Articles de revues sur le sujet « Very Large Floating Structures »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Very Large Floating Structures.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Very Large Floating Structures ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Cengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida et Alaa E. Mansour. « Very large floating structures (VLFS) Part I ». Marine Structures 13, no 4-5 (juillet 2000) : 215–16. http://dx.doi.org/10.1016/s0951-8339(00)00037-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida et Alaa E. Mansour. « Very large floating structures (VLFS) Part II ». Marine Structures 14, no 1-2 (janvier 2001) : 3–4. http://dx.doi.org/10.1016/s0951-8339(01)00004-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

NAKAHIRA, Tatsuya, Taro KAKINUMA, Ko YAMAMOTO, Kei YAMASHITA et Takahiro MURAKAMI. « Can Very Large Floating Structures Reduce Tsunami Height ? » Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 70, no 2 (2014) : I_911—I_915. http://dx.doi.org/10.2208/kaigan.70.i_911.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Newman, J. N. « Efficient hydrodynamic analysis of very large floating structures ». Marine Structures 18, no 2 (mars 2005) : 169–80. http://dx.doi.org/10.1016/j.marstruc.2005.07.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wang, C. M., et Z. Y. Tay. « Very Large Floating Structures : Applications, Research and Development ». Procedia Engineering 14 (2011) : 62–72. http://dx.doi.org/10.1016/j.proeng.2011.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kagemoto, Hiroshi, et Dick K. P. Yue. « Hydrodynamic interaction analyses of very large floating structures ». Marine Structures 6, no 2-3 (janvier 1993) : 295–322. http://dx.doi.org/10.1016/0951-8339(93)90025-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Che, Xiling, Dayun Wang, Minglun Wang et Yingfan Xu. « Two-Dimensional Hydroelastic Analysis of Very Large Floating Structures ». Marine Technology and SNAME News 29, no 01 (1 janvier 1992) : 13–24. http://dx.doi.org/10.5957/mt1.1992.29.1.13.

Texte intégral
Résumé :
We have reached a stage at which we are capable of building very large floating structures to meet the steadily increasing needs of ocean resource utilization or to fulfill some special industrial or civil purpose. When such a structure is large enough, its behavior in waves may be substantially different from that of ordinary offshore structures due to low resonant frequencies of the deformable body, and its analysis may require different techniques. In this paper, a two-dimensional hydroelastic theory is applied to a very large floating structure that may be multimodule and extend in the longitudinal direction. A revised strip theory is employed to analyze the hydrodynamic coefficients, but some modifications are introduced to allow for multibody cross sections. The structure is considered to be a flexible beam responding to waves in the vertical direction. Numerical examples are presented with reference to an integrated system of semisubmersibles. A simple model for engineering estimation is also presented.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hadizadeh Asar, Tannaz, Keyvan Sadeghi et Arefeh Emami. « Free Vibration Analysis of Very Large Rectangular Floating Structures ». International Journal of coastal and offshore engineering 2, no 1 (1 juin 2018) : 59–66. http://dx.doi.org/10.29252/ijcoe.2.1.59.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ertekin, R. C., H. R. Riggs, X. L. Che et S. X. Du. « Efficient Methods for Hydroelastic Analysis of Very Large Floating Structures ». Journal of Ship Research 37, no 01 (1 mars 1993) : 58–76. http://dx.doi.org/10.5957/jsr.1993.37.1.58.

Texte intégral
Résumé :
The linear hydroelastic response of a very large floating structure (VLFS) consisting of multiple modules is studied theoretically, following a review of the past work on hydroelasticity in fluid-structure interaction. The 3-dimensional Green function method and Morison's equation approach are used to determine the fluid loading in conjunction with two different hydroelastic models. The first method uses a rigid module, flexible connector model in which the hydrodynamic interaction between rigid modules is taken into account. The double composite source distribution method, which is a numerically efficient implementation of the Green function method that exploits double symmetry of the structure in the longitudinal and lateral directions, is used to reduce computations. In the second method, fully elastic modules are considered. In this approach, the fluid loading is obtained by Morison's equation, and the structure is modeled by frame finite elements. The predictions for the rigid-body motions and structural deformations, as well as module-connector loads, obtained by the two different methods are compared. The proposed methods of hydroelasticity have been used to predict the response of a 16-module VLFS, 100 m by 1600 m. Both methods are sufficiently efficient to allow the analysis of even larger VLFS.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maeda, Hisaaki, Koichi Masuda, Shogo Miyajima et Tomoki Ikoma. « Hydroelasitic Responses of Pontoon Type Very Large Floating Offshore Structures ». Journal of the Society of Naval Architects of Japan 1996, no 180 (1996) : 365–71. http://dx.doi.org/10.2534/jjasnaoe1968.1996.180_365.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pham, D. C., et C. M. Wang. « Optimal Layout of Gill Cells for Very Large Floating Structures ». Journal of Structural Engineering 136, no 7 (juillet 2010) : 907–16. http://dx.doi.org/10.1061/(asce)st.1943-541x.0000182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Seto, Hideyuki, Makoto Ohta, Mayumi Ochi et Shoji Kawakado. « Integrated hydrodynamic–structural analysis of very large floating structures (VLFS) ». Marine Structures 18, no 2 (mars 2005) : 181–200. http://dx.doi.org/10.1016/j.marstruc.2005.07.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

König, Marcel, Daniel Ferreira González, Moustafa Abdel-Maksoud et Alexander Düster. « Hydrodynamic Behaviour of Very Large Floating Structures (VLFS) in Waves ». PAMM 14, no 1 (décembre 2014) : 531–32. http://dx.doi.org/10.1002/pamm.201410253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Jiang, D., K. H. Tan, C. M. Wang et J. Dai. « Research and development in connector systems for Very Large Floating Structures ». Ocean Engineering 232 (juillet 2021) : 109150. http://dx.doi.org/10.1016/j.oceaneng.2021.109150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Fujikubo, Masahiko, Tetsuya Yao et Yutaka Wada. « Structural Modeling for Overall Structural Analysis of Very Large Floating Structures ». Journal of the Society of Naval Architects of Japan 1997, no 182 (1997) : 399–406. http://dx.doi.org/10.2534/jjasnaoe1968.1997.182_399.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

YAMASHITA, Yasuo, Shunichi KAWACHI, Yoshitaka KINOSHITA et Koichi OKAMOTO. « Geometric Accuracy Control of Very Large Floating Structures Considering Welding Distortion ». QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 25, no 1 (2007) : 106–13. http://dx.doi.org/10.2207/qjjws.25.106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Qi, Tao, Xiaoping Huang et Liangbi Li. « Spectral-based fatigue crack propagation prediction for very large floating structures ». Marine Structures 57 (janvier 2018) : 193–206. http://dx.doi.org/10.1016/j.marstruc.2017.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tabeta, Shigeru, Yoshiyuki Inoue, Shigeru Kimura et Hiroyuki Makino. « Numerical Calculation of Forces on Very Large Floating Structures by Tsunami ». Journal of the Society of Naval Architects of Japan 1998, no 184 (1998) : 303–9. http://dx.doi.org/10.2534/jjasnaoe1968.1998.184_303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Garrison, C. J. « A Numerically Efficient Method for Analysis of Very Large Articulated Floating Structures ». Journal of Ship Research 42, no 03 (1 septembre 1998) : 174–86. http://dx.doi.org/10.5957/jsr.1998.42.3.174.

