Littérature scientifique sur le sujet « Unnatural amino acids incorporation »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Unnatural amino acids incorporation ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Unnatural amino acids incorporation"

1

Kigawa, Takanori, Shigeyuki Yokoyama et Tatsuo Miyazawa. « Incorporation of unnatural amino acids proteins. » Kobunshi 39, no 7 (1990) : 500–503. http://dx.doi.org/10.1295/kobunshi.39.500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ko, Wooseok, Sanggil Kim, Kyubong Jo et Hyun Soo Lee. « Genetic incorporation of recycled unnatural amino acids ». Amino Acids 48, no 2 (10 septembre 2015) : 357–63. http://dx.doi.org/10.1007/s00726-015-2087-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Adhikari, Anup, Bibek Raj Bhattarai, Ashika Aryal, Niru Thapa, Puja KC, Ashma Adhikari, Sushila Maharjan, Prem B. Chanda, Bishnu P. Regmi et Niranjan Parajuli. « Reprogramming natural proteins using unnatural amino acids ». RSC Advances 11, no 60 (2021) : 38126–45. http://dx.doi.org/10.1039/d1ra07028b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Voloshchuk, Natalya, et Jin Kim Montclare. « Incorporation of unnatural amino acids for synthetic biology ». Mol. BioSyst. 6, no 1 (2010) : 65–80. http://dx.doi.org/10.1039/b909200p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nödling, Alexander R., Luke A. Spear, Thomas L. Williams, Louis Y. P. Luk et Yu-Hsuan Tsai. « Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells ». Essays in Biochemistry 63, no 2 (15 mai 2019) : 237–66. http://dx.doi.org/10.1042/ebc20180042.

Texte intégral
Résumé :
Abstract Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gao, Wei, Ning Bu et Yuan Lu. « Efficient Incorporation of Unnatural Amino Acids into Proteins with a Robust Cell-Free System ». Methods and Protocols 2, no 1 (12 février 2019) : 16. http://dx.doi.org/10.3390/mps2010016.

Texte intégral
Résumé :
Unnatural proteins are crucial biomacromolecules and have been widely applied in fundamental science, novel biopolymer materials, enzymes, and therapeutics. Cell-free protein synthesis (CFPS) system can serve as a robust platform to synthesize unnatural proteins by highly effective site-specific incorporation of unnatural amino acids (UNAAs), without the limitations of cell membrane permeability and the toxicity of unnatural components. Here, we describe a quick and simple method to synthesize unnatural proteins in CFPS system based on Escherichia coli crude extract, with unnatural orthogonal aminoacyl-tRNA synthetase and suppressor tRNA evolved from Methanocaldococcus jannaschii. The superfolder green fluorescent protein (sfGFP) and p-propargyloxyphenylalanine (pPaF) were used as the model protein and UNAA. The synthesis of unnatural sfGFPs was characterized by microplate spectrophotometer, affinity chromatography, and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). This protocol provides a detailed procedure guiding how to use the powerful CFPS system to synthesize unnatural proteins on demand.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pless, Stephan A., et Christopher A. Ahern. « Incorporation of Unnatural Amino Acids into Trimeric Ion Channels ». Biophysical Journal 104, no 2 (janvier 2013) : 542a. http://dx.doi.org/10.1016/j.bpj.2012.11.3001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Strømgaard, Anne, Anders A. Jensen et Kristian Strømgaard. « Site-Specific Incorporation of Unnatural Amino Acids into Proteins ». ChemBioChem 5, no 7 (1 juillet 2004) : 909–16. http://dx.doi.org/10.1002/cbic.200400060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Drienovská, Ivana, Ana Rioz-Martínez, Apparao Draksharapu et Gerard Roelfes. « Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids ». Chemical Science 6, no 1 (2015) : 770–76. http://dx.doi.org/10.1039/c4sc01525h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tookmanian, Elise M., Edward E. Fenlon et Scott H. Brewer. « Synthesis and protein incorporation of azido-modified unnatural amino acids ». RSC Advances 5, no 2 (2015) : 1274–81. http://dx.doi.org/10.1039/c4ra14244f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Unnatural amino acids incorporation"

1

Rodriguez, Erik Ali Tirrell David A. Dougherty Dennis A. « In Vivo Incorporation of Multiple Unnatural Amino Acids / ». Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-01122009-153110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Jinfan. « In Vitro Kinetics of Ribosomal Incorporation of Unnatural Amino Acids ». Doctoral thesis, Uppsala universitet, Struktur- och molekylärbiologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282023.

Texte intégral
Résumé :
Ribosomal incorporation of unnatural amino acids (AAs) into peptides or proteins has found broad applications in studying translation mechanism, discovering potential therapeutics, and probing protein structure and function. However, such applications are generally limited by the low incorporation efficiencies of the unnatural AAs. With in vitro kinetics studies using a purified E. coli translation system, we found that the natural N-alkyl AA carrier, tRNAPro, could hasten the incorporation of N-methyl AAs. Also, the incorporation rate increased remarkably with increasing pH in the range of 7 to 8.5, suggesting the rate was limited by peptidyl transfer, not accommodation. Competition experiments revealed that several futile cycles of delivery and rejection of the A site N-methyl AA-tRNA were required per peptide bond formation, and the incorporation yield could be increased by using a higher Mg2+ concentration. Kinetics of ribosomal polymerization, using AA-tRNA substrates prepared from the standard N-NVOC-AA-pdCpA chemoenzymatic ligation method, clarified that the inefficiency of incorporation was due to the penultimate dC. This dC prompted faster peptidyl-tRNA drop-off, leading to loss of processivities along consecutive incorporations. Circumventing the penultimate dC by using our N-NVOC-AA-pCpA chemoenzymatic ligation or the flexizyme charging method to prepare the AA-tRNA substrates was able to improve the efficiencies of ribosomal consecutive incorporations of unnatural AAs. By studying the translation steps after aminoacylation of tRNAPyl, the favored carrier for unnatural AAs in vivo, we demonstrated surprisingly slow biphasic kinetics of tRNAPyl-mediated amber suppression in vitro. The fast phase amplitude increased with increasing EF-Tu concentration, allowing measurement of Kd of EF-Tu binding. Results revealed ~25-fold weaker EF-Tu binding affinity of the tRNAPyl body than that of E. coli tRNAPhe. The fast phase rate was ~30-fold slower than that of native substrates, and this rate was limited by the ~10-fold less efficient AA-tRNAPyl:EF-Tu:GTP ternary complex binding to the ribosome. The incorporation was so slow that termination by RF2 mis-reading of the amber codon became a significant competing reaction. The processivity was unexpectedly impaired as ~40% of the dipeptidyl-tRNAPyl could not be elongated to tripeptide. This new overall understanding opens a window of improving unnatural AA incorporation both in vitro and in vivo.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Erickson, Sarah. « Using Unnatural Amino Acid Incorporation to Modify and Manipulate Adeno-Associated Virus : ». Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108955.

Texte intégral
Résumé :
Thesis advisor: Eranthie Weerapana
Adeno-Associated Virus (AAV) has been developed into a powerful therapeutic tool - in the last ten years it has acted as a gene-delivery vehicle in several approved therapeutics and many more therapeutics on trial. Despite extensive research, gaps in our understanding of AAV’s infectious cycle still exist, and further development is needed for the creation of improved gene therapy vectors. Technology to incorporate Unnatural Amino Acids (UAAs) into the AAV capsid has recently been developed, and could aid in both furthering our understanding of AAV’s biology and in the therapeutic advancement of AAV. In this work, we demonstrate how the functionalization of the AAV capsid using UAA incorporation can advance our control over the AAV capsid and aid in probing and manipulating AAV biology. We describe our use UAA incorporation to place a bio-orthogonal reactive handle into AAV’s capsid followed by functionalization with a targeting moiety and demonstrate the unprecedented amount of control that UAA incorporation provides in the creation of a functional virus conjugate. We are able to control both the precise placement and the stoichiometry of the targeting moiety on the AAV capsid, providing a platform that, for the first time, can undergo rigorous optimization analogous to that which medicinal chemists put small molecules through. We also describe the creation of a new platform to site-specifically modify the AAV capsid using cysteine incorporation, a technique that retains the ability to site-specifically modify the capsid as UAA incorporation does, but does not require the excess machinery that UAA incorporation requires. Next we discuss the incorporation of a photocaging amino acid, NBK, into the AAV capsid. Using NBK, we were able to effectively block AAV’s primary binding interaction with Heparan Sulfate Proteoglycan (HSPG) and control the timing of AAV infection using light to chemically remove the photo-protecting group. While photocaging the HSPG interaction is only a proof of concept, it demonstrates the remarkable amount of control that UAA incorporation affords, and lends insight to what could be accomplished using the functionalities that can be placed on the AAV capsid with UAAs
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Styles APA, Harvard, Vancouver, ISO, etc.
4

Monahan, Sarah Lynn Dervan Peter B. « Site-specific incorporation of unnatural amino acids into receptors expressed in mammalian cells / ». Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-05252004-153512.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Crane, Peter. « Protein based molecular probes by unnatural amino acid incorporation ». Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:772076fc-00f2-4ca7-bfa9-3da1ce7093cb.

Texte intégral
Résumé :
The "tag & modify" strategy for protein modification relies upon the genetic incorporation of an uncommon or unnatural amino acid into a protein backbone, followed by a chemo-selective modification to yield differentially modified proteins. This thesis describes the creation of a protein-based glycoconjugate tool for interrogating biological function. In Chapter 2, the unnatural amino acid, azidohomoalanine was genetically incorporated into a library of distance defined Np276 proteins via a selective pressure incorporation. Methods to prevent the common post translational modification N-terminal gluconylation were identified, including preliminary work on a small molecule intervention. The proteins were subsequently characterised with respect to other members of the (limited) family of pentapeptide repeat protein and the key biophysical parameters (TM, stability) with relate to it being a multivalent scaffold were investigated. In Chapter 3, An initial investigation into obtaining a selective amine modification initially via N-hydroxysuccinimide esters, led to the discovery (and characterisation) of a clear selectivity for N-terminal proline Isothiocyanate modification. The dual modification of proteins via the N-term Pro & the ubiquitous (glyco) copper(I)-catalysed azide alkyne cycloaddition was subsequently used to generate homogenously dual modified Np276 scaffolds. In Chapter 4, these proteins were then used in a FACS assay against a murine sialoadhesin - chinese hamster ovary cell line, the results showing promise for the further development of multivalent glycated probes of function.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tian, Meilin. « Structure-function studies of membrane proteins by site-specific incorporation of unnatural amino acids ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066166.

Texte intégral
Résumé :
Les protéines membranaires comme les récepteurs, les canaux ioniques et les transporteurs possèdent des rôles cruciaux dans les processus biologiques tels que la signalisation physiologique et les fonctions cellulaires. La description dynamique et fonctionnelle des structures protéiques est fondamentale pour comprendre la plupart des processus concernant les macromolécules biologiques. L'incorporation, dans des protéines, d'acides aminés non naturels (Uaas) possédant des propriétés physiques ou chimiques spécifiques fournit un puissant outil pour définir la structure et la dynamique de protéines complexes. Ces sondes permettent le suivi et la détection en temps réel de la conformation des récepteurs et des complexes de signalisation. Les approches d'expansion du code génétique ont permis l'incorporation d'Uaas servant de sondes dans des protéines avec une précision moléculaire. L'expansion héréditaire du code génétique peut permettre d'étudier la biologie des protéines de manière systémique.Avec cette stratégie, des Uaas capables de photopontage ont été utilisés pour étudier la relation structure/fonction des Protéines G Couplées aux Récepteurs (GPCR), telles que l'identification de la liaison du ligand ou des interactions protéine-protéine, en détectant les changements dynamiques avec les Uaas spectroscopiques et l'étiquetage bioorthogonal. Sur la base d'applications relativement bien établies d'Uaa dans les GPCR, ici, les analyses fonctionnelles sont combinées à l'incorporation génétique d'un Uaa photosensible spécifique au site, p-azido-L-phénylalanine (AzF) dans d'autres protéines membranaires, pour détecter la protéine, les changements conformationnels et les interactions protéiques. Contrairement à d’autres molécules photosensibles qui permettent aux protéines de répondre à la lumière, l'insertion des Uaas directement dans la chaine d’acides aminés offre des possibilités uniques pour le photo-contrôle de la protéine. Les aspects dynamiques de l'allostérie sont plus difficiles à visualiser que les modèles structuraux statiques. Une stratégie photochimique est présentée pour caractériser la dynamique des mécanismes allostériques des récepteurs NMDA neuronaux (NMDAR). Ces récepteurs appartiennent à la famille des canaux ioniques activés par le glutamate et portent la transmission synaptique excitatrice rapide associée à l'apprentissage et à la mémoire. En combinant le balayage AzF et un test fonctionnel résistant à la lumière, nous avons pu apporter des éléments permettant de mieux comprendre la dynamique des interfaces NTD (N-Terminal Domain des NMDAR) ainsi qu’un nouveau mécanisme de régulation allostérique, améliorant notre compréhension de la base structurale du mécanisme d’activation et de modulation des récepteurs NMDA.Outre l'incorporation de l’Uaa photopontant AzF dans les récepteurs neuronaux pour détecter l'effet fonctionnel, AzF a été appliqué pour piéger des interactions faibles et transitoires entre protéines dans un transporteur d'acides aminés LAT3, impliqué dans le cancer de la prostate. Les techniques de dépistage ont été établies en appliquant un photo-cross-linker positionné dans la protéine pour examiner les interactions entre LAT3 et les interacteurs inconnus et fournir des indices d'identification des partenaires de liaison.Dans l'ensemble, ce travail dévoile de nouvelles informations sur la modulation allostérique de l'activité du récepteur NMDA et sur les interactions protéines-protéines.. Les résultats pourraient fournir de nouvelles informations structurales et fonctionnelles et guider le dépistage de composés thérapeutiques pour des maladies associées au dysfonctionnement de ces protéines membranaires
Membrane proteins including receptors, channels and transporters play crucial roles in biological processes such as physiological signaling and cellular functions. Description of dynamic structures and functions of proteins is fundamental to understand most processes involving biological macromolecules. The incorporation of unnatural amino acids (Uaas) containing distinct physical or chemical properties into proteins provides a powerful tool to define the challenging protein structure and dynamics. These probes allow monitoring and real-time detection of receptor conformational changes and signaling complexes. The genetic code expansion approaches have enabled the incorporation of Uaas serving as probes into proteins with molecular precision. Heritable expansion of the genetic code may allow protein biology to be investigated in a system-wide manner.With this strategy, photocrosslinking Uaas have been used to study GPCR structure/function relationship, such as identifying GPCR-ligand binding or protein-protein interactions, detecting dynamic changes with spectroscopic Uaas and bioorthogonal labeling. Based on relatively well-established applications of Uaa in GPCRs, here, functional assays are combined with the site-specific genetic incorporation of a photo-sensitive Uaa, p-azido-L-phenylalanine (AzF) into other membrane proteins, to probe protein conformational changes and protein interactions. Unlike photo-sensitive ligands that enable proteins in response to light, the site-specific insertion of light-sensitive Uaas facilitates directly light-sensitive proteins. Dynamic aspects of allostery are more challenging to visualize than static structural models. A photochemical strategy was presented to characterize dynamic allostery of neuronal NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor channel family and mediate the fast excitatory synaptic transmission associated with learning and memory. By combining AzF scanning and a robust light-induced functional assay the dynamics of NMDAR N-terminal domain (NTD) interfaces and novel allosteric regulation mechanism were uncovered, improving our understanding of the structural basis of NMDAR gating and modulation mechanism.Besides incorporation of photo-cross-linker AzF into neuronal receptors to detect the functional effect, AzF was used to trap transient and weak protein-protein interactions in an amino acid transporter LAT3, which is critical in prostate cancer. Screening technique was established by applying genetically encoded photo-cross-linker to examine interactions between LAT3 and unknown interactors and provide clues to identify the binding partners.Overall, the work reveals new informations about the allosteric modulation of channel activity and proteins interactions. These light-sensitive proteins facilitated by site-specific insertion of light-sensitive Uaas enable profiling diversity of proteins. The results will provide novel structural and functional information and may guide screening of therapeutic compounds for diseases associated with malfunctioning of these membrane proteins
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tang, Yi Tirrell David A. « Protein engineering using unnatural amino acids : incorporation of leucine analogs into recombinant protein in vivo / ». Diss., Pasadena, Calif. : California Institute of Technology, 2002. http://resolver.caltech.edu/CaltechETD:etd-08152006-084149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nguyen, Duy Phuoc. « Unnatural amino acid incorporation via the orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair ». Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610160.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shi, Zhengtao. « Structure-function studies of adenylate kinase by site-specific incorporation of both natural and unnatural amino acids / ». The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487854314871531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Italia, James Sebastian. « Development and Applications of Universal Genetic Code Expansion Platforms : ». Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108354.

Texte intégral
Résumé :
Thesis advisor: Abhishek Chatterjee
The emergence of genetic code expansion (GCE) technology, which enables sitespecific incorporation of unnatural amino acids (UAAs) into proteins, has facilitated powerful new ways to probe and engineer protein structure and function. Using engineered orthogonal tRNA/aminoacyl-tRNA synthetase (aaRS) pairs that suppress repurposed nonsense codons, a variety of structurally diverse UAAs have been incorporated into proteins in living cells. This technology offers tremendous potential for deciphering the complex biology of eukaryotes, but its scope in eukaryotic systems remains restricted due to several technical limitations. For example, development of the engineered tRNA/aaRS pairs for eukaryotic GCE traditionally relied on a eukaryotic cell-based directed evolution system, which are significantly less efficient relative to bacteria-based engineering platforms. The work described in this thesis establishes a new paradigm in GCE through the development of a novel class of universal tRNA/aaRS pairs, which can be used for ncAA incorporation in both E. coli and eukaryotes. We achieve this by developing engineered strains of E. coli, where one of its endogenous tRNA/aaRS pair is functionally replaced with an evolutionarily distant counterpart. The liberated pair can then be used for GCE in the resulting altered translational machinery (ATM) strain, as well as any eukaryote. Using this strategy, we have been able to genetically encode new bioconjugation chemistries, post-translational modifications, and facilitate the incorporation of multiple, distinct ncAAs into a single protein. The ATM technology holds enormous promise for significantly expanding the scope of the GCE technology in both bacteria and eukaryotes
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Unnatural amino acids incorporation"

1

Pollegioni, Loredano, et Stefano Servi, dir. Unnatural Amino Acids. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-331-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Unnatural amino acids : Methods and protocols. New York : Humana Press, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sanguineti, Gabriella. Novel Methods for the Ribosomal Incorporation of β-Amino Acids. [New York, N.Y.?] : [publisher not identified], 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pollegioni, Loredano, et Stefano Servi. Unnatural Amino Acids : Methods and Protocols. Humana Press, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bag, Subhendu Sekhar, Ishu Saraogi et Jiantao Guo, dir. Expansion of the Genetic Code : Unnatural Amino Acids and Their Applications. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88976-843-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

James, Donald Andrew. Design of photoisomerizable amino acids and their incorporation into biological peptides and enzymes. 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Unnatural amino acids incorporation"

1

Helma, Jonas, Heinrich Leonhardt, Christian P. R. Hackenberger et Dominik Schumacher. « Tub-Tag Labeling ; Chemoenzymatic Incorporation of Unnatural Amino Acids ». Dans Methods in Molecular Biology, 67–93. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7574-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Qian, et Lei Wang. « Genetic Incorporation of Unnatural Amino Acids into Proteins in Yeast ». Dans Methods in Molecular Biology, 199–213. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-331-8_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bahera, Basanta Kumara, Ram Prasad et Shyambhavee Behera. « Unnatural Amino Acid and its Incorporation in Protein ». Dans Life Sciences Industry, 111–26. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2051-5_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hino, Nobumasa, Kensaku Sakamoto et Shigeyuki Yokoyama. « Site-Specific Incorporation of Unnatural Amino Acids into Proteins in Mammalian Cells ». Dans Methods in Molecular Biology, 215–28. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-331-8_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Watts, R. Edward, et Anthony C. Forster. « Update on Pure Translation Display with Unnatural Amino Acid Incorporation ». Dans Ribosome Display and Related Technologies, 349–65. New York, NY : Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-379-0_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Peeler, Jennifer C., et Ryan A. Mehl. « Site-Specific Incorporation of Unnatural Amino Acids as Probes for Protein Conformational Changes ». Dans Methods in Molecular Biology, 125–34. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-331-8_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tian, Meilin, Qian Wang, Chonggang Yuan et Shixin Ye. « Structure and Function Studies of GPCRs by Site-Specific Incorporation of Unnatural Amino Acids ». Dans Topics in Medicinal Chemistry, 195–215. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/7355_2017_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Singh-Blom, Amrita, Randall A. Hughes et Andrew D. Ellington. « Residue-Specific Incorporation of Unnatural Amino Acids into Proteins In Vitro and In Vivo ». Dans Methods in Molecular Biology, 93–114. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-293-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ozawa, Kiyoshi, et Choy Theng Loh. « Site-Specific Incorporation of Unnatural Amino Acids into Proteins by Cell-Free Protein Synthesis ». Dans Methods in Molecular Biology, 189–203. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-782-2_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

He, Jingxuan, et Charles E. Melançon. « Genetic Incorporation of Unnatural Amino Acids into Proteins of Interest in Streptomyces venezuelae ATCC 15439 ». Dans Methods in Molecular Biology, 155–68. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7574-7_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Unnatural amino acids incorporation"

1

Vrabel, Milan, Emine Kaya et Thomas Carell. « Incorporation of unnatural amino acids into proteins for click chemistry ». Dans XVth Symposium on Chemistry of Nucleic Acid Components. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201112487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kimoto, Michiko, Tsuneo Mitsui, Yoko Harada, Akira Sato, Shigeyuki Yokoyama et Ichiro Hirao. « Site-specific incorporation of fluorescent 2-amino-6-(2-thienyl)purine into RNA by transcription using an unnatural base pair system ». Dans XIVth Symposium on Chemistry of Nucleic Acid Components. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2008. http://dx.doi.org/10.1135/css200810355.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Silva, Maísa de Carvalho, Lariza Laura De Oliveira et Renato Tinós. « Optimization of Expanded Genetic Codes via Genetic Algorithms ». Dans XV Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/eniac.2018.4440.

Texte intégral
Résumé :
In the last decades, researchers have proposed the use of genetically modified organisms that utilize unnatural amino acids, i.e., amino acids other than the 20 amino acids encoded in the standard genetic code. Unnatural amino acids have been incorporated into genetically engineered organisms for the development of new drugs, fuels and chemicals. When new amino acids are incorporated, it is necessary to modify the standard genetic code. Expanded genetic codes have been created without considering the robustness of the code. The objective of this work is the use of genetic algorithms (GAs) for the optimization of expanded genetic codes. The GA indicates which codons of the standard genetic code should be used to encode a new unnatural amino acid. The fitness function has two terms; one for robustness of the new code and another that takes into account the frequency of use of amino acids. Experiments show that, by controlling the weighting between the two terms, it is possible to obtain more or less amino acid substitutions at the same time that the robustness is minimized.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Katti, Kalpana S., Dinesh R. Katti et Avinash H. Ambre. « Unnatural Amino Acids Modified Clays for Design of Scaffolds for Bone Tissue Engineering ». Dans ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13242.

Texte intégral
Résumé :
Here, we incorporate the results of our new “altered phase theory” (Sikdar et al. 2008a) into design of new polymer clay nanocomposites (PCNs) for bone biomaterials applications. Montmorillonite (MMT) clay was modified using unnatural amino acids as potentially new biocompatible modifiers. The longer carbon chain structures of the unnatural amino acids are expected to enhance non bonded interactions with clay as well as maintaining the usefulness of functional groups of natural amino acids. The specific choice of amino acids is based on both the antibacterial activity reported in literature and also our previous studies on role of chain length, functional groups etc of modifiers in influencing mechanical behavior in PCNs. Biocompatibility studies using cell culture experiments as well as mechanical behavior is evaluated for the PCNs. FTIR spectroscopy is used to compare changes to molecular structure. The increase in d001 spacing of modified clay compared to pure clay obtained from XRD experiments confirms successful intercalation of modifier. The osteoblast cells were found to grow and proliferate over the substrates. The major contribution of this work is the design of novel amino acid biopolymer-clay nanocomposites for biomaterials applications. Porous scaffold structures were also designed and fabricated.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pajpanova, Tamara. « Design, synthesis, analysis and pharmacological evaluation of neuropeptide mimetics containing unnatural amino acids ». Dans XIth Conference Biologically Active Peptides. Prague : Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2009. http://dx.doi.org/10.1135/css200911098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Casey, Abigail, et Gregory E. Triplett. « Salient features of strain incorporation in individual and multicomponent amino acids using confocal Raman spectroscopy ». Dans Biophotonics : Photonic Solutions for Better Health Care, sous la direction de Jürgen Popp, Valery V. Tuchin et Francesco S. Pavone. SPIE, 2018. http://dx.doi.org/10.1117/12.2307456.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rosing, J., H. Speijer, J. W. P. Govers-Riemslag et R. F. A. Zwaal. « THE EFFECT OF PROCOAGULANT PHOSPHOLIPID VESICLES WITH NET POSITIVE CHARGE ON THE ACTIVITY OF PROTHROMBINASE ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643839.

Texte intégral
Résumé :
It is generally thought that procoagulant phospholipid surfaces that promote the activation of vitamin K-dependent coagulation factors should have a net negative charge in order to promote calcium-dependent binding of the enzymes (FVIIa, FIXa and FXa) and substrates (prothrombin and FX) of the coagulation factor-activating complexes. Two models have been proposed to explain calcium-mediated association of vitamin K-dependent proteins with phospholipid: a) an electrostatic model, in which a positively-charged protein-calcium complex is attracted by a negatively-charged phospholipid surface and b) a chelation model in which a coordination complex is formed between calcium ions, γ-carboxyglutamic acids of the proteins and negatively-charged membrane phospholipids. To study the effect of the electrostatic potential of phospholipid vesicles on their activity in the pro-thrombinase complex the net charge of vesicles was varied by introduction of varying amounts of positively-charged stearylamine in the membrane surface. Introduction of 0-15 mole% stearylamine in phospholipid vesicles that contained 5 mole% phosphatidylseri-ne (PS) hardly affected their activity in prothrombin activation. Electrophoretic analysis showed that vesicles with > 5 mole% stearylamine had a net positive charge. The procoagulant activity of vesicles that contained phosphatidic acid, phosphatidylglyce-rol, phosphatidylinositol or phosphatidyl-glactate (PLac) as acidic phospholipid was much more effected by incorporation of stearylamine. Amounts of stearylamine that compensated the negative charge of acidic phospholipid caused considerable inhibition of the activity of the latter vesicles in prothrombin activation. The comparison of vesicles containing PS and PLac as acidic phospholipid is of special interest. PS and PLac only differ by the presence of NH+ 3-group in the serine moiety of PS. Thus, in spite of the fact that vesicles with PLac are more negatively charged than vesicles with PS, they are less procoagulant. Our results show that a) although procoagulant membranes have to contain acidic phospholipids there is no requirement for a net negative charge, b) the amino group of phosphatidylserine has an important function in the interaction of procoagulant membranes with vitamin K-dependent proteins and c) the chelation model can satisfactorily explain calcium-mediated lipid-protein association.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Unnatural amino acids incorporation"

1

Schultz, Peter G. In Vivo Incorporation of Unnatural Amino Acids into Proteins. Fort Belvoir, VA : Defense Technical Information Center, décembre 2000. http://dx.doi.org/10.21236/ada392129.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lester, Henry A. Nicotinic Receptor Binding Site Probed with Unnatural Amino Acid Incorporation in Intact Cells. Fort Belvoir, VA : Defense Technical Information Center, février 1995. http://dx.doi.org/10.21236/ada299991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie