Littérature scientifique sur le sujet « Underwater and ultrasonic »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Underwater and ultrasonic ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Underwater and ultrasonic"
Wu, Zheng Long, Jie Li et Zhen Yu Guan. « Feature Extraction of Underwater Target Ultrasonic Echo Based on Wavelet Transform ». Applied Mechanics and Materials 599-601 (août 2014) : 1517–22. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1517.
Texte intégralSonomatic Ltd. « Underwater ultrasonic corrosion mapping system ». NDT International 23, no 1 (février 1990) : 58–59. http://dx.doi.org/10.1016/0308-9126(90)91593-i.
Texte intégralSonomatic Ltd. « Underwater ultrasonic corrosion mapping system ». NDT & ; E International 23, no 1 (février 1990) : 58–59. http://dx.doi.org/10.1016/0963-8695(90)90857-f.
Texte intégralNagashima, Yutaka, Takakazu Ishimatsu et Jamal Tariq Mian. « AUV with Variable Vector Propeller ». Journal of Robotics and Mechatronics 12, no 1 (20 février 2000) : 60–65. http://dx.doi.org/10.20965/jrm.2000.p0060.
Texte intégralWidjaja, Raden Sjarief, Dedi Budi Purwanto, Andi Trimulyono et Muhammad Nur Abdullah Hafizh. « Design of Remotely Operated Underwater Vehicle (ROUV) for Underwater Metal Detection ». Kapal : Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 21, no 2 (29 mai 2024) : 73–80. http://dx.doi.org/10.14710/kapal.v21i2.62767.
Texte intégralHong, Xiaobin, Liuwei Huang, Shifeng Gong et Guoquan Xiao. « Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic Imaging Based on HOG + SVM ». Journal of Marine Science and Engineering 9, no 4 (29 mars 2021) : 364. http://dx.doi.org/10.3390/jmse9040364.
Texte intégralZhu, Jie, Jia Cheng Guo, Wei Wang et Jia You Wang. « Effect of Arc Current Ultrasonic-Frequency Pulsation on Underwater Wet Arc Welding Quality ». Advanced Materials Research 763 (septembre 2013) : 174–78. http://dx.doi.org/10.4028/www.scientific.net/amr.763.174.
Texte intégralNagashima, Yutaka, Nobuyoshi Taguchi, Takakazu Ishimatsu et Hirofumi Inoue. « Development of a Compact Autonomous Underwater vehicle Using Varivec Propeller ». Journal of Robotics and Mechatronics 14, no 2 (20 avril 2002) : 112–17. http://dx.doi.org/10.20965/jrm.2002.p0112.
Texte intégralSHIRAI, Kazuhiro. « Development of Underwater Ultrasonic Positioning System ». Journal of the Marine Acoustics Society of Japan 31, no 4 (2004) : 233–40. http://dx.doi.org/10.3135/jmasj.31.233.
Texte intégralInoue, Takeshi, et Takatoshi Nada. « Underwater low‐frequency ultrasonic wave transmitter ». Journal of the Acoustical Society of America 83, no 6 (juin 1988) : 2470. http://dx.doi.org/10.1121/1.396290.
Texte intégralThèses sur le sujet "Underwater and ultrasonic"
Wylie, Stephen Robert. « An underwater ultrasonic imaging system ». Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266220.
Texte intégralSalido, Monzú David, et Sánchez Oliver Roldán. « Robot Positioning System : Underwater Ultrasonic Measurement ». Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5817.
Texte intégralThis document provides a description about how the problem of the detection of thecenter of a defined geometry object was solved.This named object has been placed in an experimental environment surrounded bywater to be explored using microwaves under the water, to try to find a possibletumor. The receiver antenna is fixed in the tip of the tool of an ABB robot.Due to this working method, it was necessary to locate the center of this object tomake correctly the microwave scanning turning always around the actual center. Thiswork not only consist in give a hypothetic solution to the people who gave us theresponsibility of solve their problem, it is also to actually develop a system whichcarries out the function explained before.For the task of measuring the distance between the tip of the tool where themicrowave antenna is, ultrasonic sensors has been used, as a complement of acomplete system of communication between the sensor and finally the robot handler,using Matlab as the main controller of the whole system.One of these sensors will work out of water, measuring the zone of the object which isout of the water. In the other hand, as the researching side of the thesis, a completeultrasonic sensor will be developed to work under water, and the results obtained willbe shown as the conclusion of our investigation.The document provides a description about how the hardware and software necessaryto implement the system mentioned and some equipment more which were essentialto the final implementation was developed step by step.
Koosha, Abdolrahim. « Ultrasonic transducers for air and underwater communication ». Thesis, Kingston University, 1991. http://eprints.kingston.ac.uk/20553/.
Texte intégralJohansson, Patrick. « Capacitive Micromachined Ultrasonic Transducers for Underwater Applications ». Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447067.
Texte intégralMoya, Jorge A. Salcedo. « Ultrasonic inspection of underwater piping system with thick coatings ». Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1260632892.
Texte intégralFloyd, Charles Alan. « Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors ». Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28100.
Texte intégralAnderson, Shaun David. « Space-time-frequency processing from the analysis of bistatic scattering for simple underwater targets ». Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45771.
Texte intégralReal, Gaultier. « An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean ». Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4753/document.
Texte intégralThe ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed
Kourchi, Hasna. « Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Texte intégralA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Pierce, Robert S. « Signal enhancement of laser generated ultrasound for non-destructive testing ». Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/18395.
Texte intégralLivres sur le sujet "Underwater and ultrasonic"
Kucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss : U.S. Army Engineer Waterways Experiment Station, 1990.
Trouver le texte intégralKucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss : U.S. Army Engineer Waterways Experiment Station, 1990.
Trouver le texte intégralFloyd, Charles Alan. Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors. Monterey, Calif : Naval Postgraduate School, 1991.
Trouver le texte intégralStroud, John Steven. Twinkling of underwater sound reflected by one realization from a Gaussian spectrum population of corrugated surfaces : Experiments and comparisons with a catastrophe theory approximation. 1995.
Trouver le texte intégralUrick, Robert J. Principles of underwater sound. 3e éd. Peninsula, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Underwater and ultrasonic"
Ye, Jianxiong, Zhigang Li, Xingling Peng, Jinlan Zhou et Bo Guo. « Study of Ultrasonic Phased Array in Underwater Welding ». Dans Transactions on Intelligent Welding Manufacturing, 175–82. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7043-3_13.
Texte intégralTalmant, Maryline, et Gérard Quentin. « Study of the Pseudo — Lamb Wave So Generated in Thin Cylindrical Shells Insonified by Short Ultrasonic Pulses in Water ». Dans Progress in Underwater Acoustics, 137–44. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_17.
Texte intégralVoloshchenko, Vadim Yu, et Elizaveta V. Voloshchenko. « The Underwater Ultrasonic Equipment with the Nonlinear Acoustics Effect's Application ». Dans Exploration and Monitoring of the Continental Shelf Underwater Environment, 211–33. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119488309.ch7.
Texte intégralCrowther, P. A., et A. Hansla. « The Lifetimes, Velocities and Probable Origin of Sonic and Ultrasonic Noise Sources on the Sea Surface ». Dans Natural Physical Sources of Underwater Sound, 379–92. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_30.
Texte intégralAzcuaga, Valery F. Godínez, Jorge Salcedo et Laszlo Adler. « Ultrasonic Inspection of an Underwater Piping System Covered with Thick Coating ». Dans Review of Progress in Quantitative Nondestructive Evaluation, 1867–74. Boston, MA : Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_244.
Texte intégralChaitanya, G. M. S. K., Govind Kumar Sharma, Anish Kumar et B. Purnachandra Rao. « Development of Automated Scanners for Underwater and Under-Sodium Ultrasonic Imaging ». Dans Communications in Computer and Information Science, 109–17. Singapore : Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2845-8_9.
Texte intégralVan Vinh, Phan, Nguyen Hoang Thoan, Nguyen Xuan Duong et Dang Duc Dung. « Fabrication of Underwater Ultrasonic Transducer by Using Lead-Free Piezoelectric Materials ». Dans Lecture Notes in Mechanical Engineering, 683–88. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99666-6_99.
Texte intégralVan Buren, A. L., et J. E. Blue. « Calibration of Underwater Acoustic Transducers at NRL/USRD ». Dans Power Transducers for Sonics and Ultrasonics, 221–41. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76271-0_18.
Texte intégral« Appendix : Ultrasonic Sensing Systems in the Air Medium ». Dans Digital Underwater Acoustic Communications, 255–68. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803009-7.15001-9.
Texte intégral« Ultrasonic monitoring of lab-scaled underwater landslides ». Dans Landslides and Engineered Slopes. From the Past to the Future, Two Volumes + CD-ROM, 1341–44. CRC Press, 2008. http://dx.doi.org/10.1201/9780203885284-183.
Texte intégralActes de conférences sur le sujet "Underwater and ultrasonic"
Vishwanatha, Meghana, Karman Selvam, Nooshin Saeidi, Maik Wiemer et Harald Kuhn. « Underwater sensing applications using Capacitive Micromachined Ultrasonic Transducers (CMUTs) ». Dans 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), 1–4. IEEE, 2024. https://doi.org/10.1109/uffc-js60046.2024.10793795.
Texte intégralLi, Yujia, King Shing Lo, Dongmei Huang, Chao Lu et P. K. A. Wai. « High-sensitivity, high-speed underwater ultrasonic detection based on time-stretched self-coherent detection ». Dans CLEO : Applications and Technology, JTu2A.110. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.110.
Texte intégralBakar, S. A. A., N. R. Ong, M. H. A. Aziz, J. B. Alcain, W. M. W. N. Haimi et Z. Sauli. « Underwater detection by using ultrasonic sensor ». Dans 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002499.
Texte intégralThakare, Dhawal R., Prabhu Rajagopal et Pierre Belanger. « Ultrasonic guided waves in bone system with degradation ». Dans 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000147.
Texte intégralLeighton, Timothy G. « The acoustic bubble : Oceanic bubble acoustics and ultrasonic cleaning ». Dans 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2015. http://dx.doi.org/10.1121/2.0000121.
Texte intégralGerdt, David W., Martin C. Baruch et Charles M. Adkins. « Ultrasonic liquid crystal-based underwater acoustic imaging ». Dans Electronic Imaging '99, sous la direction de Ranganathan Shashidhar. SPIE, 1999. http://dx.doi.org/10.1117/12.343873.
Texte intégralNorli, Petter, Emilie Vallée, Magne Aanes, Asbjørn Spilde, Henrik Duerud, Fabrice Prieur, Tore Bjåstad, Øyvind Standal et Martijn Frijlink. « Ultrasonic detection of stress corrosion cracks in gaseous atmosphere using Broadband transducers ». Dans International Conference on Underwater Acoustics. ASA, 2019. http://dx.doi.org/10.1121/2.0001334.
Texte intégralSAILLANT, JF, S. TRIGER, F. AFROUKH, J. WALLACE, L. WANG, S. COCHRAN et D. CUMMING. « MOSAIC : A SCALABLE, MODULAR SYSTEM FOR UNDERWATER ULTRASONIC IMAGING ». Dans DETECTION & ; CLASSIFICATION OF UNDERWATER TARGETS 2007. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17797.
Texte intégralKleiman, Jacob, Yuri Kudryavtsev et Alexander Lugovskoy. « Underwater Stress Relief and Fatigue Improvement by Ultrasonic Peening ». Dans ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83469.
Texte intégralSCUDDER, LP, DA HUTCHINS et JT MOTTRAM. « THE ULTRASONIC IMPULSE RESPONSE OF UNIDIRECTIONAL CARBON FIBRE LAMINATES ». Dans Acoustics of Advanced Materials for Underwater Applications 1993. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/20599.
Texte intégral