Texte intégral
Résumé :
A method is presented for evaluation of the motion of long structures composed of interconnected barges, or modules, of arbitrary shape. Such structures are being proposed in the construction of offshore airports or other large offshore floating structures. It is known that the evaluation of the motion of jointed or otherwise interconnected modules which make up a long floating structure may be evaluated by three dimensional radiation/diffraction analysis. However, the computing effort increases rapidly as the complexity of the geometric shape of the individual modules and the total number of modules increases. This paper describes an approximate method which drastically reduces the computational effort without major effects on accuracy. The method relies on accounting for hydrodynamic interaction effects between only adjacent modules within the structure rather than between all of the modules since the near-field interaction is by far the more important. This approximation reduces the computational effort to that of solving the two-module problem regardless of the total number of modules in the complete structure.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Suqin, R. C. Ertekin et H. R. Riggs. « Computationally efficient techniques in the hydroelasticity analysis of very large floating structures ». Computers & ; Structures 62, no 4 (février 1997) : 603–10. http://dx.doi.org/10.1016/s0045-7949(96)00268-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kim, Jin-Gyun, Seong-Pil Cho, Ki-Tae Kim et Phill-Seung Lee. « Hydroelastic design contour for the preliminary design of very large floating structures ». Ocean Engineering 78 (mars 2014) : 112–23. http://dx.doi.org/10.1016/j.oceaneng.2013.11.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Okada, Shinzo. « Study on Edge Shape of Very Large Floating Structures to Reduce Motion ». Journal of the Society of Naval Architects of Japan 1998, no 184 (1998) : 263–69. http://dx.doi.org/10.2534/jjasnaoe1968.1998.184_263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Takezawa, Seiji, Tsugukiyo Hirayama, Seiya Ueno et Hiroaki Kajiwara. « Experiments on Responses of Very Large Floating Offshore Structures in Directional Spectrum Waves ». Journal of the Society of Naval Architects of Japan 1992, no 171 (1992) : 511–23. http://dx.doi.org/10.2534/jjasnaoe1968.1992.511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Takezawa, Seiji, Tsugukiyo Hirayama, Seiya Ueno, S. Akin Tuzcuoglu et Hiroaki Kajiwara. « Experiments on Responses of Very Large Floating Offshore Structures in Directional Spectrum Waves ». Journal of the Society of Naval Architects of Japan 1993, no 173 (1993) : 147–59. http://dx.doi.org/10.2534/jjasnaoe1968.1993.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lamas-Pardo, Miguel, Gregorio Iglesias et Luis Carral. « A review of Very Large Floating Structures (VLFS) for coastal and offshore uses ». Ocean Engineering 109 (novembre 2015) : 677–90. http://dx.doi.org/10.1016/j.oceaneng.2015.09.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Tay, Z. Y., et C. M. Wang. « Reducing hydroelastic response of very large floating structures by altering their plan shapes ». Ocean Systems Engineering 2, no 1 (25 mars 2012) : 69–81. http://dx.doi.org/10.12989/ose.2012.2.1.069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Moasami, Ali, Bahador Fatehi-Nobarian et Yousef Hassanzadeh. « Numerical Study on the Effect of Water Waves and Depths on Inclined Braces with Respect to the Stability of VLFS Platforms in the Caspian Sea ». Slovak Journal of Civil Engineering 30, no 1 (1 mars 2022) : 42–48. http://dx.doi.org/10.2478/sjce-2022-0005.

Texte intégral
Résumé :
Abstract Very large floating structures (VLFSs) have various applications, such as recreational applications, port facilities, etc. A surge in the population, the advantages of building floating structures compared to traditional methods of land extraction from the sea, and the development of construction technologies, have led to engineers paying attention to very large floating structures. Bracing systems are capable of controlling and reducing the horizontal responses of a floating platform, but they have no major impact on its vertical responses. In the present study, the semi-floating platform was numerically designed to be least affected by the three factors of wave force, horizontal torsion, and horizontal displacement. In order to optimize the design, the semi-floating platform was simulated and subjected to the three wave directions with collision angles of 40, 45 and 55 degrees in the environmental conditions of the Caspian Sea and by exerting the wave effect in a Flow-3D model. Examination of the platform’s movements has demonstrated that the arrangement of an eight-way restraint system with a 40-degree restraint angle responds better to the impact of waves and is more economical compared to other designs.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Tsubogo, Takashi, et Hiroo Okada. « A Basic Investigation on Deflection Wave Propagation and Strength of Very Large Floating Structures ». Journal of the Society of Naval Architects of Japan 1997, no 181 (1997) : 299–307. http://dx.doi.org/10.2534/jjasnaoe1968.1997.299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

