Articles de revues sur le sujet « Variational problem »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Variational problem.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Variational problem ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Palese, Marcella. « Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents ». Communications in Mathematics 24, no 2 (1 décembre 2016) : 125–35. http://dx.doi.org/10.1515/cm-2016-0009.

Texte intégral
Résumé :
Abstract We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents - associated with variations of local Lagrangians - which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hua, Yuan, Bao Hua Lv et Tai Quan Zhou. « Parametric Variational Principle for Solving Coupled Damage Problem ». Key Engineering Materials 348-349 (septembre 2007) : 813–16. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.813.

Texte intégral
Résumé :
The parametric variational principle adopts the extreme variational idea in the modern control theory and uses state equations deduced from the constitutive law to control the functional variation, which is an effective solution to the nonlinear equations. Based on the fundamental equations of elasto-plasticity coupled damage problem, the potential functional of elasto-plasticity is constructed. Also the state equations with approximation of damage evolution equation and load functions are constructed in the paper. The solution of elasto-plasticity damage problem can be deduced to solve problem of the minimum potential energy function under the restriction of state equations. Thus the parametric variational principle for coupled damage is proposed. The variational principle has the virtue of definite physical meaning and the finite element equations are presented in the article to facilitate the application of parametric variatioal principle, which is easy to program on computer. Using the method mentioned in the article, a numerical calculation is carried out and the calculation result shows that the method is efficient for solving elasto-plasticity damage problem.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Garg, Anupam. « Two variational variations on a problem in electrostatics ». American Journal of Physics 75, no 6 (juin 2007) : 509–12. http://dx.doi.org/10.1119/1.2717220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zorii, N. V. « Extremal problems dual to the Gauss variational problem ». Ukrainian Mathematical Journal 58, no 6 (juin 2006) : 842–61. http://dx.doi.org/10.1007/s11253-006-0108-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bistafa, Sylvio R. « Euler's Navigation Variational Problem ». Euleriana 2, no 2 (19 septembre 2022) : 131. http://dx.doi.org/10.56031/2693-9908.1045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Onofri, E. « A Nonlinear Variational Problem ». SIAM Review 27, no 4 (décembre 1985) : 576–78. http://dx.doi.org/10.1137/1027155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cruz, Fátima, Ricardo Almeida et Natália Martins. « Herglotz Variational Problems Involving Distributed-Order Fractional Derivatives with Arbitrary Smooth Kernels ». Fractal and Fractional 6, no 12 (10 décembre 2022) : 731. http://dx.doi.org/10.3390/fractalfract6120731.

Texte intégral
Résumé :
In this paper, we consider Herglotz-type variational problems dealing with fractional derivatives of distributed-order with respect to another function. We prove necessary optimality conditions for the Herglotz fractional variational problem with and without time delay, with higher-order derivatives, and with several independent variables. Since the Herglotz-type variational problem is a generalization of the classical variational problem, our main results generalize several results from the fractional calculus of variations. To illustrate the theoretical developments included in this paper, we provide some examples.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Parida, J., M. Sahoo et A. Kumar. « A variational-like inequality problem ». Bulletin of the Australian Mathematical Society 39, no 2 (avril 1989) : 225–31. http://dx.doi.org/10.1017/s0004972700002690.

Texte intégral
Résumé :
Given a closed and convex set K in Rn and two continuous maps F: K → Rn and η: K × K → Rn, the problem considered here is to find ε K such that.We call it a variational-like inequality problem, and develop a theory for the existence of a solution. We also show the relationship between the variational-like inequality problem and some mathematical programming problems.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jha, Shalini, Prasun Das et Tadeusz Antczak. « Exponential type duality for η-approximated variational problems ». Yugoslav Journal of Operations Research 30, no 1 (2020) : 19–43. http://dx.doi.org/10.2298/yjor190415022j.

Texte intégral
Résumé :
In this article, we use the so-called ?-approximation method for solving a new class of nonconvex variational problems with exponential (p, r)-invex functionals. In this approach, we construct ?-approximated variational problem and ?-approximated Mond- Weir dual variational problem for the considered variational problem and its Mond-Weir dual variational problem. Then several duality results for considered variational problem and its Mond-Weir dual variational problem are proved by the help of duality results established between ?-approximated variational problems mentioned above.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bock, Igor, et Ján Lovíšek. « An optimal control problem for a pseudoparabolic variational inequality ». Applications of Mathematics 37, no 1 (1992) : 62–80. http://dx.doi.org/10.21136/am.1992.104492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhao, Yali, et Dongxue Han. « Split General Strong Nonlinear Quasi-Variational Inequality Problem ». Mathematical Problems in Engineering 2016 (2016) : 1–6. http://dx.doi.org/10.1155/2016/5937016.

Texte intégral
Résumé :
We introduce a split general strong nonlinear quasi-variational inequality problem which is a natural extension of a split general quasi-variational inequality problem, split variational inequality problem, and quasi-variational and variational inequality problems in Hilbert spaces. Using the projection method, we propose an iterative algorithm for the split general strongly nonlinear quasi-variational inequality problem and discuss the convergence criteria of the iterative algorithm. The results presented here generalized, unify, and improve many previously known results for quasi-variational and variational inequality problems.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Baiz, Othmane, Hicham Benaissa, Rachid Bouchantouf et Driss El Moutawakil. « OPTIMIZATION PROBLEMS FOR A THERMOELASTIC FRICTIONAL CONTACT PROBLEM ». Mathematical Modelling and Analysis 26, no 3 (10 septembre 2021) : 444–68. http://dx.doi.org/10.3846/mma.2021.12803.

Texte intégral
Résumé :
In the present paper, we analyze and study the control of a static thermoelastic contact problem. We consider a model which describes a frictional contact problem between a thermoelastic body and a deformable heat conductor obstacle. We derive a variational formulation of the model which is in the form of a coupled system of the quasi-variational inequality of elliptic type for the displacement and the nonlinear variational equation for the temperature. Then, under a smallness assumption, we prove the existence of a unique weak solution to the problem. Moreover, we establish the dependence of the solution with respect to the data and prove a convergence result. Finally, we introduce an optimization problem related to the contact model for which we prove the existence of a minimizer and provide a convergence result.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Moreno, Giovanni, et Monika Ewa Stypa. « Geometry of the free-sliding Bernoulli beam ». Communications in Mathematics 24, no 2 (1 décembre 2016) : 153–71. http://dx.doi.org/10.1515/cm-2016-0011.

Texte intégral
Résumé :
Abstract If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chaloemyotphong, Bunyawee, et Atid Kangtunyakarn. « Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space ». Mathematics 7, no 11 (3 novembre 2019) : 1037. http://dx.doi.org/10.3390/math7111037.

Texte intégral
Résumé :
The purpose of this paper is to introduce the split combination of variational inclusion problem which combines the concept of the modified variational inclusion problem introduced by Khuangsatung and Kangtunyakarn and the split variational inclusion problem introduced by Moudafi. Using a modified Halpern iterative method, we prove the strong convergence theorem for finding a common solution for the hierarchical fixed point problem and the split combination of variational inclusion problem. The result presented in this paper demonstrates the corresponding result for the split zero point problem and the split combination of variation inequality problem. Moreover, we discuss a numerical example for supporting our result and the numerical example shows that our result is not true if some conditions fail.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bakaryan, Tigran, Rita Ferreira et Diogo Gomes. « A potential approach for planning mean-field games in one dimension ». Communications on Pure and Applied Analysis 21, no 6 (2022) : 2147. http://dx.doi.org/10.3934/cpaa.2022054.

Texte intégral
Résumé :
<p style='text-indent:20px;'>This manuscript discusses planning problems for first- and second-order one-dimensional mean-field games (MFGs). These games are comprised of a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. Applying Poincaré's Lemma to the Fokker–Planck equation, we deduce the existence of a potential. Rewriting the Hamilton–Jacobi equation in terms of the potential, we obtain a system of Euler–Lagrange equations for certain variational problems. Instead of the mean-field planning problem (MFP), we study this variational problem. By the direct method in the calculus of variations, we prove the existence and uniqueness of solutions to the variational problem. The variational approach has the advantage of eliminating the continuity equation.</p><p style='text-indent:20px;'>We also consider a first-order MFP with congestion. We prove that the congestion problem has a weak solution by introducing a potential and relying on the theory of variational inequalities. We end the paper by presenting an application to the one-dimensional Hughes' model.</p>
Styles APA, Harvard, Vancouver, ISO, etc.
16

Egorshin, A. O. « On one variational smoothing problem ». Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, no 4 (décembre 2011) : 9–22. http://dx.doi.org/10.20537/vm110402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Malozemov, Vassili N., et Grigoriy Sh Tamasyan. « On a cubic variational problem ». Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 3(61), no 4 (2016) : 615–23. http://dx.doi.org/10.21638/11701/spbu01.2016.410.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

BOGOLUBOV, N. N., A. N. KIREEV et A. M. KURBATOV. « VARIATIONAL APPROACH TO POLARON PROBLEM ». International Journal of Modern Physics B 01, no 01 (avril 1987) : 89–102. http://dx.doi.org/10.1142/s0217979287000074.

Texte intégral
Résumé :
Variational Ansatz to describe the ground state of Fröhlich’s Polaron at all interaction strength is proposed. The best upper bounds to the polaron ground state energy are obtained in the limiting cases of weak and strong interactions. For intermediate couplings two simple models are investigated. The ground state energy does not exceed their minimal solution.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Schmidt, Bernd. « On a semilinear variational problem ». ESAIM : Control, Optimisation and Calculus of Variations 17, no 1 (9 octobre 2009) : 86–101. http://dx.doi.org/10.1051/cocv/2009038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Malozemov, V. N., et G. Sh Tamasyan. « On a cubic variational problem ». Vestnik St. Petersburg University : Mathematics 49, no 4 (octobre 2016) : 350–58. http://dx.doi.org/10.3103/s1063454116040105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Egorov, Yu V. « On one variational Butkovskii problem ». Automation and Remote Control 73, no 8 (août 2012) : 1301–4. http://dx.doi.org/10.1134/s0005117912080036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Henriques, Pedro Gonçalves. « Inverse Problem of Variational Calculus ». São Paulo Journal of Mathematical Sciences 5, no 2 (30 décembre 2011) : 233. http://dx.doi.org/10.11606/issn.2316-9028.v5i2p233-248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kazmi, Kaleem. « Split nonconvex variational inequality problem ». Mathematical Sciences 7, no 1 (2013) : 36. http://dx.doi.org/10.1186/2251-7456-7-36.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lorz, Alexander, Peter Markowich et Benoît Perthame. « Bernoulli Variational Problem and Beyond ». Archive for Rational Mechanics and Analysis 212, no 2 (17 décembre 2013) : 415–43. http://dx.doi.org/10.1007/s00205-013-0707-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Saunders, David J. « Jets and the variational calculus ». Communications in Mathematics 29, no 1 (30 avril 2021) : 91–114. http://dx.doi.org/10.2478/cm-2021-0004.

Texte intégral
Résumé :
Abstract We review the approach to the calculus of variations using Ehresmann’s theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Garaev, K. G., et L. A. Aksent’ev. « A problem on brachistochrone as invariant variational problem ». Russian Mathematics 61, no 1 (janvier 2017) : 81–84. http://dx.doi.org/10.3103/s1066369x17010108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

FRANCAVIGLIA, MAURO, MARCELLA PALESE et EKKEHART WINTERROTH. « VARIATIONALLY EQUIVALENT PROBLEMS AND VARIATIONS OF NOETHER CURRENTS ». International Journal of Geometric Methods in Modern Physics 10, no 01 (15 novembre 2012) : 1220024. http://dx.doi.org/10.1142/s0219887812200241.

Texte intégral
Résumé :
We consider systems of local variational problems defining nonvanishing cohomology classes. Symmetry properties of the Euler–Lagrange expressions play a fundamental role since they introduce a cohomology class which adds up to Noether currents; they are related with invariance properties of the first variation, thus with the vanishing of a second variational derivative. In particular, we prove that the conserved current associated with a generalized symmetry, assumed to be also a symmetry of the variation of the corresponding local inverse problem, is variationally equivalent to the variation of the strong Noether current for the corresponding local system of Lagrangians. This current is conserved and a sufficient condition will be identified in order that such a current be global.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jha, Shalini, Prasun Das et Sanghamitra Bandhyopadhyay. « Multitime multiobjective variational problems via η-approximation method ». Yugoslav Journal of Operations Research, no 00 (2021) : 15. http://dx.doi.org/10.2298/yjor201115015j.

Texte intégral
Résumé :
The present article is devoted to multitime multiobjective variational problems via ?-approximation method. In this method, an ?-approximation approach is applied to the considered problem, and a new problem is constructed, called as ?-approximated multitime multiobjective variational problem that contains the change in objective and both constraints functions. The equivalence between an efficient (Pareto optimal) solution to the main multitime multiobjective variational problem is derived along with its associated ?-approximated problem under invexity defined for a multi- time functional. Furthermore, we have also discussed the saddle-point criteria for the problem considered and its associated ?-approximated problems via generalized invexity assumptions.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Zhang, Yi. « Noether's symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type ». Royal Society Open Science 5, no 10 (octobre 2018) : 180208. http://dx.doi.org/10.1098/rsos.180208.

Texte intégral
Résumé :
The variational problem of Herglotz type and Noether's theorem for a time-delayed Hamiltonian system are studied. Firstly, the variational problem of Herglotz type with time delay in phase space is proposed, and the Hamilton canonical equations with time delay based on the Herglotz variational problem are derived. Secondly, by using the relationship between the non-isochronal variation and the isochronal variation, two basic formulae of variation of the Hamilton–Herglotz action with time delay in phase space are derived. Thirdly, the definition and criterion of the Noether symmetry for the time-delayed Hamiltonian system are established and the corresponding Noether's theorem is presented and proved. The theorem we obtained contains Noether's theorem of a time-delayed Hamiltonian system based on the classical variational problem and Noether's theorem of a Hamiltonian system based on the variational problem of Herglotz type as its special cases. At the end of the paper, an example is given to illustrate the application of the results.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Garzon, Gabriel Ruiz. « The Pre-Variational Problems and the Constrained Mathematical Programming Problem ». OPSEARCH 39, no 2 (juin 2002) : 63–75. http://dx.doi.org/10.1007/bf03398671.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ceng, Lu-Chuan, Chi-Ming Chen, Ching-Feng Wen et Chin-Tzong Pang. « Relaxed Iterative Algorithms for Generalized Mixed Equilibrium Problems with Constraints of Variational Inequalities and Variational Inclusions ». Abstract and Applied Analysis 2014 (2014) : 1–25. http://dx.doi.org/10.1155/2014/345212.

Texte intégral
Résumé :
We introduce and analyze a relaxed extragradient-like viscosity iterative algorithm for finding a solution of a generalized mixed equilibrium problem with constraints of several problems: a finite family of variational inequalities for inverse strongly monotone mappings, a finite family of variational inclusions for maximal monotone and inverse strongly monotone mappings, and a fixed point problem of infinitely many nonexpansive mappings in a real Hilbert space. Under some suitable conditions, we derive the strong convergence of the sequence generated by the proposed algorithm to a common solution of these problems which also solves a variational inequality problem.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Kheawborisut, Araya, et Atid Kangtunyakarn. « Algorithms of common solutions to modified generalized system of variational inclusion problem and hierarchical fixed point problem ». Filomat 36, no 9 (2022) : 3173–88. http://dx.doi.org/10.2298/fil2209173k.

Texte intégral
Résumé :
This manuscript deals with two problems : the first one is a new problem of the system of variational inclusion that is called modified generalized system of variational inclusion problem(MGSVIP) and the other one is a hierarchical fixed point problem in the framework of real Hilbert space. We establish the important lemma that show the relation between fixed point of nonlinear mapping and solution of MGSVIP for proving the main theorem. To approximate the common solution of these problems, we design an iterative scheme under suitable conditions on parameters. A strong convergence result for the proposed iterative scheme is proved. Applying our main result, we prove strong convergence theorems of the modification system of variational inequalities problem and variational inclusion problem. Moreover, we give the numerical example for supporting our results.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Farajzadeh, A. P., et B. S. Lee. « Vector variational-like inequality problem and vector optimization problem ». Applied Mathematics Letters 23, no 1 (janvier 2010) : 48–52. http://dx.doi.org/10.1016/j.aml.2009.07.024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

KAWOHL, BERND, et FRIEDEMANN SCHURICHT. « DIRICHLET PROBLEMS FOR THE 1-LAPLACE OPERATOR, INCLUDING THE EIGENVALUE PROBLEM ». Communications in Contemporary Mathematics 09, no 04 (août 2007) : 515–43. http://dx.doi.org/10.1142/s0219199707002514.

Texte intégral
Résumé :
We consider a number of problems that are associated with the 1-Laplace operator Div (Du/|Du|), the formal limit of the p-Laplace operator for p → 1, by investigating the underlying variational problem. Since corresponding solutions typically belong to BV and not to [Formula: see text], we have to study minimizers of functionals containing the total variation. In particular we look for constrained minimizers subject to a prescribed [Formula: see text]-norm which can be considered as an eigenvalue problem for the 1-Laplace operator. These variational problems are neither smooth nor convex. We discuss the meaning of Dirichlet boundary conditions and prove existence of minimizers. The lack of smoothness, both of the functional to be minimized and the side constraint, requires special care in the derivation of the associated Euler–Lagrange equation as necessary condition for minimizers. Here the degenerate expression Du/|Du| has to be replaced by a suitable vector field [Formula: see text] to give meaning to the highly singular 1-Laplace operator. For minimizers of a large class of problems containing the eigenvalue problem, we obtain the surprising and remarkable fact that in general infinitely many Euler–Lagrange equations have to be satisfied.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Molchanova, Evgeniya A. « Variational simulation of the spectral problem ». Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no 75 (2022) : 33–37. http://dx.doi.org/10.17223/19988621/75/3.

Texte intégral
Résumé :
The ordinary fourth-order differential equation which is the zero approximation of the eigenvalue boundary problem is solved by the variational method to produce approximate formulas for eigenvalues. To obtain an explicit formula for eigenvalues, a transition is made from the differential problem to the variational problem in the Galerkin form. Calculating integrals in it gives a general formula for eigenvalues. The selection of functions satisfying certain boundary conditions yields approximate formulas suitable for the analysis of multiparameter dependencies. In particular, it is shown how the lowest eigenvalues are determined. AMS Mathematical Subject Classification: 41A60
Styles APA, Harvard, Vancouver, ISO, etc.
36

Thanh, Dang Ngoc Hoang. « A variational approach to denoising problem ». ELCVIA Electronic Letters on Computer Vision and Image Analysis 15, no 2 (4 novembre 2016) : 19. http://dx.doi.org/10.5565/rev/elcvia.991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Maulbetsch, Christian, et Sergei V. Shabanov. « The inverse variational problem for autoparallels ». Journal of Physics A : Mathematical and General 32, no 28 (1 janvier 1999) : 5355–66. http://dx.doi.org/10.1088/0305-4470/32/28/313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Arendt, Wolfgang, et Daniel Daners. « The Dirichlet problem by variational methods ». Bulletin of the London Mathematical Society 40, no 1 (février 2008) : 51–56. http://dx.doi.org/10.1112/blms/bdm091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Bloch, Anthony M., Peter E. Crouch et Amit K. Sanyal. « A variational problem on Stiefel manifolds ». Nonlinearity 19, no 10 (25 août 2006) : 2247–76. http://dx.doi.org/10.1088/0951-7715/19/10/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Tavakoli, M., A. P. Farajzadeh et D. Inoan. « On a generalized variational inequality problem ». Filomat 32, no 7 (2018) : 2433–41. http://dx.doi.org/10.2298/fil1807433t.

Texte intégral
Résumé :
In this paper, a sufficient condition in order to have C-udomonotone property for multifunctions is presented. By applying a special minimax theorem and KKM theory some existence results of solutions of a generalized variational inequality problem are established. Some examples in order to illustrate the main results are given. The results of this paper can be considered as extension and improvement of some articles in this area.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lai, Hang-Chin, Jin-Chirng Lee et Shuh-Jye Chern. « A variational problem and optimal control ». Journal of Industrial & ; Management Optimization 7, no 4 (2011) : 967–75. http://dx.doi.org/10.3934/jimo.2011.7.967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Sogo, Kiyoshi. « Variational Discretization of Euler's Elastica Problem ». Journal of the Physical Society of Japan 75, no 6 (15 juin 2006) : 064007. http://dx.doi.org/10.1143/jpsj.75.064007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Amar, Micòl, et Carlo Mariconda. « A Nonconvex Variational Problem with Constraints ». SIAM Journal on Control and Optimization 33, no 1 (janvier 1995) : 299–307. http://dx.doi.org/10.1137/s0363012992235043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Aranda, E., et P. Pedregal. « A variational problem in electricity markets ». Nonlinear Analysis : Real World Applications 11, no 3 (juin 2010) : 2044–55. http://dx.doi.org/10.1016/j.nonrwa.2009.05.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Saha, A., et B. Talukdar. « Inverse Variational Problem for Nonstandard Lagrangians ». Reports on Mathematical Physics 73, no 3 (juin 2014) : 299–309. http://dx.doi.org/10.1016/s0034-4877(14)60046-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Casas, M., S. Martı́nez, F. Pennini et A. Plastino. « Thermodynamics and the Tsallis variational problem ». Physica A : Statistical Mechanics and its Applications 305, no 1-2 (mars 2002) : 41–47. http://dx.doi.org/10.1016/s0378-4371(01)00637-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Luc, D. T. « An Abstract Problem in Variational Analysis ». Journal of Optimization Theory and Applications 138, no 1 (22 avril 2008) : 65–76. http://dx.doi.org/10.1007/s10957-008-9371-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Khavinson, Dmitry, Mihai Putinar et Harold S. Shapiro. « Poincaré’s Variational Problem in Potential Theory ». Archive for Rational Mechanics and Analysis 185, no 1 (18 octobre 2006) : 143–84. http://dx.doi.org/10.1007/s00205-006-0045-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shen, Xiaohua, et Wanghui Yu. « A variational problem with impurity set ». Journal of Differential Equations 244, no 11 (juin 2008) : 2836–69. http://dx.doi.org/10.1016/j.jde.2008.01.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Scarpini, F. « A nonlinear variational Neumann's type problem ». Calcolo 24, no 1 (mars 1987) : 23–44. http://dx.doi.org/10.1007/bf02576414.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie