Thèses sur le sujet « Vector flow imaging (VFI) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Vector flow imaging (VFI).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 15 meilleures thèses pour votre recherche sur le sujet « Vector flow imaging (VFI) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.

1

Chan, Lok-sang, et 陳樂生. « Adaptive flow detector and estimator for ultrasound high frame rate vector flow imaging ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47753043.

Texte intégral
Résumé :
Cardiovascular diseases is a leading cause of death worldwide and improvement of the corresponding screening tool is the best way to deal with this clinical problem. In this thesis we attempted to develop a framework of ultrasound high frame rate vector flow imaging (VFI) by emphasizing on the design of corresponding flow detector and flow estimator. We believe that the high temporal resolution and the complex blood flow visualization ability of high frame rate VFI enables it to be further developed as a reliable flow imaging modality for cardiological examination. In order to achieve high temporal resolution, fast data acquisition algorithm was applied in the framework. Doppler signals acquired using this acquisition algorithm have two unique characteristics comparing with conventional data acquisition algorithm: (1) widen spectral bandwidth and (2) greater clutter to blood signal ratio. These signal characteristics give rise to unique signal processing. In addition, complex blood flow pattern, which is common in cardiological examination, induces extra challenges in implementing high frame rate VFI. In this thesis, flow detector which is adaptive to different flow scenarios and high dynamic range 2D flow estimator were presented. The proposed flow detector employes K-means++ clustering algorithm to classify clutter components from acquired Doppler signals. As a performance analysis, Field II simulation studies were performed by a parabolic flow phantom (flow velocity: 10mm/s to 200mm/s; tissue motion: 10mm/s; beam-flow angle: 60?). The post-filtered Doppler power map and BCR were used as qualitative and quantitativemeasures of detectors performance. Analyzed result has indicated that, as compared with clutter downmixing detector and eigen-based detector, the proposed flow detector could classify and suppress clutter component more effectively. Results also suggested that the proposed flow detector is more adaptive to slow flow scenarios where existing flow detectors failed to distinguish between blood and clutter components. For the proposed flow estimator, it was characterized by the interpolation of speckle tracking results in Lagrangian reference frame. The estimation bias and RMS error were calculated for different flow scenarios (flow velocity: 100mm/s to 500mm/s; beam-flow angle: 15? to 60?). It was found that the proposed flow estimator provides higher dynamic range than conventional speckle tracking-based flow estimator. Nonetheless, it is also observed that the estimation variances and errors increases in slow flow scenarios. In order to demonstrate the medical potential of the proposed high frame rate VFI framework. A carotid bifurcation simulation model with realistic blood flow pattern calculated using computational fluid dynamic software was applied in the performance evaluation study. In the VFI image obtained, complex blood flow pattern was readily visualized. In contrast, conventional ultrasound flow imaging was only able to estimate axial velocity map and thus lead to many ambiguities in analyzing the complex blood flow pattern. It proved that ultrasound high frame rate VFI has the potential to be further developed into a new cardiological examination technique.
published_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
Styles APA, Harvard, Vancouver, ISO, etc.
2

Farrugia, N. « Vector-scalar imaging in combustion using PIV and LIF ». Thesis, Cranfield University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309583.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lenge, Matteo. « Development and validation of innovative ultrasound flow imaging methods ». Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10036/document.

Texte intégral
Résumé :
L'échographie est largement utilisée pour l'imagerie du flux sanguin pour ses nombreux avantages tels que son inocuité, son cout réduit, sa facilité d'utilisation et ses performances. Cette thèse a pour objectif de proposer de nouvelles méthodes ultrasonores d'imagerie du flux sanguin. Après une étude bibliographique, plusieurs approches ont été étudiées en détail jusqu'à leur implémentation sur l'échographe de recherche ULA-OP développé au sein du laboratoire et ont été validées en laboratoire et en clinique. La transmission d'ondes planes a été proposée pour améliorer la technique d'imagerie utilisant les oscillations transverses. Des champs de pression ultrasonores présentant des oscillations transverses sont générés dans de larges régions et exploités pour l'estimation vectorielle du flux sanguin à une haute cadence d'imagerie. Des cartes du flux sanguin sont obtenues grâce à une technique s'appuyant sur la transmission d'ondes planes couplées à un nouvel algorithme d'estimation de la vitesse dans le domaine fréquentiel. Les méthodes vectorielles implémentées en temps réel dans le ULA-OP ont été comparées à la méthode Doppler classique lors d'une étude clinique. Les résultats ont montré le bénéfice des méthodes vectorielles en termes de précision et de répétabilité. La nouvelle méthode proposée a démontré sa grande précision ainsi que son gain en termes de temps de calcul aussi bien en simulations qu'en acquisitions en laboratoire ou lors d'essais in vivo. Une solution logicielle temps réel implémentée sur une carte GPU a été proposée et testée afin de réduire encore le temps de calcul et permettre l'emploi de la méthode en clinique
Ultrasound is widely used for blood flow imaging because of the considerable advantages for the clinician, in terms of performance, costs, portability, and ease of use, and for the patient, in terms of safety and rapid checkup. The undesired limitations of conventional methods (1-D estimations and low frame-rate) are widely overtaken by new vector approaches that offer detailed descriptions of the flow for a more accurate diagnosis of cardiovascular system diseases. This PhD project concerns the development of novel methods for blood flow imaging. After studying the state-of-the-art in the field, a few approaches have been examined in depth up to their experimental validation, both in technical and clinical environments, on a powerful ultrasound research platform (ULA-OP). Real-time novel vector methods implemented on ULA-OP were compared to standard Doppler methods in a clinical study. The results attest the benefits of the vector methods in terms of accuracy and repeatability. Plane-wave transmissions were exploited to improve the transverse oscillation imaging method. Double oscillating fields were produced in large regions and exploited for the vectorial description of blood flow at high frame rates. Blood flow maps were obtained by plane waves coupled to a novel velocity estimation algorithm operating in the frequency domain. The new method was demonstrated capable of high accuracy and reduced computational load by simulations and experiments (also in vivo). The investigation of blood flow inside the common carotid artery has revealed the hemodynamic details with unprecedented quality. A software solution implemented on a graphic processing unit (GPU) board was suggested and tested to reduce the computational time and support the clinical employment of the method
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tsang, Kwok-hon, et 曾國瀚. « Design of an aperture-domain imaging method and signal acquisition hardware for ultrasound-based vector flow estimation ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43572315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tsang, Kwok-hon. « Design of an aperture-domain imaging method and signal acquisition hardware for ultrasound-based vector flow estimation ». Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43572315.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Correia, Mafalda Filipa Rodrigues. « From 2D to 3D cardiovascular ultrafast ultrasound imaging : new insights in shear wave elastography and blood flow imaging ». Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC158.

Texte intégral
Résumé :
Ces travaux de thèse portent sur le développement de nouvelles modalités d’imagerie cardiovasculaire basé sur l’utilisation de l'imagerie ultrarapide 2D et 3D. Les modalités d’imagerie développées dans cette thèse appartiennent au domaine de de l’élastographie par onde de cisaillement et de l'imagerie Doppler des flux sanguins.Dans un premier temps, la technique de l’élastographie par onde de cisaillement du myocarde a été développée pour les applications cliniques. Une approche d'imagerie non-linéaire a été utilisée pour améliorer l’estimation de vitesse des ondes de cisaillement (ou la rigidité des tissus cardiaques) de manière non invasive et localisée. La validation de cette nouvelle approche de « l’imagerie par sommation cohérente harmonique ultrarapide » a été réalisée in vitro et la faisabilité in vivo a été testée chez l’humain. Dans un second temps, nous avons utilisé cette technique sur des patients lors de deux essais cliniques, chacun ciblant une population différente (adultes et enfants). Nous avons étudié la possibilité d’évaluer quantitativement la rigidité des tissus cardiaques par élastographie chez des volontaires sains, ainsi que chez des malades souffrant de cardiomyopathie hypertrophique. Les résultats ont montré que l’élastographie pourrait devenir un outil d'imagerie pertinent et robuste pour évaluer la rigidité du muscle cardiaque en pratique clinique. Par ailleurs, nous avons également développé une nouvelle approche appelée « imagerie de tenseur élastique 3-D » pour mesurer quantitativement les propriétés élastiques des tissus anisotropes comme le myocarde. Ces techniques ont été testées in vitro sur des modèles de de gels isotropes transverses. La faisabilité in vivo de l’élastographie par onde cisaillement à trois-dimensions a été également évaluée sur un muscle squelettique humain.D'autre part, nous avons développé une toute nouvelle modalité d’imagerie ultrasonore des flux coronariens basée sur l’imagerie Doppler ultrarapide. Cette technique nous a permis d'imager la circulation coronarienne avec une sensibilité élevée, grâce notamment au développement d’un nouveau filtre adaptatif permettant de supprimer le signal du myocarde en mouvement, basé sur la décomposition en valeurs singulières (SVD). Des expériences à thorax ouvert chez le porc ont permis d'évaluer et de valider notre technique et les résultats ont montré que la circulation coronaire intramurale, peut être évaluée sur des vaisseaux de diamètres allant jusqu’à 100 µm. La faisabilité sur l’homme a été démontrée chez l’enfant en imagerie clinique transthoracique.Enfin, nous avons développé une nouvelle approche d’imagerie des flux sanguins, « l’imagerie ultrarapide 3-D des flux», une nouvelle technique d'imagerie quantitative des flux. Nous avons démontré que cette technique permet d’évaluer le débit volumétrique artériel directement en un seul battement cardiaque, indépendamment de l'utilisateur. Cette technique a été mise en place à l'aide d'une sonde matricielle 2-D et d’un prototype d’échographe ultrarapide 3-D développé au sein du laboratoire. Nous avons évalué et validé notre technique in vitro sur des fantômes artériels, et la faisabilité in vivo a été démontrée sur des artères carotides humaines
This thesis was focused on the development of novel cardiovascular imaging applications based on 2-D and 3-D ultrafast ultrasound imaging. More specifically, new technical and clinical developments of myocardial shear wave elastography and ultrafast blood flow imaging are presented in this manuscript.At first, myocardial shear wave elastography was developed for transthoracic imaging and improved by a non-linear imaging approach to non-invasively and locally assess shear wave velocity measurements, and consequently tissue stiffness in the context of cardiac imaging. This novel imaging approach (Ultrafast Harmonic Coherent Compounding) was tested and validated in-vitro and the in vivo feasibility was performed in humans for biomechanical evaluation of the cardiac muscle wall, the myocardium. Then, we have translated shear wave elastography to the clinical practice within two clinical trials, each one with a different population (adults and children). In both clinical trials, we have studied the capability of shear wave elastography to assess quantitatively myocardial stiffness in healthy volunteers and in patients suffering from hypertrophic cardiomyopathy. The results in the adult population indicated that shear wave elastography may become an effective imaging tool to assess cardiac muscle stiffness in clinical practice and help the characterization of hypertrophic cardiomyopathy. Likewise, we have also translated Shear Wave Elastography into four-dimensions and we have developed a new approach to map tissue elastic anisotropy in 3-D. 3-D Elastic Tensor Imaging allowed us to estimate quantitatively in a single acquisition the elastic properties of fibrous tissues. This technique was tested and validated in vitro in transverse isotropic models. The in-vivo feasibility of 3D elastic tensor imaging was also assessed in a human skeletal muscle.In parallel, we have developed a novel imaging technique for the non-invasive and non-radiative imaging of coronary circulation using ultrafast Doppler. This approach allowed us to image blood flow of the coronary circulation with high sensitivity. A new adaptive filter based on the singular value decomposition was used to remove the clutter signal of moving tissues. Open-chest swine experiments allowed to evaluate and validate this technique and results have shown that intramural coronary circulation, with diameters up to 100 µm, could be assessed. The in-vivo transthoracic feasibility was also demonstrated in humans in pediatric cardiology.Finally, we have developed a novel imaging modality to map quantitatively the blood flow in 3-D: 3-D ultrafast ultrasound flow imaging. We demonstrated that 3-D ultrafast ultrasound flow imaging can assess non-invasively, user-independently and directly volumetric flow rates in large arteries within a single heartbeat. We have evaluated and validated our technique in vitro in arterial phantoms using a 2-D matrix-array probe and a customized, programmable research 3-D ultrafast ultrasound system, and the in-vivo feasibility was demonstrated in human carotid arteries
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ramadoss, Balaji. « Vector Flow Model in Video Estimation and Effects of Network Congestion in Low Bit-Rate Compression Standards ». [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bayat, Sharareh. « Direct Structured Finite Element Mesh Generation from Three-dimensional Medical Images of the Aorta ». Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31023.

Texte intégral
Résumé :
Three-dimensional (3-D) medical imaging creates notable opportunities as input toward engineering analyses, whether for basic understanding of the normal function or patho-physiology of an organ, or for the simulation of virtual surgical procedures. These analyses most often require finite element (FE) models to be constructed from patient-specific 3-D medical images. However, creation of such models can be extremely labor-intensive; in addition, image processing and mesh generation are often operator-dependent, lack robustness and may be of suboptimal quality. Focusing on the human aorta, the goal of the present work is to create a fast and robust methodology for quadrilateral surface and hexahedral volume meshing from 3-D medical images with minimal user input. By making use of the segmentation capabilities of the 3-D gradient vector flow field combined with original ray-tracing and orientation control algorithms, we will demonstrate that it is possible to incrementally grow a structured quadrilateral surface mesh of the inner wall of the aorta. The process does not only require minimal input from the user, it is also robust and very fast compared to existing methods; it effectively combines segmentation and meshing into one single effort. After successfully testing the methodology and measuring the quality of the meshes produced by it from synthetic as well as real medical image datasets, we will make use of the surface mesh of the inner aortic wall to derive hexahedral meshes of the aortic wall thickness and of the fluid domain inside the aorta. We will finally outline a tentative approach to merge several structured meshes to process the main branches of the aorta.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rodríguez, Eduardo Rafael Llapa. « Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente ». Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03022016-161317/.

Texte intégral
Résumé :
Devido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF.
Due to the variation of the quality and noise in medical images, the classic image segmentation techniques are usually ineffective. In this work, we present a new algorithm that is composed of two techniques: the gradient vector flow deformable contours (GVF) and the scale-space technique using a diffusion process. A bibliographical revision of the models that work with deformable contours was accomplished, they were classified in parametric and geometric models. Among the parametric models the gradient vector flow deformable contours (GVF) was chosen. This approach offers precision in the representation of biological structures where other models does not. Thus, the algorithm improves the edge map to guide the deformation using recursive operations. With this estimation based on the behavior of the scale-space techniques it is realized, the localization and correction of sub-areas of the edge map that disturb the deformation. On the other hand, it was incorporated a new characteristic that allows the algorithm to accomplish classification activities. That is, the algorithm determines the presence or absence of a target object using a minimal deformation area. Our method was validated on both, simulated images and medical images making a comparison with the traditional GVF deformable contours.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Goudot, Guillaume. « Applications innovantes des ultrasons en pathologie vasculaire : utilisation de l'imagerie ultrarapide dans l'analyse de la rigidité artérielle et des ultrasons pulsés en thérapie Arterial stiffening assessed by ultrafast ultrasound imaging gives new insight into arterial phenotype of vascular Ehlers–Danlos mouse models Aortic wall elastic properties in case of bicuspid aortic valve Segmental aortic stiffness in bicuspid aortic valve patients compared to first-degree relatives Wall shear stress measurement by ultrafast vector flow imaging for atherosclerotic carotid stenosis Pulsed cavitational therapy using high-frequency ultrasound for the treatment of deep vein thrombosis in an in vitro model of human blood clot ». Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2215&f=13951.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Giangrossi, Claudio. « Development and real-time implementation of novel 2-D and 3-D imaging techniques on a research scanner ». Doctoral thesis, 2022. http://hdl.handle.net/2158/1272194.

Texte intégral
Résumé :
In the last decades, ultrasound imaging systems have become more and more popular thanks to their capability to investigate tissues in safe, cost effective, and non-invasive way. Their role in diagnostic imaging has become fundamental in several medical specialties, thanks also to the introduction of advanced echographic systems fostered by the efforts of several research laboratories around the world. Such efforts are more frequently based on the use of special research scanners, characterized by flexible hardware and programmable software and firmware. These features have been demonstrated ideal for the implementation and test of new methods, such as high frame-rate (HFR) imaging, color flow imaging (CFI), vector Doppler imaging, and 3 D imaging. Especially HFR and 3 D imaging have recently attracted great interest, but they are technically demanding since they involve either the formation of thousands of images per second, or the use of 2-D probes having a large number of elements. Therefore, great challenges must be faced for effective real-time implementation of 3 D and HFR imaging methods. My PhD activity aimed to implement and test advanced 2 D and 3 D ultrasound imaging modalities on an open research scanner called ULA OP 256. In the first part of my work, a new ultrasound imaging modality called Virtual real-time (VRT) was introduced through the modification of the firmware and software of the research scanner ULA-OP 256. With this modality, during a real-time (RT) investigation, the scanner initially acquires and stores in its memory up to 20 s of raw echo data. On user demand, the scanner can be switched to VRT mode: the stored data are re processed by the same resources used in RT but at different (typically lower) rates and, possibly, with different processing algorithms and parameters. In this way, contingent difficulties of image interpretation (especially in presence of rapidly moving phenomena), or possible computational limitations imposed by hardware during continuous RT processing can be overcome. The VRT modality has been demonstrated useful in different applications, for example, to implement a high-PRF version of the Multiline vector Doppler (MLVD) method, and a High- rame-rate CFI method, characterized by enhanced temporal and spatial resolution. The second part of my work included the software upgrade of ULA OP 256; it enabled the use of 2 D probes and the implementation of 3 D scanning methods. The ULA OP 256 can now be coupled to 2 D probes with arbitrary geometries, including matrix and sparse arrays. Furthermore, the scanner is now capable of simultaneously imaging multiple planes with programmable rotational angles. Novel approaches based on a sparse spiral array probe have been implemented and tested for different applications. For example, bi-plane imaging was evaluated for robust flow mediated dilation exams. Real-time 3 D spectral Doppler analysis was also performed. Here, two planes with programmable rotational angles were scanned to produce corresponding B-Mode images, over which multiple Doppler lines could be arbitrarily set to obtain the relative Multigate spectral Doppler (MSD) profiles. Finally, the last part of my work was specifically dedicated to the technical problems involved by HFR 3 D imaging. The management of (several) hundreds of transducer elements of a 2 D probe yields a huge amount of echo data: this makes complex and computationally expensive the processing of data volumes including thousands of lines, especially if performed at HFR. As a case report, the requirements of the main processing stages involved in ULA OP 256 receiver have been thoroughly investigated to detect and, possibly, solve the main bottlenecks. The study has evidenced that the star architecture that digitally interconnects the eight front-end boards of ULA OP 256 may frequently encounter data transfer bandwidth saturation that limits the overall performance in terms of frame/volume rate. A new architecture for data transfer has been proposed and shown effective to reduce the bandwidth requirements and thus, increase the performance of the scanner.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Dort, Sarah. « Vector flow mapping using plane wave ultrasound imaging ». Thèse, 2013. http://hdl.handle.net/1866/10859.

Texte intégral
Résumé :
Les diagnostics cliniques des maladies cardio-vasculaires sont principalement effectués à l’aide d’échographies Doppler-couleur malgré ses restrictions : mesures de vélocité dépendantes de l’angle ainsi qu’une fréquence d’images plus faible à cause de focalisation traditionnelle. Deux études, utilisant des approches différentes, adressent ces restrictions en utilisant l’imagerie à onde-plane, post-traitée avec des méthodes de délai et sommation et d’autocorrélation. L’objectif de la présente étude est de ré-implémenté ces méthodes pour analyser certains paramètres qui affecte la précision des estimations de la vélocité du flux sanguin en utilisant le Doppler vectoriel 2D. À l’aide d’expériences in vitro sur des flux paraboliques stationnaires effectuées avec un système Verasonics, l’impact de quatre paramètres sur la précision de la cartographie a été évalué : le nombre d’inclinaisons par orientation, la longueur d’ensemble pour les images à orientation unique, le nombre de cycles par pulsation, ainsi que l’angle de l’orientation pour différents flux. Les valeurs optimales sont de 7 inclinaisons par orientation, une orientation de ±15° avec 6 cycles par pulsation. La précision de la reconstruction est comparable à l’échographie Doppler conventionnelle, tout en ayant une fréquence d’image 10 à 20 fois supérieure, permettant une meilleure caractérisation des transitions rapides qui requiert une résolution temporelle élevée.
Clinical diagnosis of cardiovascular disease is dominated by colour-Doppler ultrasound despite its limitations: angle-dependent velocity measurements and low frame-rate from conventional focusing. Two studies, varying in their approach, address these limitations using plane-wave imaging, post-processed with the delay-and-sum and autocorrelation methods. The aim of this study is to re-implement these methods, investigating some parameters which affect blood velocity estimation accuracy using 2D vector-Doppler. Through in vitro experimentation on stationary parabolic flow, using a Verasonics system, four parameters were tested on mapping accuracy: number of tilts per orientation, ensemble length for single titled images, cycles per transmit pulse, and orientation angle at various flow-rates. The optimal estimates were found for 7 compounded tilts per image, oriented at ±15° with 6 cycles per pulse. Reconstruction accuracies were comparable to conventional Doppler; however, maintaining frame-rates more than 10 to 20 times faster, allowing better characterization of fast transient events requiring higher temporal resolution.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chen, Tien-Hung, et 陳天鈜. « Vector Doppler Estimation and Speckle Tracking for Plane Wave Flow Imaging ». Thesis, 2017. http://ndltd.ncl.edu.tw/handle/tp5kzf.

Texte intégral
Résumé :
碩士
國立臺灣科技大學
電機工程系
105
Use vector Doppler to estimate flow velocity is limited by vessel angle and maximum flow velocity in medical ultrasound system. In this study, we tried to overcome the influence of vessel angle by combining crossed-beam vector Doppler (VD) with speckle tracking (ST) in high frame rate plane wave imaging. In VD, we used radio frequency signals from different steered transmission angles to estimate autocorrelation separately, and used least-squares to obtain flow vector. Then we combined the axial velocity from VD (Vz-VD) with one-dimension speckle tracking (1-D ST) to get more accurate lateral velocity (Vx-ST). Although single plane wave excitation (SPW) could get high frame rate, its image quality and signal-to-noise ratio became worse. In order to improve estimation, we used coherent plane wave compound imaging instead of single plane wave imaging to do speckle tracking. The results of both simulation and experiment indicate that STD and BIAS performance of VD+ST is much better than VD below 45-degree vessel. Therefore, VD+ST has more stable and accurate flow velocity estimation, especially in lateral vessel.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Rossi, Stefano, et Piero Tortoli. « Development and validation of novel approaches for real-time ultrasound vector velocity measurements ». Doctoral thesis, 2021. http://hdl.handle.net/2158/1239650.

Texte intégral
Résumé :
Ultrasound imaging techniques have become increasingly successful in the medical field as they provide relatively low cost and totally safe diagnosis. Doppler methods focus on blood flow for the diagnosis and follow-up of cardiovascular diseases. First Doppler methods only measured the axial component of the motion. More recently, advanced methods have solved this problem, by estimating two or even all three velocity components. In this context, high frame rate (HFR) imaging techniques, based on the transmission of plane waves (PW), lead to the reconstruction of 2-D and 3-D vector maps of blood velocity distribution. The aim of this Ph.D. project was to develop novel acquisition schemes and processing methods for advanced ultrasound Doppler systems. Each development step was based on simulations and experimental tests. Simulations were based on Field II©, while experiments were conducted by using the ULA OP 256 open scanner. In particular, the recently proposed 2-D HFR vector flow imaging (VFI) method (DOI: 10.1109/TUFFC.2014.3064), based on the frequency domain for displacement estimation, was thoroughly investigated. Three main issues were addressed: the high underestimation of blood flow velocity observed when examining vessels at great depths, the high computational load, which hindered any real-time implementation and the lack of information about the third velocity component. Specifically, the progressive broadening of the transmitted beam on the elevation plane due to the acoustic lens was demonstrated to be responsible for the underestimation. The computational cost was reduced by processing demodulated and down-sampled baseband data instead of radiofrequency data, and a preliminary real time version of the 2-D VFI method was implemented. It was also found that a more efficient implementation could be obtained by exploiting parallel computing and graphic processing units (GPUs). An expansion circuit board for the ULA-OP 256 hardware, which allocates GPU resources, was thus designed and built. This new system architecture may allow the implementation of even more complex algorithms, such as the 3-D VFI methods. In particular, it will be possible to implement the novel method for 3D VFI that was developed and tested during this Ph.D. project. Such method suitably extended the 2D VFI approach by proposing an efficient estimation strategy that considerably limits the overall computational load.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ματσάκου, Αικατερίνη. « Αυτόματη ανίχνευση του αρτηριακού τοιχώματος της καρωτίδας από εικόνες υπερήχων β-σάρωσης ». Thesis, 2011. http://nemertes.lis.upatras.gr/jspui/handle/10889/4537.

Texte intégral
Résumé :
Σε αυτή την εργασία παρουσιάζεται μια πλήρως αυτοματοποιημένη μεθοδολογία κατάτμησης για την ανίχνευση των ορίων του αρτηριακού τοιχώματος σε διαμήκεις εικόνες καρωτίδας β-σάρωσης. Συγκεκριμένα υλοποιείται ένας συνδυασμός της μεθοδολογίας του μετασχηματισμού Hough για την ανίχνευση ευθειών με μια μεθοδολογία ενεργών καμπυλών. Η μεθοδολογία του μετασχηματισμού Hough χρησιμοποιείται για τον ορισμό της αρχικής καμπύλης, η οποία στη συνέχεια παραμορφώνεται σύμφωνα με ένα μοντέλο ενεργών καμπυλών βασισμένων σε πεδίο ροής του διανύσματος κλίσης (Gradient Vector Flow - GVF). Το GVF μοντέλο ενεργών καμπυλών βασίζεται στον υπολογισμό του χάρτη ακμών της εικόνας και τον μετέπειτα υπολογισμό του διανυσματικού πεδίου ροής κλίσης, το οποίο με τη σειρά του προκαλεί την παραμόρφωση της αρχικής καμπύλης με σκοπό την εκτίμηση των πραγματικών ορίων του αρτηριακού τοιχώματος. Η προτεινόμενη μεθοδολογία εφαρμόστηκε σε είκοσι (20) εικόνες υγιών περιπτώσεων και δεκαοχτώ (18) εικόνες περιπτώσεων με αθηρωμάτωση για τον υπολογισμό της διαμέτρου του αυλού και την αξιολόγηση της μεθόδου από ποσοτικούς δείκτες ανάλυσης κατά ROC (Receiver Operating Characteristic – ROC). Σύμφωνα με τα αποτελέσματα, δεν παρατηρήθηκαν στατιστικά σημαντικές διαφορές ανάμεσα στις μετρήσεις της διαμέτρου που πραγματοποιήθηκαν από τη διαδικασία της αυτόματης ανίχνευσης και τις αντίστοιχες μετρήσεις που προέκυψαν από την χειροκίνητη ανίχνευση. Οι τιμές της ευαισθησίας, της ειδικότητας και της ακρίβειας στις υγιείς περιπτώσεις ήταν αντίστοιχα 0.97, 0.99 και 0.98 για τις διαστολικές και τις συστολικές εικόνες. Στις παθολογικές περιπτώσεις οι αντίστοιχες τιμές ήταν μεγαλύτερες από 0.89, 0.96 και 0.93. Συμπερασματικά, η προτεινόμενη μεθοδολογία αποτελεί μια ακριβή και αξιόπιστη μέθοδο κατάτμησης εικόνων καρωτίδας και μπορεί να χρησιμοποιηθεί στην κλινική πράξη.
In this thesis, a fully automatic segmentation method based on a combination of a combination of the Hough Transform for the detection of straight lines with active contours is presented, for detecting the carotid artery wall in longitudinal B-mode ultrasound images. A Hough-transform-based methodology is used for the definition of the initial snake, followed by a gradient vector flow (GVF) snake deformation. The GVF snake is based on the calculation of the image edge map and the calculation of the gradient vector flow field which guides its deformation for the estimation of the real arterial wall boundaries. The proposed methodology was applied in twenty and eighteen cases of healthy and atherosclerotic carotid respectively, in order to calculate the lumen diameter and evaluate the method by means of ROC analysis (Receiver Operating Characteristic – ROC). According to the results, there was no significant difference between the automated segmentation and the manual diameter measurements. In healthy cases the sensitivity, specificity and accuracy were 0.97, 0.99 and 0.98, respectively, for both diastolic and systolic phase. In atherosclerotic cases the calculated values of the indices were larger than 0.89, 0.96 and 0.93, respectively. In conclusion, the proposed methodology provides an accurate and reliable way to segment ultrasound images of the carotid wall and can be used in clinical practice.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie