VCM) was proven to be the rate-determining step, according to energy profile analysis. Activity sequence of BaCl2 > RuCl3 > AuCl3 was predicted and experimentally verified. Furthermore, reversed activity sequences of this reaction and commercialized acetylene hydrochlorination reaction were explained: the adsorption abilities of reactants are important for the former reaction, but chlorine transfer is important for the latter.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Chen, Qiang, Wenjuan Zhang, Gregory A. Solan, Tongling Liang et Wen-Hua Sun. « Methylene-bridged bimetallic bis(imino)pyridine-cobaltous chlorides as precatalysts for vinyl-terminated polyethylene waxes ». Dalton Transactions 47, no 17 (2018) : 6124–33. http://dx.doi.org/10.1039/c8dt00907d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Kaczmarek, Halina, Jolanta Kowalonek et Dagmara Ołdak. « The influence of UV-irradiation on poly(vinyl chloride) modified by iron and cobalt chlorides ». Polymer Degradation and Stability 79, no 2 (janvier 2003) : 231–40. http://dx.doi.org/10.1016/s0141-3910(02)00286-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Liang, Yujie, Fengguirong Lin, Yeerlan Adeli, Rui Jin et Ning Jiao. « Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2‐Dichloroethane ». Angewandte Chemie 131, no 14 (7 février 2019) : 4614–18. http://dx.doi.org/10.1002/ange.201814570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Liang, Yujie, Fengguirong Lin, Yeerlan Adeli, Rui Jin et Ning Jiao. « Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2‐Dichloroethane ». Angewandte Chemie International Edition 58, no 14 (7 février 2019) : 4566–70. http://dx.doi.org/10.1002/anie.201814570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Trost, Barry M., et Anthony B. Pinkerton. « A Ruthenium-Catalyzed Three-Component Coupling to FormE-Vinyl Chlorides ». Journal of the American Chemical Society 121, no 9 (mars 1999) : 1988–89. http://dx.doi.org/10.1021/ja984264l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Thakur, Ashish, Kainan Zhang et Janis Louie. « Suzuki-Miyaura coupling of heteroaryl boronic acids and vinyl chlorides ». Chem. Commun. 48, no 2 (2012) : 203–5. http://dx.doi.org/10.1039/c1cc15990a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lehr, Marvin H., Richard G. Parker et Richard A. Komoroski. « Thermal property-structure relationships of solution-chlorinated poly(vinyl chlorides) ». Macromolecules 18, no 6 (novembre 1985) : 1265–72. http://dx.doi.org/10.1021/ma00148a038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Saputra, Mirza A., Ly Ngo et Rendy Kartika. « Synthesis of Vinyl Chlorides via Triphosgene–Pyridine Activation of Ketones ». Journal of Organic Chemistry 80, no 17 (24 août 2015) : 8815–20. http://dx.doi.org/10.1021/acs.joc.5b01137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Tran, V. H., A. Guyot, T. P. Nguyen et P. Molinié. « Polaron mechanism in the thermal stabilization of poly(vinyl chloride). Part II : action of metal chlorides ». Polymer Degradation and Stability 49, no 3 (janvier 1995) : 331–37. http://dx.doi.org/10.1016/0141-3910(95)00075-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Hatvate, Navnath T., Balaram S. Takale, Shrikant M. Ghodse et Vikas N. Telvekar. « Transition metal free large-scale synthesis of aromatic vinyl chlorides from aromatic vinyl carboxylic acids using bleach ». Tetrahedron Letters 59, no 43 (octobre 2018) : 3892–94. http://dx.doi.org/10.1016/j.tetlet.2018.09.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

SADEKOV, I. D., A. V. ZAKHAROV et B. B. RIVKIN. « ChemInform Abstract : Synthesis of (2-(Aryltelluro)vinyl)carbonyl Compounds (III) from (2- Acyl(Formyl)vinyl)-triethylammonium Chlorides. » ChemInform 27, no 44 (4 août 2010) : no. http://dx.doi.org/10.1002/chin.199644180.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Shchepalov, A. A., et D. F. Grishin. « Dicyclopentadienyltitanium chlorides as regulators of free-radical polymerization of vinyl monomers ». Polymer Science Series A 50, no 4 (avril 2008) : 382–87. http://dx.doi.org/10.1134/s0965545x08040044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Chao, Wenchun, et Steven M. Weinreb. « The First Examples of Ring-Closing Olefin Metathesis of Vinyl Chlorides ». Organic Letters 5, no 14 (juillet 2003) : 2505–7. http://dx.doi.org/10.1021/ol034775z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Fujihara, Tetsuaki, Keisuke Nogi, Tinghua Xu, Jun Terao et Yasushi Tsuji. « Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide ». Journal of the American Chemical Society 134, no 22 (24 mai 2012) : 9106–9. http://dx.doi.org/10.1021/ja303514b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Alami, Mouad, et Gérard Linstrumelle. « An efficient palladium-catalyzed reaction of vinyl chlorides with terminal acetylenes ». Tetrahedron Letters 32, no 43 (octobre 1991) : 6109–12. http://dx.doi.org/10.1016/0040-4039(91)80765-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Tran Van Hoang et A. Guyot. « The rôle of polyols as secondary stabilizers for poly(vinyl chlorides) ». Polymer Degradation and Stability 12, no 1 (janvier 1985) : 29–41. http://dx.doi.org/10.1016/0141-3910(85)90055-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Reetz, Manfred T., Klaus Wanninger et Marcus Hermes. « Regioselective palladium-catalysed coupling reactions of vinyl chlorides with carbon nucleophiles ». Chemical Communications, no 6 (1997) : 535–36. http://dx.doi.org/10.1039/a608371d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Yamamoto, Tetsuya, et Tetsu Yamakawa. « Nickel-Catalyzed Vinylation of Aryl Chlorides and Bromides with Vinyl ZnBr·MgBrCl ». Journal of Organic Chemistry 74, no 9 (mai 2009) : 3603–5. http://dx.doi.org/10.1021/jo900290t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie