Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Unmagnetized plasmas.

Articles de revues sur le sujet « Unmagnetized plasmas »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Unmagnetized plasmas ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

RIOS, L. A., et P. K. SHUKLA. « Equivalent charge of photons in a very dense quantum plasma ». Journal of Plasma Physics 74, no 1 (février 2008) : 1–7. http://dx.doi.org/10.1017/s0022377807006800.

Texte intégral
Résumé :
AbstractThe equivalent charge of photons in dense unmagnetized and magnetized Fermi plasmas is determined through the plasma physics method. This charge is associated with the polarization of the medium caused by the ponderomotive force of the electromagnetic waves. Relations for the coupling between the electron plasma density perturbation and the radiation fields are derived for unmagnetized and magnetized plasmas, taking into account the quantum force associated with the quantum Bohm potential in dense Fermi plasmas. The effective photon charge is then determined. The effects of the ion motion are also included in the investigation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

DAS, CHANDRA. « Evolution of magnetic moment in the interaction of waves with kinetically described plasmas ». Journal of Plasma Physics 57, no 2 (février 1997) : 343–48. http://dx.doi.org/10.1017/s002237789600493x.

Texte intégral
Résumé :
The non-oscillating part of the magnetic moment field (called the inverse Faraday effect (IFE) for this field from a circularly polarized wave in a medium) is calculated for the interaction of an elliptically polarized wave with a weakly ionized magnetized plasma in a kinetic theory model and with unmagnetized Vlasov plasmas. For a weakly ionized magnetized plasma, the induced field increases with both temperature and ambient magnetic field. For an unmagnetized plasma, it increases parabolically with temperature. The induced magnetic field is found to vary parabolically with temperature in the case of an unmagnetized Vlasov plasma.
Styles APA, Harvard, Vancouver, ISO, etc.
3

MELROSE, D. B. « Generalized Trubnikov functions for unmagnetized plasmas ». Journal of Plasma Physics 62, no 2 (août 1999) : 249–53. http://dx.doi.org/10.1017/s0022377899007898.

Texte intégral
Résumé :
A class of relativistic dispersion functions for unmagnetized thermal plasmas is defined by generalizing functions first defined by Trubnikov in 1958. Recursion relations are derived that allow one to generate explicit expressions for the class of functions in terms of the relativistic plasma dispersion function T(z, ρ) introduced by Godfrey et al. in 1975. These functions are relevant to the description of the response of a weakly mangetized, highly relativistic, thermal plasma.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Saleem, H., K. Watanabe et T. Sato. « Electromagnetic instabilities in unmagnetized plasmas ». Physical Review E 62, no 1 (1 juillet 2000) : 1155–61. http://dx.doi.org/10.1103/physreve.62.1155.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kuo, S. P. « Turbulence in unmagnetized Vlasov plasmas ». Energy Conversion and Management 25, no 4 (janvier 1985) : 511–17. http://dx.doi.org/10.1016/0196-8904(85)90018-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gangadhara, R. T., et V. Krishan. « Absorption of Electromagnetic Waves in Astrophysical Plasmas ». Symposium - International Astronomical Union 142 (1990) : 519–20. http://dx.doi.org/10.1017/s0074180900088562.

Texte intégral
Résumé :
We study Parametric Decay Instabilities(PDI) using the kinetic description, in the homogeneous and unmagnetized plasmas. These instabilities cause anomalous absorption of the incident electromagnetic (e.m)radiation. The maximum plasma temperatures reached are functions of luminosity of the non-thermal radio radiation and the plasma parameters.
Styles APA, Harvard, Vancouver, ISO, etc.
7

NISHIKAWA, K. I., P. HARDEE, Y. MIZUNO, I. DUŢAN, B. ZHANG, M. MEDVEDEV, A. MELI et al. « PARTICLE ACCELERATION AND MAGNETIC FIELD GENERATION IN SHEAR-FLOWS ». International Journal of Modern Physics : Conference Series 28 (janvier 2014) : 1460195. http://dx.doi.org/10.1142/s2010194514601951.

Texte intégral
Résumé :
We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic (core) jet and an unmagnetized sheath plasma by the kinetic Kelvin-Helmholtz instability for different mass ratios (m i /m e = 1, 20, and 1836) and different jet Lorentz factors. We found that electron-positron cases have alternating magnetic fields instead of the DC magnetic fields found in electron-ion cases. We have also investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma for electron-positron and electron-ion plasmas. Strong magnetic fields generated in the trailing shock lead to transverse deflection and acceleration of the electrons. We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields for different jet Lorentz factors. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet, the jet temperature, and the strength of the magnetic fields generated in the shock.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yoon, Peter H. « Nonlinear electromagnetic susceptibilities of unmagnetized plasmas ». Physics of Plasmas 12, no 11 (novembre 2005) : 112306. http://dx.doi.org/10.1063/1.2136108.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bhakta, J. C. « Nonlinear Pulse Propagation in Unmagnetized Plasmas ». Contributions to Plasma Physics 30, no 3 (1990) : 431–35. http://dx.doi.org/10.1002/ctpp.2150300310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bharuthram, R., H. Saleem et P. K. Shukla. « Two-stream instabilities in unmagnetized dusty plasmas ». Physica Scripta 45, no 5 (1 mai 1992) : 512–14. http://dx.doi.org/10.1088/0031-8949/45/5/017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Tautz, R. C., et I. Lerche. « Weakly propagating unstable modes in unmagnetized plasmas ». Physics of Plasmas 14, no 7 (juillet 2007) : 072102. http://dx.doi.org/10.1063/1.2749719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Shukla, P. K. « Magnetic condensation instability in nonuniform unmagnetized plasmas ». Physics of Fluids B : Plasma Physics 1, no 7 (juillet 1989) : 1541–43. http://dx.doi.org/10.1063/1.858931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Torabi, R., et M. Mehrafarin. « Berry effect in unmagnetized inhomogeneous cold plasmas ». JETP Letters 95, no 6 (mai 2012) : 277–81. http://dx.doi.org/10.1134/s0021364012060112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Manzo, Lili, Matthew R. Edwards et Yuan Shi. « Enhanced collisionless laser absorption in strongly magnetized plasmas ». Physics of Plasmas 29, no 11 (novembre 2022) : 112704. http://dx.doi.org/10.1063/5.0100727.

Texte intégral
Résumé :
Strongly magnetizing a plasma adds a range of waves that do not exist in unmagnetized plasmas and enlarges the laser-plasma interaction (LPI) landscape. In this paper, we use particle-in-cell simulations to investigate strongly magnetized LPI in one dimension under conditions relevant for magneto-inertial fusion experiments, focusing on a regime where the electron-cyclotron frequency is greater than the plasma frequency and the magnetic field is at an oblique angle with respect to the wave vectors. We show that when electron-cyclotron-like hybrid wave frequency is about half the laser frequency, the laser light resonantly decays to magnetized plasma waves via primary and secondary instabilities with large growth rates. These distinct magnetic-field-controlled instabilities, which we collectively call two-magnon decays, are analogous to two-plasmon decays in unmagnetized plasmas. Since additional phase mixing mechanisms are introduced by the oblique magnetic field, collisionless damping of large-amplitude magnetized waves substantially broadens the electron distribution function, especially along the direction of the magnetic field. During this process, energy is transferred efficiently from the laser to plasma waves and then to electrons, leading to a large overall absorptivity when strong resonances are present. The enhanced laser energy absorption may explain hotter-than-expected temperatures observed in magnetized laser implosion experiments and may also be exploited to develop more efficient laser-driven x-ray sources.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rowe, G. W. « General dispersion relation for surface waves on a plasma—vacuum interface : an image approach ». Journal of Plasma Physics 46, no 3 (décembre 1991) : 495–511. http://dx.doi.org/10.1017/s0022377800016287.

Texte intégral
Résumé :
The image approach, used extensively to treat bounded unmagnetized plasmas, is extended to the case of an arbitrary homogeneous and non-magnetic medium. A general dispersion relation for electromagnetic surface waves on a plane plasma-vacuum interface is thus obtained, subject only to the suitability of the chosen boundary conditions. The boundary conditions used here are those of Barr and Boyd. It is emphasized that this dispersion relation is applicable to magnetized plasmas. The general dispersion relation is applied to the special case of an isotropie medium, and the dispersion relation of Barr and Boyd for an unmagnetized plasma is reproduced. A major assumption in the image approach is that the semi-infinite bounded medium can be described by the infinite-medium response. The validity of this assumption and of the boundary conditions is discussed. Two conditions are deduced that must be satisfied for the image theory to be self-consistent. It is argued that these can be satisfied in all situations for which the assumed boundary conditions are appropriate.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Verheest, F. « On the nonexistence of large amplitude stationary solitary waves in symmetric unmagnetized pair plasmas ». Nonlinear Processes in Geophysics 12, no 5 (9 juin 2005) : 569–74. http://dx.doi.org/10.5194/npg-12-569-2005.

Texte intégral
Résumé :
Abstract. Waves in pair plasmas have a fundamentally different dispersion due to the equal charge-to-mass ratios between negative and positive charges. In view of possible applications e.g. to electron-positron and fullerene pair plasmas, it is shown that there are no stationary large amplitude nonlinear structures in symmetric unmagnetized pair plasmas.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Khalid, Muhammad, Aqil Khan, Mohsin Khan, Daud Khan, Sheraz Ahmad et Ata-ur-Rahman. « Electron acoustic solitary waves in unmagnetized nonthermal plasmas ». Communications in Theoretical Physics 73, no 5 (15 mars 2021) : 055501. http://dx.doi.org/10.1088/1572-9494/abd0eb.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kato, Tsunehiko N. « Relativistic Collisionless Shocks in Unmagnetized Electron‐Positron Plasmas ». Astrophysical Journal 668, no 2 (20 octobre 2007) : 974–79. http://dx.doi.org/10.1086/521297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Magin, Thierry E., et Gérard Degrez. « Transport algorithms for partially ionized and unmagnetized plasmas ». Journal of Computational Physics 198, no 2 (août 2004) : 424–49. http://dx.doi.org/10.1016/j.jcp.2004.01.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kato, Tsunehiko N., et Hideaki Takabe. « Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas ». Astrophysical Journal 681, no 2 (23 juin 2008) : L93—L96. http://dx.doi.org/10.1086/590387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Yoon, Peter H. « Two-fluid approach to weak plasma turbulence ». Plasma Physics and Controlled Fusion 63, no 12 (3 novembre 2021) : 125012. http://dx.doi.org/10.1088/1361-6587/ac2e40.

Texte intégral
Résumé :
Abstract Weakly turbulent processes that take place in plasmas are customarily formulated in terms of kinetic theory. However, owing to an inherent complexity associated with the problem, thus far the theory is fully developed largely for unmagnetized plasmas. In the present paper it is shown that a warm two fluid theory can successfully be employed in order to partially formulate the weak turbulence theory in spatially uniform plasma. Specifically, it is shown that the nonlinear wave-wave interaction, or decay processes, can be reproduced by the two-fluid formalism. The present finding shows that the same approach can in principle be extended to magnetized plasmas, which is a subject of future work.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lominadze, J. G. « Development of the theory of instabilities of differentially rotating plasma with astrophysical applications ». Proceedings of the International Astronomical Union 6, S274 (septembre 2010) : 318–24. http://dx.doi.org/10.1017/s1743921311007216.

Texte intégral
Résumé :
AbstractInstabilities of nonuniform flows is a fundamental problem in dynamics of fluids and plasmas. This presentation outlines atypical dynamics of instabilities for unmagnetized and magnetized astrophysical differentially rotating flows, including, our efforts in the development of general theory of magneto rotation instability (MRI) that takes into account plasma compressibility, pressure anisotropy, dissipative and kinetic effects. Presented analysis of instability (transient growth) processes in unmagnetized/hydrodynamic astrophysical disks is based on the breakthrough of the hydrodynamic community in the 1990s in the understanding of shear flow non-normality induced dynamics. This analysis strongly suggests that the so-called bypass concept of turbulence, which has been developed by the hydrodynamic community for spectrally stable shear flows, can also be applied to Keplerian disks. It is also concluded that the vertical stratification of the disks is an important ingredient of dynamical processes resulting onset of turbulence.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Aossey, D. W., A. Amin, J. Cooney, Hyun-Soo Kim, Binh Ton Nguyen et E. Lonngren. « Variations of plasma parameters in unmagnetized and magnetized argon-SF6-electron plasmas ». Plasma Sources Science and Technology 2, no 4 (1 novembre 1993) : 229–34. http://dx.doi.org/10.1088/0963-0252/2/4/001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Shukla, P. K., G. Feix et N. N. Rao. « Decay and modulational instabilities of electron plasma waves in unmagnetized dusty plasmas ». Planetary and Space Science 41, no 9 (septembre 1993) : 693–95. http://dx.doi.org/10.1016/0032-0633(93)90054-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Niemiec, Jacek, Martin Pohl, Antoine Bret et Volkmar Wieland. « NONRELATIVISTIC PARALLEL SHOCKS IN UNMAGNETIZED AND WEAKLY MAGNETIZED PLASMAS ». Astrophysical Journal 759, no 1 (17 octobre 2012) : 73. http://dx.doi.org/10.1088/0004-637x/759/1/73.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Mahmood, S., et H. Ur-Rehman. « Electrostatic solitons in unmagnetized hot electron–positron–ion plasmas ». Physics Letters A 373, no 26 (juin 2009) : 2255–59. http://dx.doi.org/10.1016/j.physleta.2009.04.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Schlickeiser, R., et P. H. Yoon. « Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas ». Physics of Plasmas 21, no 9 (septembre 2014) : 092102. http://dx.doi.org/10.1063/1.4893147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Mahmood, S., Q. Haque et H. Saleem. « Low-Frequency Electromagnetic Instability in Unmagnetized Inhomogeneous Dusty Plasmas ». Chinese Physics Letters 18, no 3 (8 février 2001) : 402–4. http://dx.doi.org/10.1088/0256-307x/18/3/331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Firouzi Farrashbandi, N., et M. Eslami-Kalantari. « Calculation of the inverse bremsstrahlung absorption in unmagnetized plasmas ». Contributions to Plasma Physics 60, no 2 (30 octobre 2019) : e201900054. http://dx.doi.org/10.1002/ctpp.201900054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

VERHEEST, FRANK, P. K. SHUKLA, N. N. RAO et PETER MEURIS. « Dust-acoustic waves in self-gravitating dusty plasmas with fluctuating dust charges ». Journal of Plasma Physics 58, no 1 (juillet 1997) : 163–70. http://dx.doi.org/10.1017/s0022377897005722.

Texte intégral
Résumé :
It is shown that the recently published work of Pandey and Dwivedi [J. Plasma Phys. 55, 395 (1996)] dealing with dust-acoustic waves in a self-gravitating unmagnetized dusty plasma is erroneous. This is demonstrated on the basis of a dispersion relation in which gravitational and electrostatic forces are kept on an equal footing. Furthermore, a general linear dispersion relation for the dust-acoustic and dust-ion acoustic waves in self-gravitating dusty plasmas is obtained, taking into account the dust-charge perturbations. Specific results for limiting cases are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
31

SALIMULLAH, M., P. K. SHUKLA et G. E. MORFILL. « Wake potentials in plasmas containing elongated dust rods ». Journal of Plasma Physics 69, no 4 (29 juillet 2003) : 363–69. http://dx.doi.org/10.1017/s0022377803002307.

Texte intégral
Résumé :
We study interaction potentials in unmagnetized as well as magnetized dusty plasmas composed of electrons, ions, and elongated charged dust rods. By using appropriate dielectric constants for coupled dipole oscillons and dust acoustic waves and the test particle approach, we determine the Debye–Hückel and dynamical oscillatory wake potentials. The relevance of our investigation to the alignment of dust rods in laboratory dusty plasmas is pointed out.
Styles APA, Harvard, Vancouver, ISO, etc.
32

TSINTSADZE, LEVAN N., et P. K. SHUKLA. « Weibel instabilities in dense quantum plasmas ». Journal of Plasma Physics 74, no 4 (août 2008) : 431–36. http://dx.doi.org/10.1017/s0022377808007265.

Texte intégral
Résumé :
AbstractThe quantum effect on the Weibel instability in an unmagnetized plasma is presented. Our analysis shows that the quantum effect tends to stabilize the Weibel instability in the hydrodynamic regime, whereas it produces a new oscillatory instability in the kinetic regime. A novel effect called the quantum damping, which is associated with the Landau damping, is disclosed. The new quantum Weibel instability may be responsible for the generation of non-stationary magnetic fields in compact astrophysical objects as well as in the forthcoming intense laser–solid density plasma interaction experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
33

GOUGAM, LEILA AIT, MOULOUD TRIBECHE et FAWZIA MEKIDECHE. « Small-amplitude electrostatic solitary waves in a dusty plasma with variable charge resonant trapped dust particles ». Journal of Plasma Physics 73, no 6 (décembre 2007) : 901–10. http://dx.doi.org/10.1017/s0022377807006368.

Texte intégral
Résumé :
AbstractSmall-amplitude electrostatic solitary waves are investigated in unmagnetized dusty plasmas with variable charge resonant trapped dust particles. It is found that under certain conditions spatially localized structures, the height and nature of which depend sensitively on the plasma parameters, can exist. The effects of dust grain temperature, equilibrium dust charge, trapping parameter, and dust size on the properties of these solitary waves are briefly discussed. A neural network with a given architecture and learning process, and which may be useful to interpret experimental data, is outlined. Our investigation may be taken as a prerequisite for the understanding of the solitary dust waves that may occur in space as well as in laboratory plasmas.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chakraborty, Debkumar, Akash Biswas et Samiran Ghosh. « Excitation of ion acoustic collisionless shock by a moving obstacle ». Physics of Plasmas 29, no 12 (décembre 2022) : 122304. http://dx.doi.org/10.1063/5.0116134.

Texte intégral
Résumé :
The ion acoustic wave modulation induced by a steadily moving obstacle (charged density object) is studied in collisionless, unmagnetized, and homogeneous plasmas. In the weakly nonlinear and high dispersive limit, the modulated disturbance induced excitation is shown to be described by a forced/driven nonlinear Schrödinger equation that is solved exactly for some special analytical forms of the driven term. A more interesting and striking phenomenon predicted by the computation is the excitation of the ion acoustic shock at a supersonic relative speed of the obstacle. The results are in good agreement with the observations in low altitude auroral plasmas. The relevance and potential applications of the results in future plasma experiments are also discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Robinson, P. A. « Conditions for the validity of unmagnetized-plasma theory in describing weakly magnetized plasmas ». Physics of Fluids 31, no 3 (1988) : 525. http://dx.doi.org/10.1063/1.866834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

El-Awady, E. I., et M. Djebli. « Dust-acoustic waves in strongly coupled dusty plasmas with nonextensive electrons and ions ». Canadian Journal of Physics 90, no 7 (juillet 2012) : 675–81. http://dx.doi.org/10.1139/p2012-066.

Texte intégral
Résumé :
The nonlinear features of dust-acoustic waves in a strongly coupled unmagnetized dusty plasma containing electrons and ions following q-nonextensive distribution, and negatively charged mobile dust are investigated by using the reductive perturbation method. The effects of important parameters, such as the q-parameter, temperature, density, and velocity on the properties of solitary and shock waves are discussed. The conditions for the formation of solitary structures and monotonic and oscillatory shock structures are also found. The implications of our result in space and laboratory dusty plasmas are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ghosh, Mohan, Sourav Pramanik et Samiran Ghosh. « Nonlinear coherent structures of electron acoustic waves in unmagnetized plasmas ». Physics Letters A 396 (avril 2021) : 127242. http://dx.doi.org/10.1016/j.physleta.2021.127242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Tautz, R. C., et I. Lerche. « Isolated unstable Weibel modes in unmagnetized plasmas with tunable asymmetry ». Journal of Physics A : Mathematical and Theoretical 40, no 29 (3 juillet 2007) : F677—F684. http://dx.doi.org/10.1088/1751-8113/40/29/f04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Dubinov, Alexander E., Irina D. Dubinova et Victor A. Gordienko. « Solitary electrostatic waves are possible in unmagnetized symmetric pair plasmas ». Physics of Plasmas 13, no 8 (août 2006) : 082111. http://dx.doi.org/10.1063/1.2335819.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ahedo, E., et V. Lapuerta. « Weakly three‐dimensional model of spherical contactors in unmagnetized plasmas ». Physics of Plasmas 2, no 9 (septembre 1995) : 3252–60. http://dx.doi.org/10.1063/1.871158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Conde, L. « Ionization instability by energized electrons in weakly ionized unmagnetized plasmas ». Physics of Plasmas 11, no 5 (mai 2004) : 1955–59. http://dx.doi.org/10.1063/1.1705651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Niknam, A. R., E. Rastbood et S. M. Khorashadizadeh. « Ion beam driven instabilities in unmagnetized and strongly magnetized plasmas ». Waves in Random and Complex Media 22, no 3 (août 2012) : 356–69. http://dx.doi.org/10.1080/17455030.2012.689885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Mabrouk, S. M., R. Saleh et Abdul‐Majid Wazwaz. « Investigation of ion - acoustic wave dynamics in unmagnetized grain plasmas ». Chinese Journal of Physics 68 (décembre 2020) : 1–8. http://dx.doi.org/10.1016/j.cjph.2020.09.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lazar, M., P. H. Yoon et R. Schlickeiser. « Spontaneous electromagnetic fluctuations in unmagnetized plasmas. III. Generalized Kappa distributions ». Physics of Plasmas 19, no 12 (décembre 2012) : 122108. http://dx.doi.org/10.1063/1.4769308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ando, A., T. K. Watanabe, T. Makita, H. Tobari, K. Hattori et M. Inutake. « Mach Probe Measurements in Unmagnetized Plasmas with Subsonicand Supersonic Flow ». Contributions to Plasma Physics 46, no 5-6 (juin 2006) : 335–40. http://dx.doi.org/10.1002/ctpp.200610011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

TRIBECHE, MOULOUD. « Small-amplitude analysis of a non-thermal variable charge dust soliton ». Journal of Plasma Physics 74, no 4 (août 2008) : 555–68. http://dx.doi.org/10.1017/s002237780800706x.

Texte intégral
Résumé :
AbstractSmall-amplitude electrostatic solitary waves are investigated in an unmagnetized dusty plasma with hot variable charge non-thermal dust grains. These nonlinear localized structures are small-amplitude self-consistent solutions of the Vlasov equation in which the dust response is non-Maxwellian. Localized solitary structures that may possibly occur are discussed and the dependence of their characteristics on physical parameters is traced. Our investigation may be taken as a prerequisite for the understanding of the electrostatic solitary waves that may occur in space dusty plasmas.
Styles APA, Harvard, Vancouver, ISO, etc.
47

MAHMOOD, S., N. AKHTAR et S. A. KHAN. « Kadomtsev–Petviashvili equation for acoustic wave in quantum pair plasmas ». Journal of Plasma Physics 78, no 1 (13 juin 2011) : 3–9. http://dx.doi.org/10.1017/s0022377811000274.

Texte intégral
Résumé :
AbstractThe Kadomtsev–Petviashvili equation is derived for two-dimensional propagations of electrostatic solitons in unmagnetized dense pair-plasmas. The reductive perturbation method is employed and two-dimensional electrostatic potential hump structures are obtained. The conditions for a stable two-dimensional solitary structure are discussed using energy consideration method. The numerical results are also presented by considering the parameters for the outer layers of white dwarfs/neutron stars.
Styles APA, Harvard, Vancouver, ISO, etc.
48

KNELLER, M., et R. SCHLICKEISER. « Mode limitation and mode completion in collisionless plasmas ». Journal of Plasma Physics 60, no 1 (août 1998) : 193–202. http://dx.doi.org/10.1017/s0022377898006485.

Texte intégral
Résumé :
The relativistically correct solution of the dispersion relation of linear plasma waves in an isotropic unmagnetized equilibrium electron plasma leads to two new effects unknown from the nonrelativistic dispersion theory. First, the number of damped subluminal modes is limited to a few (mode-limitation effect); secondly, for relativistic plasma temperatures the few individual modes complement each other in the sense that the dispersion relations ωR=ωR(k) continuously match each other (mode-completion effect). The second effect does not occur at nonrelativistic temperatures.
Styles APA, Harvard, Vancouver, ISO, etc.
49

LIU, SAN-QIU, et XIAO-CHANG CHEN. « Dispersion relation of transverse oscillation in relativistic plasmas with non-extensive distribution ». Journal of Plasma Physics 77, no 5 (15 février 2011) : 653–62. http://dx.doi.org/10.1017/s0022377811000043.

Texte intégral
Résumé :
AbstractThe generalized dispersion equation for superluminal transverse oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma with non-extensive q-distribution is derived. The analytical dispersion relation is obtained in an ultra-relativistic regime, which is related to q-parameter and temperature. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. Using the numerical method, we obtain the full dispersion curve that cannot be given by an analytic method. It is shown that the numerical solution is in good agreement with the analytical result in the long-wavelength and short-wavelength region for ultra-relativistic plasmas.
Styles APA, Harvard, Vancouver, ISO, etc.
50

LAZAR, M., A. SMOLYAKOV, R. SCHLICKEISER et P. K. SHUKLA. « A comparative study of the filamentation and Weibel instabilities and their cumulative effect. I. Non-relativistic theory ». Journal of Plasma Physics 75, no 1 (février 2009) : 19–33. http://dx.doi.org/10.1017/s0022377807007015.

Texte intégral
Résumé :
AbstractA comparative study of the electromagnetic instabilities in anisotropic unmagnetized plasmas is undertaken. The instabilities considered are the filamentation and Weibel instability, and their cumulative effect. Dispersion relations are derived and the growth rates are plotted systematically for the representative cases of non-relativistic counterstreaming plasmas with isotropic or anisotropic velocity distributions functions of Maxwellian type. The pure filamentation mode is attenuated by including an isotropic Maxwellian distribution function. Moreover, it is observed that counterstreaming plasmas can be fully stabilized by including bi-Maxellian distributions with a negative thermal anisotropy. This effect is relevant for fusion plasma experiments. Otherwise, for plasma streams with a positive anisotropy the filamentation and Weibel instabilities cumulate leading to a growth rate by orders of magnitude larger than that of a simple filamentation mode. This is noticeable for the quasistatic magnetic field generated in astrophysical sources, and which is expected to saturate at higher values and explain the non-thermal emission observed.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie