Littérature scientifique sur le sujet « Variable gain power amplifier »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Variable gain power amplifier ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Variable gain power amplifier"

1

Choi, Ye-Ji, et Jee-Youl Ryu. « Design of Low-Power Variable Gain Amplifier ». Journal of Institute of Control, Robotics and Systems 28, no 1 (31 janvier 2022) : 1–5. http://dx.doi.org/10.5302/j.icros.2022.21.0138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Jing Zhi. « A 520MHz Wideband Variable Gain Amplifier ». Applied Mechanics and Materials 556-562 (mai 2014) : 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.

Texte intégral
Résumé :
The design and realization of a wideband variable gain amplifier for RF system is presented. The cascade of LNA and controllable attenuation makes the design have a 0-90dB gain adjustment range. Special care is devoted to the solution of typical problems encountered in the design of the amplifier, such as signal shielding and power supply decoupling. The amplifier uses passive amplitude-frequency equalization, 0.1-460MHz band variation is less than 1dB, the 3dB bandwidth is up to 520MHz. The noise characteristic is low, the total input referred noise is less than 15.5nV⁄√¯Hz.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fujimoto, Y., H. Tani, M. Maruyama, H. Akada, H. Ogawa et M. Miyamoto. « A low-power switched-capacitor variable gain amplifier ». IEEE Journal of Solid-State Circuits 39, no 7 (juillet 2004) : 1213–16. http://dx.doi.org/10.1109/jssc.2004.829919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vintola, V. T. S., M. J. Matilainen, S. J. K. Kalajo et E. A. Jarvinen. « Variable-gain power amplifier for mobile WCDMA applications ». IEEE Transactions on Microwave Theory and Techniques 49, no 12 (2001) : 2464–71. http://dx.doi.org/10.1109/22.971637.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Huang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee et J. Stevenson Kenney. « Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers ». IEEE Transactions on Microwave Theory and Techniques 60, no 1 (janvier 2012) : 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Quoc-Hoang Duong, Quan Le, Chang-Wan Kim et Sang-Gug Lee. « A 95-dB linear low-power variable gain amplifier ». IEEE Transactions on Circuits and Systems I : Regular Papers 53, no 8 (août 2006) : 1648–57. http://dx.doi.org/10.1109/tcsi.2006.879058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xie, Hongyun, Shuo Liu, Lianghao Zhang, Zhiyun Jiang, Yanxiao Zhao, Liang Chen et Wanrong Zhang. « Low power dissipation SiGe HBT dual-band variable gain amplifier ». Microelectronics Journal 46, no 7 (juillet 2015) : 626–31. http://dx.doi.org/10.1016/j.mejo.2015.03.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kang, So Young, Jooyoung Jang, Inn-Yeal Oh et Chul Soon Park. « A 2.16 mW Low Power Digitally-Controlled Variable Gain Amplifier ». IEEE Microwave and Wireless Components Letters 20, no 3 (mars 2010) : 172–74. http://dx.doi.org/10.1109/lmwc.2010.2040222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tang, Fang, Amine Bermak, Amira Abbes et Mohieddine Amor Benammar. « Continuous-TimeΣΔADC with Implicit Variable Gain Amplifier for CMOS Image Sensor ». Scientific World Journal 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/208540.

Texte intégral
Résumé :
This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kledrowetz, Vilem, Roman Prokop, Lukas Fujcik, Michal Pavlik et Jiří Háze. « Low-power ASIC suitable for miniaturized wireless EMG systems ». Journal of Electrical Engineering 70, no 5 (1 septembre 2019) : 393–99. http://dx.doi.org/10.2478/jee-2019-0071.

Texte intégral
Résumé :
Abstract Nowadays, the technology advancements of signal processing, low-voltage low-power circuits and miniaturized circuits have enabled the design of compact, battery-powered, high performance solutions for a wide range of, particularly, biomedical applications. Novel sensors for human biomedical signals are creating new opportunities for low weight wearable devices which allow continuous monitoring together with freedom of movement of the users. This paper presents the design and implementation of a novel miniaturized low-power sensor in integrated circuit (IC) form suitable for wireless electromyogram (EMG) systems. Signal inputs (electrodes) are connected to this application-specific integrated circuit (ASIC). The ASIC consists of several consecutive parts. Signals from electrodes are fed to an instrumentation amplifier (INA) with fixed gain of 50 and filtered by two filters (a low-pass and high-pass filter), which remove useless signals and noise with frequencies below 20 Hz and above 500 Hz. Then signal is amplified by a variable gain amplifier. The INA together with the reconfigurable amplifier provide overall gain of 50, 200, 500 or 1250. The amplified signal is then converted to pulse density modulated (PDM) signal using a 12-bit delta-sigma modulator. The ASIC is fabricated in TSMC0.18 mixed-signal CMOS technology.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Variable gain power amplifier"

1

PATEL, PRERNA D. « DESIGN OF A PIXEL SCALE OPTICAL POWER METER SUITABLE FOR INCORPORATION IN A MULTI-TECHNOLOGY FPGA ». University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1066421274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Lin. « A low power, high dynamic-range, broadband variable gain amplifier for an ultra wideband receiver ». Texas A&M University, 2003. http://hdl.handle.net/1969.1/5843.

Texte intégral
Résumé :
A fully differential Complementary Metal-Oxide Semiconductor (CMOS) Variable Gain Amplifier (VGA) consisting of complementary differential pairs with source degeneration, a current gain stage with programmable current mirror, and resistor loads is designed for high frequency and low power communication applications, such as an Ultra Wideband (UWB) receiver system. The gain can be programmed from 0dB to 42dB in 2dB increments with -3dB bandwidth greater than 425MHz for the entire range of gain. The 3rd-order intercept point (IIP3) is above -13.6dBm for 1Vpp differential input and output voltages. These low distortion broadband features benefit from the large linear range of the differential pair with source degeneration and the low impedance internal nodes in the current gain stages. In addition, common-mode feedback is not required because of these low impedance nodes. Due to the power efficient complementary differential pairs in the input stage, power consumption is minimized (9.5mW) for all gain steps. The gain control scheme includes fine tuning (2dB/step) by changing the bias voltage of the proposed programmable current mirror, and coarse tuning (14dB/step) by switching on/off the source degeneration resistors in the differential pairs. A capacitive frequency compensation scheme is used to further extend the VGA bandwidth.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Oder, Stephen, Paula Arinello, Peter Caron, Scott Crawford, Stephen McGoldrick et Douglas Bajgot. « Development of a Variable Output Power, High Efficiency Programmable Telemetry Transmitter Using GaN Amplifier Technology ». International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581842.

Texte intégral
Résumé :
Cobham Electronic Systems, Inc. has developed a field-programmable telemetry transmitter module for higher-power (0.1W to 25W) airborne telemetry applications. A key feature of the transmitter is high DC to RF conversion efficiency over the entire variable output power range of 25dB through the use of GaN amplifiers. This high efficiency is realized by using a variable voltage DC-DC converter and dynamic bias control of the GaN amplifier elements. This feature is useful in that output power can be tailored to mission requirements and timelines, thereby extending battery life and increasing operation time. The transmitter receives configuration commands and can be programmed through an external data port. The transmitter can be configured for RF power and frequency over the telemetry S-Band frequency range, and has multiple data rates. The unit consists of RF, digital and power supply circuits. The RF transmitter is a PCM-FM type with a phase-locked loop, driver amplifiers, a power amplifier and a digital processor for RF control. The unit contains a digital processor, FPGA's, and flash memory. The power supplies contains all the regulator circuits to supply power to the rest of the unit, variable output drain voltage to the GaN devices, EMI filtering, under/overvoltage protection, a temperature sensor and a digital processor for power control. The electronics are housed in a compact aluminum housing.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Huang, Yan-Yu. « CMOS-based amplitude and phase control circuits designed for multi-standard wireless communication systems ». Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44908.

Texte intégral
Résumé :
Designing CMOS linear transmitter front-end, specially the power amplifiers (PAs), in multi-band wireless transceivers is a major challenge for the single-chip integration of a CMOS radio. In some of the linear PA systems, for example, polar- or predistortion-PA system, amplitude and phase control circuits are used to suppress the distortion produces by the PA core. The requirements of these controlling circuits are much different from their conventional role in a receiver or a phase array system. In this dissertation, the special design issues will be addressed, and the circuit topologies of the amplitude and phase controllers will be proposed. In attempt to control the high-power input signal of a PA system, a highly linear variable attenuator with adaptive body biasing is first introduced. The voltage swing on the signal path is intentionally coupled to the body terminal of the triple-well NMOS devices to reduce their impedance variation. The fabricated variable attenuator shows a significant improvement on linearity as compared to previous CMOS works. The results of this research are then used to build a variable gain amplifier for linear PA systems that requires gain of its amplitude tuning circuits. Different from the conventional attenuator-based VGAs, the high linearity of the suggested attenuator allows it to be put after the gain stage in the presented VGA topology. This arrangement along with the current boosting technique gives the VGA a better noise performance while having a linear-in-dB tuning curve and better worst-case linearity. The following part of the dissertation is about a compact, linear-in-degree tuned variable phase shifter as the phase controller in the PA system. This design uses a modified RC poly-phase filter to produce a set of an orthogonal phase vectors with smaller loss. A specially designed control circuit combines these vectors and generates an output signal with different phases, while having very small gain mismatches at different phase setting. The proposed amplitude and phase control circuits are then verified with a system level analysis. The results show that the proposed designs successfully reduce the non-linear effect of a wireless transmitter.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fechine, Sette Elmo Luiz. « Circuits intégrés millimétriques en bande Ka pour une antenne à pointage électronique pour les télécommunications avec des satellites géostationnaires ou des constellations de satellites ». Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0002.

Texte intégral
Résumé :
Ce travail présente la conception de circuits actifs intégrés en vue d'une intégration dans une antenne à dépointage électronique pour les télécommunications par satellite en bande Ka. Tout d'abord, le manuscrit présente le contexte dans lequel se déroule l'étude, abordant les principaux concepts et caractéristiques de ce type d'antenne. Par la suite, deux blocs clés de la chaîne d’émission sont étudiés en détail et conçus : un amplificateur de puissance à gain variable et trois déphaseurs pilotables. Les circuits sont réalisés en utilisant deux technologies SiGe BiCMOS: BiCMOS9MW et SG13G2. Enfin, les résultats de simulation post-layout sont exposés et comparés aux spécifications du projet ainsi qu'à l'état de l'art
This work presents the design of active integrated circuits intended for integration into an electronically steered antenna for Ka-band satellite communications. Firstly, the manuscript introduces the context of the study, discussing the main concepts and characteristics of this type of antenna. Subsequently, two key blocks of the transmission chain are studied in detail and designed: a variable gain power amplifier and three controllable phase shifters. The circuits are implemented using two SiGe BiCMOS technologies: BiCMOS9MW and SG13G2. Finally, the post-layout simulation results are presented and compared to the project specifications as well as the state of the art
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rahmatian, Behnoosh. « A 75-dB digitally programmable CMOS variable gain amplifier ». Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/32248.

Texte intégral
Résumé :
A 75-dB DIGITALLY PROGRAMMABLE CMOS VARIABLE GAIN AMPLIFIER Variable-gain amplifiers (VGAs) are essential building blocks of many communication systems. In this thesis, a monolithic low-power digitally programmable VGA with 75dB of gain range is presented. The VGA is targeted for power line communication systems in particular for automotive application; however, it is a generic block that can be use in other applications. The core of the design is based on the low-distortion source-degenerated differential amplifier structure. A gm-boosting circuit is also used to provide higher gain and improve gain accuracy. In this work, to control the gain a new technique is used which is based on digitally controlling: 1) the source-degeneration resistance, and 2) an additional resistance between the differential output nodes of each gain stage. The changes in the source-degeneration resistance handle the coarse tuning, and the changes in the latter resistance are used for fine gain tuning. The overall VGA consists of three such gain stages. As a proof of concept, a single gain stage with a gain range of 24dB and programmable in 2dB gain steps has been fabricated in a 0.18μm CMOS technology. The chip is tested and measurement results are obtained. Based on these measurement results, the design of the gain stage is optimized and a three-stage 75dB VGA is designed. Each stage has a digitally tunable gain range of 25dB, and fine gain tuning of 2.5dB per step. The bandwidth of the VGA is higher than 140MHz, and the gain error is less than 0.3dB. The overall VGA draws 6.5mA from a 1.8V supply. The noise figure of the system at maximum gain is 12.5dB, and the IIP3 is 14.4dBm at minimum gain. These performance parameters are either better or compare favorably with the reported state-of-the-art VGAs.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jha, Nand Kishore. « Design of a complementary silicon-germanium variable gain amplifier ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Krishnanji, Sivasankari. « Design of a variable gain amplifier for an ultrawideband receiver ». Texas A&M University, 2005. http://hdl.handle.net/1969.1/2576.

Texte intégral
Résumé :
A fully differential CMOS variable gain amplifier (VGA) has been designed for an ultra-wideband receiver. The VGA comprises of two variable gain stages followed by a post amplifier stage. The interface between the digital control block and the analog VGA is formed by a digital-to-analog converter and an exponential voltage generator. The gain of the VGA varies dB-linearly from 0 to 52 dB with respect to the control voltage. The VGA is operated in open loop with a bandwidth greater than 500 MHz throughout the gain range to cater to the requirements of the ultra-wideband system. The noise-to-power ratio of the VGA is -23.9 dB for 1Vp-p differential input signal in the low gain setting, and the equivalent input referred noise is 1.01 V2 for the high gain setting. All three stages use common mode feedback to fix and stabilize the output DC levels at a particular voltage depending on the input common-mode requirement of the following stage. DC offset cancellation has also been incorporated to minimize the input referred DC offset caused by systematic and random mismatches in the circuit. Compensation schemes to minimize the effects of temperature, supply and process variations have been included in the design. The circuit has been designed in 0.18??m CMOS technology, and the post layout simulations are in good agreement with the schematic simulations.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lo, Keng Wai. « Wideband active-balun variable-gain low-noise amplifier for mobile-TV applications ». Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Lisha. « High Gain Low Power Operational Amplifier Design and Compensation Techniques ». Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1701.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Variable gain power amplifier"

1

Holleman, Jeremy. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces. New York, NY : Springer Science+Business Media, LLC, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mullahy-Flores, Sara. 2. 4 GHz High-Power, High-Gain Power Amplifier,SST12LP15B, Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mullahy-Flores, Sara. SST12LP22 2. 4 GHz High-Gain, High-Efficiency Power Amplifier, Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Mullahy-Flores, Sara. 2. 4 GHz High-Efficiency, High-Gain Power Amplifier ModuleSST12LP17E Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mullahy-Flores, Sara. 2. 4 GHz High-Efficiency, High-Gain Power Amplifier ModuleSST12LP17E Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mullahy-Flores, Sara. 2. 4 GHz High Gain, High Efficiency Power Amplifier, SST12LP19E Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mullahy-Flores, Sara. SST12CP21 2. 4 GHz High-Gain, High-Efficiency Power Amplifier Data Sheet. Microchip Technology Incorporated, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Otis, Brian, Fan Zhang et Jeremy Holleman. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces. Springer New York, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Variable gain power amplifier"

1

Verma, Vivek, et Chetan D. Parikh. « A Low-Power Wideband High Dynamic Range Single-Stage Variable Gain Amplifier ». Dans Communications in Computer and Information Science, 19–25. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42024-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, Jieyu, Yuanyu Yu, Jiujiang Wang, Peng Un Mak, Hungchun Li, Liu Yu, Weibao Qiu, Sio Hang Pun et Mang I. Vai. « A Low-Power Variable Gain Amplifier Design with 70-DB Gain Range and 1.28-DB Gain Error for Ultrasound Imaging System ». Dans 12th Asian-Pacific Conference on Medical and Biological Engineering, 140–48. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51455-5_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jensen, C. « Pulsed Dye Laser Gain Analysis and Amplifier Design ». Dans High-Power Dye Lasers, 45–91. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47385-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Chenghui, Le Chang et Cheng Fu. « Variable Gain Control of Three-Phase AC/DC Power Converters ». Dans Variable Gain Control and Its Applications in Energy Conversion, 125–36. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003392927-11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Naik, Jatoth Deepak, Pradeep Gorre, Rajesh Kumar, Sandeep Kumar et Hanjung Song. « A 73% PAE, Highly Gain Inverse Class-F Power Amplifier for S-Band Applications ». Dans Advances in Smart Communication and Imaging Systems, 467–74. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9938-5_44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ellinger, F., C. Carta, L. Rodoni, G. von Büren, D. Barras, M. Schmatz et H. Jäckel. « BiCMOS Variable Gain LNA at C-Band with Ultra Low Power Consumption for WLAN ». Dans Telecommunications and Networking - ICT 2004, 891–99. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27824-5_117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Du, Cuiqi, Yaozhen Han et Shuzhen Li. « A Barrier Function-Based Variable-Gain SOSM Power Control Scheme for DFIG Wind Turbine ». Dans Proceedings of 2021 Chinese Intelligent Automation Conference, 116–23. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6372-7_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kaur, Ajaybeer, Manjit Singh Bhamrah et Ahmad Atieh. « Effect of Power Distribution of Raman Pumps on the Gain, Flatness, NF, and System Performance of a Hybrid Optical Amplifier ». Dans Lecture Notes in Electrical Engineering, 294–305. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1420-3_31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kumar Thangarasu, Bharatha, Kaixue Ma et Kiat Seng Yeo. « Variable Gain Amplifier ». Dans Low-Power Wireless Communication Circuits and Systems, 61–79. Jenny Stanford Publishing, 2018. http://dx.doi.org/10.1201/9781315156538-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

« Variable Gain Amplifier ». Dans CMOS Millimeter-Wave Integrated Circuits for Next Generation Wireless Communication Systems, 121–50. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811202612_0004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Variable gain power amplifier"

1

Belousov, Egor, et Ksenia Lomovskaya. « A 84-db wideband low-power variable gain amplifier ». Dans 2013 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2013. http://dx.doi.org/10.1109/isscs.2013.6651221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Craciun, Adrian Virgil. « Low noise, low power variable gain amplifier for ultrasounds ». Dans 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP). IEEE, 2017. http://dx.doi.org/10.1109/optim.2017.7975075.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Liu, Ya-ze, Wan-rong Zhang, Dong-yue Jin, Hong-yun Xie, Xin Huang, Ji-tian Chen, Yan-xiao Zhao, Shuo Liu et Cheng-xiao Du. « A low power variable gain wideband low noise amplifier ». Dans 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB). IEEE, 2016. http://dx.doi.org/10.1109/icuwb.2016.7790410.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xin Huang, Wan-Rong Zhang, Dong-Yue Jin, Hong-Yun Xie, Yan-Xiao Zhao, Ji-Tian Chen, Ya-Ze Liu et Shuo Liu. « A low power dual-band variable gain low noise amplifier ». Dans 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2016. http://dx.doi.org/10.1109/icmmt.2016.7761823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rahmatian, Behnoosh, et Shahriar Mirabbasi. « A Low-Power 75dB Digitally Programmable CMOS Variable-Gain Amplifier ». Dans 2007 Canadian Conference on Electrical and Computer Engineering. IEEE, 2007. http://dx.doi.org/10.1109/ccece.2007.136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lahiani, Sawssen, Houda Daoud, Samir Ben Salem et Mourad Loulou. « Low-power CMOS Variable Gain Amplifier design in 0.18µm process ». Dans 2015 27th International Conference on Microelectronics (ICM). IEEE, 2015. http://dx.doi.org/10.1109/icm.2015.7438025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Alegre, J. P., S. Celma, B. Calvo et J. M. Garcia del Pozo. « A 0.35μm CMOS 1.8V low-power 175MHz variable gain amplifier ». Dans 2007 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS '07). IEEE, 2007. http://dx.doi.org/10.1109/mwscas.2007.4488584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Teng, Yueh-Ching, Mohammad Takhti et Kofi M. Odame. « A power adaptive variable gain instrumentation amplifier for electrical impedance tomography ». Dans 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2015. http://dx.doi.org/10.1109/biocas.2015.7348306.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gao, Pilong, Zhigong Wang, Jian Xu, Weibing Li, Yiqiang Wu et Lu Tang. « A low power variable gain amplifier with 50-dB dynamic range ». Dans 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS). IEEE, 2012. http://dx.doi.org/10.1109/imws2.2012.6338193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Craciun, Adrian Virgil, Ovidiu-Ioan Dudas et Adrian Virgil Craciun. « Design considerations for a low power variable gain amplifier for ultrasounds ». Dans 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2012. http://dx.doi.org/10.1109/siitme.2012.6384377.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Variable gain power amplifier"

1

Meth M. et A. Zaltsman. Gain-Bandwith Product of Power Grid Tubes and Application to AGS Power Amplifier Driver. Office of Scientific and Technical Information (OSTI), octobre 2003. http://dx.doi.org/10.2172/1061710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sentman, L. H., P. Theodoropoulos, R. Waldo, T. Nguyen et R. Snipes. An Experimental Study of CW HF Chemical Laser Amplifier Performance and Zero Power Gain. Fort Belvoir, VA : Defense Technical Information Center, août 1987. http://dx.doi.org/10.21236/ada185241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Poelker, M., et J. Hansknecht. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector. Office of Scientific and Technical Information (OSTI), décembre 1996. http://dx.doi.org/10.2172/563274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie