Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Unnatural amino acids incorporation.

Articles de revues sur le sujet « Unnatural amino acids incorporation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Unnatural amino acids incorporation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kigawa, Takanori, Shigeyuki Yokoyama, and Tatsuo Miyazawa. "Incorporation of unnatural amino acids proteins." Kobunshi 39, no. 7 (1990): 500–503. http://dx.doi.org/10.1295/kobunshi.39.500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ko, Wooseok, Sanggil Kim, Kyubong Jo, and Hyun Soo Lee. "Genetic incorporation of recycled unnatural amino acids." Amino Acids 48, no. 2 (2015): 357–63. http://dx.doi.org/10.1007/s00726-015-2087-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nödling, Alexander R., Luke A. Spear, Thomas L. Williams, Louis Y. P. Luk, and Yu-Hsuan Tsai. "Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells." Essays in Biochemistry 63, no. 2 (2019): 237–66. http://dx.doi.org/10.1042/ebc20180042.

Texte intégral
Résumé :
Abstract Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in hea
Styles APA, Harvard, Vancouver, ISO, etc.
4

Adhikari, Anup, Bibek Raj Bhattarai, Ashika Aryal, et al. "Reprogramming natural proteins using unnatural amino acids." RSC Advances 11, no. 60 (2021): 38126–45. http://dx.doi.org/10.1039/d1ra07028b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Voloshchuk, Natalya, and Jin Kim Montclare. "Incorporation of unnatural amino acids for synthetic biology." Mol. BioSyst. 6, no. 1 (2010): 65–80. http://dx.doi.org/10.1039/b909200p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gao, Wei, Ning Bu, and Yuan Lu. "Efficient Incorporation of Unnatural Amino Acids into Proteins with a Robust Cell-Free System." Methods and Protocols 2, no. 1 (2019): 16. http://dx.doi.org/10.3390/mps2010016.

Texte intégral
Résumé :
Unnatural proteins are crucial biomacromolecules and have been widely applied in fundamental science, novel biopolymer materials, enzymes, and therapeutics. Cell-free protein synthesis (CFPS) system can serve as a robust platform to synthesize unnatural proteins by highly effective site-specific incorporation of unnatural amino acids (UNAAs), without the limitations of cell membrane permeability and the toxicity of unnatural components. Here, we describe a quick and simple method to synthesize unnatural proteins in CFPS system based on Escherichia coli crude extract, with unnatural orthogonal
Styles APA, Harvard, Vancouver, ISO, etc.
7

Drienovská, Ivana, Ana Rioz-Martínez, Apparao Draksharapu, and Gerard Roelfes. "Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids." Chemical Science 6, no. 1 (2015): 770–76. http://dx.doi.org/10.1039/c4sc01525h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pless, Stephan A., and Christopher A. Ahern. "Incorporation of Unnatural Amino Acids into Trimeric Ion Channels." Biophysical Journal 104, no. 2 (2013): 542a. http://dx.doi.org/10.1016/j.bpj.2012.11.3001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Strømgaard, Anne, Anders A. Jensen, and Kristian Strømgaard. "Site-Specific Incorporation of Unnatural Amino Acids into Proteins." ChemBioChem 5, no. 7 (2004): 909–16. http://dx.doi.org/10.1002/cbic.200400060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tookmanian, Elise M., Edward E. Fenlon, and Scott H. Brewer. "Synthesis and protein incorporation of azido-modified unnatural amino acids." RSC Advances 5, no. 2 (2015): 1274–81. http://dx.doi.org/10.1039/c4ra14244f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Rut, Wioletta, Mikolaj Zmudzinski, Scott J. Snipas, Miklos Bekes, Tony T. Huang, and Marcin Drag. "Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes." Chemical Science 11, no. 23 (2020): 6058–69. http://dx.doi.org/10.1039/d0sc01347a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Iida, Shin, Noriyuki Asakura, Kenji Tabata, Ichiro Okura, and Toshiaki Kamachi. "Incorporation of Unnatural Amino Acids into Cytochrome c3 and Specific Viologen Binding to the Unnatural Amino Acid." ChemBioChem 7, no. 12 (2006): 1853–55. http://dx.doi.org/10.1002/cbic.200600347.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Rudack, Till, Christian Teuber, Marvin Scherlo, et al. "The Ras dimer structure." Chemical Science 12, no. 23 (2021): 8178–89. http://dx.doi.org/10.1039/d1sc00957e.

Texte intégral
Résumé :
By combining the incorporation of unnatural amino acids, click chemistry, FRET and EPR distance measurements, protein modeling and biomolecular simulations, we obtained an unambiguous Ras dimer structural model and disrupt the dimer by mutagenesis.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Bąchor, Urszula, Agnieszka Lizak, Remigiusz Bąchor та Marcin Mączyński. "5-Amino-3-methyl-Isoxazole-4-carboxylic Acid as a Novel Unnatural Amino Acid in the Solid Phase Synthesis of α/β-Mixed Peptides". Molecules 27, № 17 (2022): 5612. http://dx.doi.org/10.3390/molecules27175612.

Texte intégral
Résumé :
The hybrid peptides consisting of α and β-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural β-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, inclu
Styles APA, Harvard, Vancouver, ISO, etc.
15

Minaba, Masaomi, and Yusuke Kato. "High-Yield, Zero-Leakage Expression System with a Translational Switch Using Site-Specific Unnatural Amino Acid Incorporation." Applied and Environmental Microbiology 80, no. 5 (2013): 1718–25. http://dx.doi.org/10.1128/aem.03417-13.

Texte intégral
Résumé :
ABSTRACTSynthetic biologists construct complex biological circuits by combinations of various genetic parts. Many genetic parts that are orthogonal to one another and are independent of existing cellular processes would be ideal for use in synthetic biology. However, our toolbox is still limited with respect to the bacteriumEscherichia coli, which is important for both research and industrial use. The site-specific incorporation of unnatural amino acids is a technique that incorporates unnatural amino acids into proteins using a modified exogenous aminoacyl-tRNA synthetase/tRNA pair that is or
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ugwumba, Isaac N., Kiyoshi Ozawa, Zhi-Qiang Xu, et al. "Improving a Natural Enzyme Activity through Incorporation of Unnatural Amino Acids." Journal of the American Chemical Society 133, no. 2 (2011): 326–33. http://dx.doi.org/10.1021/ja106416g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Feng, Scott Robbins, Jiantao Guo, Weijun Shen, and Peter G. Schultz. "Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis." PLoS ONE 5, no. 2 (2010): e9354. http://dx.doi.org/10.1371/journal.pone.0009354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Liu, Wenshe, Ansgar Brock, Shuo Chen, Shuibing Chen, and Peter G. Schultz. "Genetic incorporation of unnatural amino acids into proteins in mammalian cells." Nature Methods 4, no. 3 (2007): 239–44. http://dx.doi.org/10.1038/nmeth1016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ryu, Youngha, and Peter G. Schultz. "Efficient incorporation of unnatural amino acids into proteins in Escherichia coli." Nature Methods 3, no. 4 (2006): 263–65. http://dx.doi.org/10.1038/nmeth864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Qian, and Lei Wang. "New Methods Enabling Efficient Incorporation of Unnatural Amino Acids in Yeast." Journal of the American Chemical Society 130, no. 19 (2008): 6066–67. http://dx.doi.org/10.1021/ja800894n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lee, Byeong Sung, Seunggun Shin, Jong Yeob Jeon, et al. "Incorporation of Unnatural Amino Acids in Response to the AGG Codon." ACS Chemical Biology 10, no. 7 (2015): 1648–53. http://dx.doi.org/10.1021/acschembio.5b00230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lang, Kathrin, and Jason W. Chin. "Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins." Chemical Reviews 114, no. 9 (2014): 4764–806. http://dx.doi.org/10.1021/cr400355w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Won, Yumi, Amol D. Pagar, Mahesh D. Patil, Philip E. Dawson, and Hyungdon Yun. "Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids." Biotechnology and Bioprocess Engineering 24, no. 4 (2019): 592–604. http://dx.doi.org/10.1007/s12257-019-0163-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Curnew, Leah Jane Fitzgerald, Kate McNicholas, Bridgette Green, et al. "Visualizing HCV Core Protein via Fluorescent Unnatural Amino Acid Incorporation." Proceedings 50, no. 1 (2020): 129. http://dx.doi.org/10.3390/proceedings2020050129.

Texte intégral
Résumé :
Introduction: Unnatural amino acids (UAAs) share the same basic structure as proteinogenic amino acids. However, UAAs permit additional functions and applications to proteins due to their different side chains. Recent UAA applications include using fluorescent UAAs to label proteins. The UAA system provides an alternative method to traditional protein labeling mechanisms (antibodies, GFP, and tags, such as HA and HIS), which can affect protein functionality and topology. The purpose of this study was to visualize the hepatitis C virus (HCV) core protein using the fluorescent UAA Anap (3-[(6-ac
Styles APA, Harvard, Vancouver, ISO, etc.
25

Jung, Jae-Eun, Sang Yeul Lee, Hyojin Park та ін. "Genetic incorporation of unnatural amino acids biosynthesized from α-keto acids by an aminotransferase". Chemical Science 5, № 5 (2014): 1881. http://dx.doi.org/10.1039/c3sc51617b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Stein, Alina, Alexandria Deliz Liang, Reyhan Sahin, and Thomas R. Ward. "Incorporation of metal-chelating unnatural amino acids into halotag for allylic deamination." Journal of Organometallic Chemistry 962 (March 2022): 122272. http://dx.doi.org/10.1016/j.jorganchem.2022.122272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Chen, Mingjie, Lei Cai, Zhengzhi Fang, Hong Tian, Xiangdong Gao, and Wenbing Yao. "Site-specific incorporation of unnatural amino acids into urate oxidase inEscherichia coli." Protein Science 17, no. 10 (2008): 1827–33. http://dx.doi.org/10.1110/ps.034587.108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Johnson, David B. F., Jianfeng Xu, Zhouxin Shen, et al. "RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites." Nature Chemical Biology 7, no. 11 (2011): 779–86. http://dx.doi.org/10.1038/nchembio.657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Xiao, Han, Abhishek Chatterjee, Sei-hyun Choi, Krishna M. Bajjuri, Subhash C. Sinha, and Peter G. Schultz. "Genetic Incorporation of Multiple Unnatural Amino Acids into Proteins in Mammalian Cells." Angewandte Chemie 125, no. 52 (2013): 14330–33. http://dx.doi.org/10.1002/ange.201308137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Xiao, Han, Abhishek Chatterjee, Sei-hyun Choi, Krishna M. Bajjuri, Subhash C. Sinha, and Peter G. Schultz. "Genetic Incorporation of Multiple Unnatural Amino Acids into Proteins in Mammalian Cells." Angewandte Chemie International Edition 52, no. 52 (2013): 14080–83. http://dx.doi.org/10.1002/anie.201308137.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ye, Shixin, Caroline Köhrer, Thomas Huber, et al. "Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis." Journal of Biological Chemistry 283, no. 3 (2007): 1525–33. http://dx.doi.org/10.1074/jbc.m707355200.

Texte intégral
Résumé :
G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-l-phenylalanine (Acp) and p-benzoyl-l-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reac
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zeynaloo, Elnaz, Elsayed M. Zahran, Yu-Ping Yang, et al. "Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure." Biosensors and Bioelectronics 200 (March 2022): 113861. http://dx.doi.org/10.1016/j.bios.2021.113861.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Rodriguez, E. A., H. A. Lester, and D. A. Dougherty. "In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression." Proceedings of the National Academy of Sciences 103, no. 23 (2006): 8650–55. http://dx.doi.org/10.1073/pnas.0510817103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Noren, C., S. Anthony-Cahill, M. Griffith, and P. Schultz. "A general method for site-specific incorporation of unnatural amino acids into proteins." Science 244, no. 4901 (1989): 182–88. http://dx.doi.org/10.1126/science.2649980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Maza, Johnathan C., Jaclyn R. McKenna, Benjamin K. Raliski, Matthew T. Freedman, and Douglas D. Young. "Synthesis and Incorporation of Unnatural Amino Acids To Probe and Optimize Protein Bioconjugations." Bioconjugate Chemistry 26, no. 9 (2015): 1884–89. http://dx.doi.org/10.1021/acs.bioconjchem.5b00424.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Monahan, Sarah L., Henry A. Lester, and Dennis A. Dougherty. "Site-Specific Incorporation of Unnatural Amino Acids into Receptors Expressed in Mammalian Cells." Chemistry & Biology 10, no. 6 (2003): 573–80. http://dx.doi.org/10.1016/s1074-5521(03)00124-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wang, Jinfan, and Anthony C. Forster. "Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies." Current Opinion in Chemical Biology 46 (October 2018): 180–87. http://dx.doi.org/10.1016/j.cbpa.2018.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Hicks, Rickey P., Jayendra B. Bhonsle, Divakaramenon Venugopal, Brandon W. Koser, and Alan J. Magill. "De Novo Design of Selective Antibiotic Peptides by Incorporation of Unnatural Amino Acids." Journal of Medicinal Chemistry 50, no. 13 (2007): 3026–36. http://dx.doi.org/10.1021/jm061489v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Chollet, Andre, and Gerardo Turcatti. "ChemInform Abstract: Biosynthetic Incorporation of Unnatural Amino Acids into G Protein-Coupled Receptors." ChemInform 30, no. 51 (2010): no. http://dx.doi.org/10.1002/chin.199951288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Edan, Dawood Salim, Inkyung Choi, and Jungchan Park. "Establishment of a Selection System for the Site-Specific Incorporation of Unnatural Amino Acids into Protein." Korean Journal of Microbiology 50, no. 1 (2014): 1–7. http://dx.doi.org/10.7845/kjm.2014.4012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Hou, Jiaqi, Xinjie Chen, Nan Jiang, et al. "Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system." Synthetic and Systems Biotechnology 7, no. 1 (2022): 522–32. http://dx.doi.org/10.1016/j.synbio.2021.12.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Pastrnak, M. "Phage selection for site-specific incorporation of unnatural amino acids into proteins in vivo." Bioorganic & Medicinal Chemistry 9, no. 9 (2001): 2373–79. http://dx.doi.org/10.1016/s0968-0896(01)00157-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Klarmann, George J., Brian M. Eisenhauer, Yi Zhang, et al. "Site- and subunit-specific incorporation of unnatural amino acids into HIV-1 reverse transcriptase." Protein Expression and Purification 38, no. 1 (2004): 37–44. http://dx.doi.org/10.1016/j.pep.2004.07.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Katragadda, Madan, and John D. Lambris. "Expression of compstatin in Escherichia coli: Incorporation of unnatural amino acids enhances its activity." Protein Expression and Purification 47, no. 1 (2006): 289–95. http://dx.doi.org/10.1016/j.pep.2005.11.016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Oh, Su-Jin, Kyung-Ho Lee, Ho-Cheol Kim, Christy Catherine, Hyungdon Yun, and Dong-Myung Kim. "Translational incorporation of multiple unnatural amino acids in a cell-free protein synthesis system." Biotechnology and Bioprocess Engineering 19, no. 3 (2014): 426–32. http://dx.doi.org/10.1007/s12257-013-0849-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Niu, Wei, and Jiantao Guo. "Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids." Molecular BioSystems 9, no. 12 (2013): 2961. http://dx.doi.org/10.1039/c3mb70204a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Arthur, Isaac N., James E. Hennessy, Dharshana Padmakshan, et al. "In Situ Deprotection and Incorporation of Unnatural Amino Acids during Cell-Free Protein Synthesis." Chemistry - A European Journal 19, no. 21 (2013): 6824–30. http://dx.doi.org/10.1002/chem.201203923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Jones, Chloe M., Itthipol Sungwienwong, and E. James Petersson. "The Development of Intrinsically Fluorescent Unnatural Amino Acids for In Vivo Incorporation into Proteins." Biophysical Journal 116, no. 3 (2019): 473a. http://dx.doi.org/10.1016/j.bpj.2018.11.2555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Dippel, Andrew B., Gregory M. Olenginski, Nicole Maurici, Melanie T. Liskov, Scott H. Brewer, and Christine M. Phillips-Piro. "Probing the effectiveness of spectroscopic reporter unnatural amino acids: a structural study." Acta Crystallographica Section D Structural Biology 72, no. 1 (2016): 121–30. http://dx.doi.org/10.1107/s2059798315022858.

Texte intégral
Résumé :
The X-ray crystal structures of superfolder green fluorescent protein (sfGFP) containing the spectroscopic reporter unnatural amino acids (UAAs) 4-cyano-L-phenylalanine (pCNF) or 4-ethynyl-L-phenylalanine (pCCF) at two unique sites in the protein have been determined. These UAAs were genetically incorporated into sfGFP in a solvent-exposed loop region and/or a partially buried site on the β-barrel of the protein. The crystal structures containing the UAAs at these two sites permit the structural implications of UAA incorporation for the native protein structure to be assessed with high resolut
Styles APA, Harvard, Vancouver, ISO, etc.
50

Reddington, Samuel, Peter Watson, Pierre Rizkallah, Eric Tippmann, and D. Dafydd Jones. "Genetically encoding phenyl azide chemistry: new uses and ideas for classical biochemistry." Biochemical Society Transactions 41, no. 5 (2013): 1177–82. http://dx.doi.org/10.1042/bst20130094.

Texte intégral
Résumé :
Introducing new physicochemical properties into proteins through genetically encoded Uaa (unnatural amino acid) incorporation can lead to the generation of proteins with novel properties not normally accessible with the 20 natural amino acids. Phenyl azide chemistry represents one such useful addition to the protein repertoire. Classically used in biochemistry as a non-specific photochemical protein cross-linker, genetically encoding phenyl azide chemistry at selected residues provides more powerful routes to post-translationally modify protein function in situ. The two main routes are modulat
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!