ETO, Hiroaki, Hitomi KASHIMA, Tomoki IKOMA et Koichi Masuda. « FUNDAMENTAL STUDY ON MOORING DESIGN OF ELASTIC MOORING SYSTEM FOR VERY LARGE FLOATING STRUCTURES ». Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering) 78, no 2 (2022) : I_271—I_276. http://dx.doi.org/10.2208/jscejoe.78.2_i_271.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Shi, Q. J., D. L. Xu, H. C. Zhang, H. Zhao et Y. S. Wu. « Optimized stiffness combination of a flexible-base hinged connector for very large floating structures ». Marine Structures 60 (juillet 2018) : 151–64. http://dx.doi.org/10.1016/j.marstruc.2018.03.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Papaioannou, Iason, Ruiping Gao, Ernst Rank et Chien Ming Wang. « Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum ». Probabilistic Engineering Mechanics 33 (juillet 2013) : 26–37. http://dx.doi.org/10.1016/j.probengmech.2013.01.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bessho, Masatoshi, Hisaaki Maeda, Koichi Masuda et Hiroaki Takamura. « Fundamental Study on Numerical Calculation for Sea Shock Response of Very Large Floating Structures ». Journal of the Society of Naval Architects of Japan 1999, no 186 (1999) : 215–22. http://dx.doi.org/10.2534/jjasnaoe1968.1999.186_215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Namba, Yasuhiro, Syunji Kato et Masakatu Saito. « Estimation method of slowly varying wave drift force acting on very large floating structures ». Journal of the Society of Naval Architects of Japan 1999, no 186 (1999) : 235–42. http://dx.doi.org/10.2534/jjasnaoe1968.1999.186_235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Namba, Yasuhiro, Syunji Kato, Masakatsu Saito et Tetsuya Hiraishi. « Estimation method of slowly varying wave drift force acting on very large floating structures ». Journal of the Society of Naval Architects of Japan 2000, no 187 (2000) : 151–60. http://dx.doi.org/10.2534/jjasnaoe1968.2000.151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Murai, Motohiko, et Hiroshi Kagemoto. « A Study on the Optimization of the Hydroelastic Responses of Very Large Floating Structures ». Journal of the Society of Naval Architects of Japan 2000, no 187 (2000) : 175–84. http://dx.doi.org/10.2534/jjasnaoe1968.2000.175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Namba, Yasuhiro, Shunji Kato, Hiroshi Sato, Tomoki Ikoma et Katsuya Maeda. « Estimation method of slowly varying wave drift force acting on very large floating structures ». Journal of the Society of Naval Architects of Japan 2000, no 188 (2000) : 287–93. http://dx.doi.org/10.2534/jjasnaoe1968.2000.188_287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Takezawa, Seiji, Tsugukiyo Hirayama, Seiya Ueno, Akin Tuzcuoglu et Hiroaki Kajiwara. « Experiments on Responses of Very Large Floating Offshore Structures in Directional Spectrum Waves (second report) ». Journal of the Society of Naval Architects of Japan 1992, no 172 (1992) : 57–68. http://dx.doi.org/10.2534/jjasnaoe1968.1992.172_57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

OKAMOTO, Kyoichi, Takeshi ONO et Osamu SAIJO. « SIMULATION OF TIDAL CURRENTS AND DIFFUSION TAKING INTO DENSITY STRATIFICATION AROUND VERY LARGE FLOATING STRUCTURES ». Journal of Structural and Construction Engineering (Transactions of AIJ) 65, no 528 (2000) : 189–95. http://dx.doi.org/10.3130/aijs.65.189_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Xu, Jin, Yonggang Sun, Zhifu Li, Xiantao Zhang et Da Lu. « Analysis of the Hydroelastic Performance of Very Large Floating Structures Based on Multimodules Beam Theory ». Mathematical Problems in Engineering 2017 (2017) : 1–14. http://dx.doi.org/10.1155/2017/6482527.

Texte intégral
Résumé :
The hydroelastic behavior of very large floating structures (VLFSs) is investigated based on the proposed multimodules beam theory (MBT). To carry out the analysis, the VLFS is first divided into multiple submodules that are connected through their gravity center by a spatial beam with specific stiffness. The external force exerted on the submodules includes the wave hydrodynamic force as well as the beam bending force due to the relative displacements of different submodules. The wave hydrodynamic force is computed based on three-dimensional potential theory. The beam bending force is expressed in the form of a stiffness matrix. The motion response defined at the gravity center of the submodules is solved by the multibody hydrodynamic control equations; then both the displacement and the structure bending moment of the VLFS are determined from the stiffness matrix equations. To account for the moving point mass effects, the proposed method is extended to the time domain based on impulse response function (IRF) theory. The method is verified by comparison with existing results. Detailed results through the displacement and bending moment of the VLFS are provided to show the influence of the number of the submodules and the influence of the moving point mass.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wei, Wei, Shixiao Fu, Torgeir Moan, Chunhui Song et Tongxin Ren. « A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions ». Marine Structures 57 (janvier 2018) : 180–92. http://dx.doi.org/10.1016/j.marstruc.2017.10.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Liuchao, Qiu, et Liu Hua. « Three-Dimensional Time-Domain Analysis of Very Large Floating Structures Subjected to Unsteady External Loading ». Journal of Offshore Mechanics and Arctic Engineering 129, no 1 (3 juin 2006) : 21–28. http://dx.doi.org/10.1115/1.2355511.

Texte intégral
Résumé :
The strong interest in very large floating structure (VLFS) is a result of a need to utilize effectively the ocean space for transportation, industrial use, storage, habitats, and military bases, among others. The VLFS has great width and length and relatively small flexural rigidity, therefore, investigation of its hydroelastic behavior including fluid-structure interaction is of greater importance than studies of its motion as rigid bodies. In addition to the most important wave-induced responses, the operation of the VLFS also requires determination of its dynamic responses with respect to the effect of unsteady external loading due to intense traffic, load movement, takeoffs and landings of airplanes, missile takeoffs, etc. Therefore, the transient responses of a VLFS to impulsive and moving loads must be studied by a reliable calculation method. In this study, a finite element procedure developed directly in time domain for solution of transient dynamic response of the coupled system consists of a VLFS and a fluid domain subjected to arbitrary time-dependent external loads is presented. The hydrodynamic problem is formulated based on linear, inviscid, and slightly compressible fluid theory and the structural response is analyzed under the thin plate assumption. For numerical calculations, a scaled model of the Mega-Float is exemplified. Three tests—weight pull-up test, weight drop test, and weight moving test which idealize the airplane landing and takeoff—are carried out and compared with published experimental data. The overall agreement was favorable which indicates the validation of the present method.
Styles APA, Harvard, Vancouver, ISO, etc.
42

TABETA, Shigeru, Yuichi NAGANO et Nobuyasu HAGIWARA. « Numerical Experiments of Water Exchange and Investigation of the Influences by Very Large Floating Structures ». Journal of the Society of Naval Architects of Japan 1998, no 183 (1998) : 259–65. http://dx.doi.org/10.2534/jjasnaoe1968.1998.259.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Fujikubo, Masahiko, Tetsuya Yao et Hironori Oida. « Structural Response Analysis of Very Large Floating Structures in Waves Using One-Dimensional Finite Element Model ». Journal of the Society of Naval Architects of Japan 1996, no 179 (1996) : 349–58. http://dx.doi.org/10.2534/jjasnaoe1968.1996.349.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

YAMASHITA, Yasuo, Shinzoh OKADA, Seiichi SHIMAMUNE, Masayuki YONEZAWA, Norihiko OHNO et Yoshitaka KINOSHITA. « Joining Technology of Very Large Floating Structures Considering Thermal Distortion and Thermal Stress Caused by Sunshine ». QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 25, no 1 (2007) : 114–21. http://dx.doi.org/10.2207/qjjws.25.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Talavera, Alejandro L., Koji Masaoka, Takashi Tsubogo, Hiroo Okada et Yoshisada Murotsu. « A study on reliability-based design systems of very large floating structures under extreme wave loads ». Marine Structures 14, no 1-2 (janvier 2001) : 259–72. http://dx.doi.org/10.1016/s0951-8339(00)00054-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gao, R. P., C. M. Wang et C. G. Koh. « Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells ». Engineering Structures 52 (juillet 2013) : 372–83. http://dx.doi.org/10.1016/j.engstruct.2013.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Wen Bai, Ke Jia Su et Shi Lei Xi. « The Selection and Numerical Simulation of Marine Engineering Floating Pier Structure ». Advanced Materials Research 243-249 (mai 2011) : 4705–11. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.4705.

Texte intégral
Résumé :
As a type of very large floating structures,the design concept of the grid structure is applied to the marine engineering floating pier structure. The grid structure has many merits such as high structural strength, stiffness, integrity, lower weight and high degree of industrialization. A finite element software named ABAQUS is used to analyze the stress and strain of the marine engineering floating pier structure in the marine environment. The analysis shows that the structure meets the engineering requirements in structural strength, stiffness, stability and wave resistance.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Pimenta, Francisco, Carlo Ruzzo, Giuseppe Failla, Felice Arena, Marco Alves et Filipe Magalhães. « Dynamic Response Characterization of Floating Structures Based on Numerical Simulations ». Energies 13, no 21 (29 octobre 2020) : 5670. http://dx.doi.org/10.3390/en13215670.

Texte intégral
Résumé :
Output-only methods are widely used to characterize the dynamic behavior of very diverse structures. However, their application to floating structures may be limited due to their strong nonlinear behavior. Therefore, since there is very little experience on the application of these experimental tools to these very peculiar structures, it is very important to develop studies, either based on numerical simulations or on real experimental data, to better understand their potential and limitations. In an initial phase, the use of numerical simulations permits a better control of all the involved variables. In this work, the Covariance-driven Stochastic Subspace Identification (SSI-COV) algorithm is applied to numerically simulated data of two different solutions to Floating Offshore Wind Turbines (FOWT) and for its capability of tracking the rigid body motion modal properties and susceptibility to different modeling restrictions and environmental conditions tested. The feasibility of applying the methods in an automated fashion in the processing of a large number of datasets is also evaluated. While the structure natural frequencies were consistently obtained from all the simulations, some difficulties were observed in the estimation of the mode shape components in the most changeling scenarios. The estimated modal damping coefficients were in good agreement with the expected results. From all the results, it can be concluded that output-only methods are capable of characterizing the dynamic behavior of a floating structure, even in the context of continuous dynamic monitoring using automated tracking of the modal properties, and should now be tested under uncontrolled environmental loads.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Pham, D. C., C. M. Wang et E. P. Bangun. « Experimental study on anti-heaving devices for very large floating structure ». IES Journal Part A : Civil & ; Structural Engineering 2, no 4 (14 octobre 2009) : 255–71. http://dx.doi.org/10.1080/19373260903017415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Karperaki, Angeliki E., et Kostas A. Belibassakis. « Hydroelastic analysis of Very Large Floating Structures in variable bathymetry regions by multi-modal expansions and FEM ». Journal of Fluids and Structures 102 (avril 2021) : 103236. http://dx.doi.org/10.1016/j.jfluidstructs.2021.103236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie