Littérature scientifique sur le sujet « Velocity variations »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Velocity variations ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Velocity variations"
Wang, A., D. Leparoux, O. Abraham et M. Le Feuvre. « Frequency derivative of Rayleigh wave phase velocity for fundamental mode dispersion inversion : parametric study and experimental application ». Geophysical Journal International 224, no 1 (4 septembre 2020) : 649–68. http://dx.doi.org/10.1093/gji/ggaa417.
Texte intégralHatzes, Artie P. « Radial Velocity Variations from Starspots ». International Astronomical Union Colloquium 170 (1999) : 259–63. http://dx.doi.org/10.1017/s0252921100048648.
Texte intégralde Cacqueray, Benoit, Philippe Roux, Michel Campillo et Stefan Catheline. « Tracking of velocity variations at depth in the presence of surface velocity fluctuations ». GEOPHYSICS 78, no 1 (1 janvier 2013) : U1—U8. http://dx.doi.org/10.1190/geo2012-0071.1.
Texte intégralZhang, Yu-Shen, et Thorne Lay. « Global surface wave phase velocity variations ». Journal of Geophysical Research : Solid Earth 101, B4 (10 avril 1996) : 8415–36. http://dx.doi.org/10.1029/96jb00167.
Texte intégralAndreasen, Jørn-Ole. « Apparent Short-Term Glacier Velocity Variations ». Journal of Glaciology 31, no 107 (1985) : 49–53. http://dx.doi.org/10.1017/s0022143000004986.
Texte intégralMoreno, M., J. Torra et E. Oblak. « Local Variations of the Velocity Ellipsoid ». Symposium - International Astronomical Union 169 (1996) : 525–26. http://dx.doi.org/10.1017/s0074180900230271.
Texte intégralAndreasen, Jørn-Ole. « Apparent Short-Term Glacier Velocity Variations ». Journal of Glaciology 31, no 107 (1985) : 49–53. http://dx.doi.org/10.3189/s0022143000004986.
Texte intégralChauhan, A., P. Mullins, M. C. Petch et P. M. Schofield. « Variations in Resting Coronary Flow Velocity ». Clinical Science 84, s28 (1 mars 1993) : 14P. http://dx.doi.org/10.1042/cs084014p.
Texte intégralRanum, Madeline, Carl Foster, Clayton Camic, Glenn Wright, Flavia Guidotti, Jos J. de Koning, Christopher Dodge et John P. Porcari. « Effect of Running Velocity Variation on the Aerobic Cost of Running ». International Journal of Environmental Research and Public Health 18, no 4 (19 février 2021) : 2025. http://dx.doi.org/10.3390/ijerph18042025.
Texte intégralGonzález, Diego M., Klaus Bataille, Tom Eulenfeld et Luis E. Franco. « Temporal seismic wave velocity variations at Láscar volcano ». Andean Geology 43, no 2 (19 mai 2016) : 240. http://dx.doi.org/10.5027/andgeov43n2-a05.
Texte intégralThèses sur le sujet "Velocity variations"
Darling, Samantha. « Velocity Variations of the Kaskawulsh Glacier, Yukon Territory, 2009-2011 ». Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23511.
Texte intégralUnwin, Beverley Victoria. « Arctic ice cap velocity variations revealed using ERS SAR interferometry ». Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287749.
Texte intégralSmith, Saskia. « Seismic wave phase-velocity variations in the state of Ohio / ». Connect to resource, 2010. http://hdl.handle.net/1811/45057.
Texte intégralBertrand, Alexandre. « The impact of seawater velocity variations on time-lapse seismic monitoring ». Thesis, Heriot-Watt University, 2005. http://hdl.handle.net/10399/274.
Texte intégralTziranis, Alexander Konstantinos 1968. « Temperature, heat flux, and velocity measurements in oscillating flows with pressure variations ». Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12790.
Texte intégralVita.
Includes bibliographical references (leaves 99-101).
by Alexander Konstantinos Tziranis.
M.S.
Ghaychi, Afrouz Setareh. « Seismic Wave Velocity Variations in Deep Hard Rock Underground Mines by Passive Seismic Tomography ». Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97890.
Texte intégralDoctor of Philosophy
Mining activities unbalance the stress distribution underground, which is called mining induced stress. The stability of the underground mines is jeopardized due to accumulation of induced stress thus it is critical for the safety of the miners to prevent excessive induced stress accumulation. Hence it is important to continuously monitor the rock mass performance under the induced stress which can form cracks or slide along the existing discontinuities in rock mass. Cracking or sliding releases energy as the source of the seismic wave propagation in underground rocks, known as a seismic event. The velocity of seismic wave propagation can be recorded and monitored by installing seismic sensors such as geophones underground. The seismic events are similar to earthquakes but on a much smaller scale. The strength of seismic events is measured on a scale of moment magnitude. The strongest earthquakes in the world are around magnitude 9, most destructive earthquakes are magnitude 7 or higher, and earthquakes below magnitude 5 generally do not cause significant damage. The moment magnitude of mining induced seismic events is typically less than 3. In order to monitor mining induced stress variations, the propagated seismic wave velocity in rock mass is measured by a series of mathematical computations on recorded seismic waves called passive seismic tomography, which is similar to the medical CT-scan machine. Seismic wave velocity is like the velocity of the vibrating particles of rock due to the released energy from a seismic event. This study proposes to investigate trends of seismic velocity variations before and after each seismic event. The areas which are highly stressed have higher seismic velocities compared to the average seismic velocity of the entire area. Therefore, early recognition of highly stressed zones, based on the seismic velocity amount prior the occurrence of major seismic events, will be helpful to apply optimization of mining practices to prevent progression of high stress zones which can be ended to rock failures. For this purpose, time-dependent seismic velocity of a synthetic mine was compared to its stress numerically. Then, the seismic data of a narrow vein mine is evaluated to determine the seismic velocity trends prior to the occurrence of at least five major seismic events as the case study.
Bastien, Fabienne Anne. « Empirically Interrelating Stellar Chromospheric Activity, Photometric Variability and Radial Velocity Variations to Enhance Planet Discovery ». Thesis, Vanderbilt University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3584409.
Texte intégralH, Purdie. « Intra-annual variations in abaltion and surface velocity on the lower Fox Glacier, South Westland, New Zealand ». Thesis, University of Canterbury. Geography, 2005. http://hdl.handle.net/10092/10451.
Texte intégralMagoba, Moses. « Investigation of the acoustic impedance variations of the upper shallow marine sandstone reservoirs in the Bredasdorp basin, offshore South Africa ». University of the Western Cape, 2019. http://hdl.handle.net/11394/7028.
Texte intégralInvestigation of the acoustic impedance variations in the upper shallow marine sandstone reservoirs was extensively studied from 10 selected wells, namely: F-O1, F-O2, E-M4, E-CN1, E-G1, E-W1, F-A10, F-A11, F-A13, and F-L1 in the Bredasdorp Basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine interval with the purpose of conducting a regional study to assess the variations in the acoustic impedance across the reservoirs using wireline log and core data. The datasets used in this study were geophysical wireline logs, conventional core analysis, geological well completion reports, core plugs, and core samples. The physical rock properties such as lithology, fluid type, and hydrocarbon bearing zone were identified while different parameters like the volume of clay, porosity, and water saturation were quantitatively estimated. The reservoirs were penetrated at a different depth ranging from a shallow depth of 2442m at well F-L1 to a deeper depth of 4256.7m at well E-CN1. The average volume of clay, average effective porosity from wireline log, and average water saturation ranged from 8.6%- 43%, 9%- 16% and 12%- 68%, respectively. Porosity distribution was fairly equal across the field from east to west except in well F-A10, F-A13, and F-A11 where a much higher porosity was shown with F-A13 showing the highest average value of 16%. Wells E-CN1, E-W1, F-O1, F-L1 and E-G1 had lower porosity with E-CN1 showing the lowest average value of 9%. The acoustic properties of the reservoirs were determined from geophysical wireline logs in order to calculate acoustic impedance and also investigate factors controlling density and acoustic velocities of these sediments. The acoustic impedance proved to be highest on the central to the western side of the field at E-CN1 with an average value of 11832 g/cm3s whereas, well F-A13 reservoir in the eastern side of the field proved to have the lowest average acoustic impedance of 9821 g/cm3s. There was a good linear negative relationship between acoustic impedance and porosity, compressional velocity vs porosity and porosity vs bulk density. A good linear negative relationship between acoustic impedance and porosity was obtained where the reservoir was homogenous, thick sandstone. However, interbedded shale units within the reservoir appeared to hinder a reliable correlation between acoustic impedance and porosity. The cross-plots results showed that porosity was one of the major factors controlling bulk density, compressional velocity (Vp) and acoustic impedance. The Gassmann equation was used for the determination of the effects of fluid substitution on acoustic properties using rock frame properties. Three fluid substitution models (brine, oil, and gas) were determined for pure sandstones and were used to measure the behaviour of the different sandstone saturations. A significant decrease was observed in Vp when the initial water saturation was substituted with a hydrocarbon (oil or gas) in all the wells. The value of density decreased quite visibly in all the wells when the brine (100% water saturation) was substituted with gas or oil. The fluid substitution affected the rock property significantly. The Vp slightly decreases when brine was substituted with water in wells F-A13, F-A10, F-O2, F-O1 F-A11, F-L1, and E-CN1. Wells E-G1, E-W1, and E-M4 contain oil and gas and therefore showed a notable decrease from brine to oil and from oil to gas respectively. Shear velocity (Vs) remained unaffected in all the wells. The acoustic impedance logs showed a decrease when 100% water saturation was replaced with a hydrocarbon (oil or gas) in all the wells. Clay presence significantly affects the behaviour of the acoustic properties of the reservoir rocks as a function of mineral type, volume, and distribution. The presence of glauconite mineral was observed in all the wells. Thirty-two thin sections, XRD and SEM/EDS from eight out of ten wells were studied to investigate lithology, diagenesis and the effect of mineralogy on porosity and acoustic properties (Compressional velocity and bulk density) within the studied reservoir units. Cementation (calcite and quartz), dissolution, compaction, clay mineral authigenesis, and stylolitization were the most significant diagenetic processes affecting porosity, velocity, and density.Well E-CN1 reservoir quality was very poor due to the destruction of intergranular porosity by extensive quartz and illite cementation, and compaction whereas well F-A13 show a highly porous sandstone reservoir with rounded monocrystalline quartz grain and only clusters of elongate to disc-like, authigenic chlorite crystals partly filling a depression within altered detrital grains. Overall, the results show that the porosity, lithology mineralogy, compaction and pore fluid were the major factors causing the acoustic impedance variations in the upper shallow marine sandstone reservoirs.
2021-09-01
Balise, Michael John. « The relation between surface and basal velocity variations in glacier, with application to the mini-surges of variegated glacier / ». Thesis, Connect to this title online ; UW restricted, 1988. http://hdl.handle.net/1773/6846.
Texte intégralLivres sur le sujet "Velocity variations"
Swain, Eric D. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels. Tallahassee, Fla : U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Trouver le texte intégralSwain, Eric D. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels. Tallahassee, Fla : U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Trouver le texte intégralRasmussen, L. A. Surface velocity variations of the lower part of Columbia Glacier, Alaska, 1977-1981. Washington : U.S. G.P.O., 1989.
Trouver le texte intégralRasmussen, L. A. Surface velocity variations of the lower part of Columbia Glacier, Alaska, 1977-1981. Washington, DC : Dept. of the Interior, 1989.
Trouver le texte intégralGenerazio, Edward R. Imaging subtle microstructural variations in ceramics with precision ultrasonic velocity and attenuation measurements. Cleveland, Ohio : National Aeronautics and Space Administration, Lewis Research Center, 1987.
Trouver le texte intégralGeorge C. Marshall Space Flight Center, dir. North Atlantic basin tropical cyclone activity in relation to temperature and decadal-length oscillation patterns. Huntsville], Ala : National Aeronautics and Space Administration, Marshall Space Flight Center, 2009.
Trouver le texte intégralJames, VanFossen G., et United States. National Aeronautics and Space Administration., dir. Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity. [Washington, D.C.] : National Aeronautics and Space Administration, 1991.
Trouver le texte intégralD, Ashcroft Peter, Remote Sensing Systems (Firm) et United States. National Aeronautics and Space Administration., dir. SSM/I and ECMWF wind vector comparison : Contract NASW-4714. Santa Rosa, CA : The Systems, 1996.
Trouver le texte intégralJet Propulsion Laboratory (U.S.), dir. 1982-1983 El Niño atlas : Nimbus-7 microwave radiometer data. Pasadena, Calif : National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1987.
Trouver le texte intégralJet Propulsion Laboratory (U.S.), dir. 1982-1983 El Niño atlas : Nimbus-7 microwave radiometer data. Pasadena, Calif : National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1987.
Trouver le texte intégralChapitres de livres sur le sujet "Velocity variations"
Tuominen, I., et H. Virtanen. « Solar Rotation Variations from Sunspot Group Statistics ». Dans The Internal Solar Angular Velocity, 83–88. Dordrecht : Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3903-5_12.
Texte intégralMoreno, M., J. Torra et E. Oblak. « Local Variations of the Velocity Ellipsoid ». Dans Unsolved Problems of the Milky Way, 525–26. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1687-6_83.
Texte intégralNiemela, V. S., R. H. Barbá et M. M. Shara. « The Radial Velocity Variations of WR46 (WN3p) ». Dans Wolf-Rayet Stars : Binaries, Colliding Winds, Evolution, 245–47. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0205-6_56.
Texte intégralDuffy, Thomas S., et Thomas J. Ahrens. « Lateral Variations in Lower Mantle Seismic Velocity ». Dans High-Pressure Research : Application to Earth and Planetary Sciences, 197–205. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm067p0197.
Texte intégralRaveendran, A. V., B. N. Ashoka et N. Kameswara Rao. « Photometric and Radial Velocity Variations of RCrB Near Maximum Light ». Dans Hydrogen Deficient Stars and Related Objects, 191–97. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4744-3_20.
Texte intégralEdelmann, H., U. Heber et C. Karl. « Radial Velocity Variations and Metal Abundances of Three Bright SDB Stars ». Dans White Dwarfs, 87–88. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0215-8_23.
Texte intégralGerth, E. « Short-Periodic Radial Velocity Variations of the B9p Star ET And ». Dans Upper Main Sequence Stars with Anomalous Abundances, 235–38. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4714-6_39.
Texte intégralLin, Yu-Pin. « Crustal Velocity Variations in Taiwan Revealed by Active-Source Seismic Observations ». Dans Isotropic and Anisotropic Seismic Tomography Using Active Source and Earthquake Records, 35–59. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5068-8_3.
Texte intégralMedina, Ricardo, Jean E. Elkhoury, Joseph P. Morris, Romain Prioul, Jean Desroches et Russell L. Detwiler. « Flow of concentrated suspensions through fractures : small variations in solid concentration cause significant in-plane velocity variations ». Dans Crustal Permeability, 27–38. Chichester, UK : John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch5.
Texte intégralJiménez, A. « Phase differences between irradiance and velocity low degree solar acoustic modes revisited ». Dans The Sun as a Variable Star : Solar and Stellar Irradiance Variations, 319. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0950-5_53.
Texte intégralActes de conférences sur le sujet "Velocity variations"
Fried, Jonathan, et Scott MacKay. « Removing distortions caused by water velocity variations : Water velocity determination ». Dans SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817109.
Texte intégralObilo, J. C., E. de Bazelaire, D. Rousset, H. Perroud et D. Rappin. « Amplitude Spectrum Variations due to Velocity Gradient ». Dans 64th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609-pdb.5.c031.
Texte intégralWombell, Richard. « Water velocity variations in 3D seismic processing ». Dans SEG Technical Program Expanded Abstracts 1996. Society of Exploration Geophysicists, 1996. http://dx.doi.org/10.1190/1.1826447.
Texte intégralMargrave, Gary F. « Direct Fourier migration for vertical velocity variations ». Dans SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998. http://dx.doi.org/10.1190/1.1820256.
Texte intégralSantos, H. B., T. A. Coimbra, J. Schleicher et A. Novais. « Remigration-trajectory Time-migration Velocity Analysis in Regions with Strong Velocity Variations ». Dans 77th EAGE Conference and Exhibition 2015. Netherlands : EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201413048.
Texte intégralSantos*, H. B., T. A. Coimbra, J. Schleicher et A. Novais. « Remigration-trajectory time-migration velocity analysis in regions with strong velocity variations ». Dans 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-209.
Texte intégralSantos*, Henrique B., Tiago A. Coimbra, Joerg Schleicher et Amélia Novais. « Migration velocity analysis using time-remigration trajectory : regions with strong velocity variations ». Dans SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. http://dx.doi.org/10.1190/segam2015-5932576.1.
Texte intégralLacombe, C., J. Schultzen, S. Butt et D. Lecerf. « Correction for Water Velocity Variations and Tidal Statics ». Dans 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006. European Association of Geoscientists & Engineers, 2006. http://dx.doi.org/10.3997/2214-4609.201402385.
Texte intégralGuerra, Claudio, José Carbonesi et Gerson Ritter. « Dynamic correction for water-velocity and tidal variations ». Dans 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015. Brazilian Geophysical Society, 2015. http://dx.doi.org/10.1190/sbgf2015-268.
Texte intégralCochran, William D., et Artie P. Hatzes. « High-precision measurement of stellar radial velocity variations ». Dans Spectroscopy '90, 4-6 June, Los Cruces, sous la direction de Bernard J. McNamara et Jeremy M. Lerner. SPIE, 1990. http://dx.doi.org/10.1117/12.22107.
Texte intégralRapports d'organisations sur le sujet "Velocity variations"
Poppeliers, Christian, et Leiph Preston. The Effects of Stochastic Velocity Variations on Estimating Time Dependent Seismic Moment Tensors : Applications to the Blue Mountain Well Perforation Data. Office of Scientific and Technical Information (OSTI), juin 2018. http://dx.doi.org/10.2172/1476894.
Texte intégralSmith, S. Jarrell, David W. Perkey et Kelsey A. Fall. Cohesive Sediment Field Study : James River, Virginia. U.S. Army Engineer Research and Development Center, août 2021. http://dx.doi.org/10.21079/11681/41640.
Texte intégralTremblay, T., et M. Lamothe. New contributions to the ice-flow chronology in the Boothia-Lancaster ice-stream catchment area, Nunavut. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331424.
Texte intégralTremblay, T., et M. Lamothe. New contributions to the ice-flow chronology in the Boothia-Lancaster Ice Stream catchment area. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331062.
Texte intégralOstashev, Vladimir, Michael Muhlestein et D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), septembre 2021. http://dx.doi.org/10.21079/11681/42043.
Texte intégralPeters, Susan T. Velocity Variation Over Time for NACO Rounds. Fort Belvoir, VA : Defense Technical Information Center, février 1996. http://dx.doi.org/10.21236/ada307046.
Texte intégralArtley, C. T. Dip-movement processing for depth-variable velocity. [Correction for variation of velocity with depth]. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/6912912.
Texte intégralNishida, Kenji, Tetsuya Kaneko, Yoichi Takahashi et Koji Aoki. Estimation of Indicated Mean Effective Pressure Using Crankshaft Angular Velocity Variation. Warrendale, PA : SAE International, novembre 2011. http://dx.doi.org/10.4271/2011-32-0510.
Texte intégralLarner, K., et J. K. Cohen. Migration error in transversely isotropic media with linear velocity variation in depth. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/7201810.
Texte intégralLarner, K., et J. K. Cohen. Migration error in transversely isotropic media with linear velocity variation in depth. Office of Scientific and Technical Information (OSTI), octobre 1992. http://dx.doi.org/10.2172/10184162.
Texte intégral