Littérature scientifique sur le sujet « Uncertainly quantification »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Uncertainly quantification ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Uncertainly quantification"
Jalaian, Brian, Michael Lee et Stephen Russell. « Uncertain Context : Uncertainty Quantification in Machine Learning ». AI Magazine 40, no 4 (20 décembre 2019) : 40–49. http://dx.doi.org/10.1609/aimag.v40i4.4812.
Texte intégralVerdonck, H., O. Hach, J. D. Polman, O. Braun, C. Balzani, S. Müller et J. Rieke. « -An open-source framework for the uncertainty quantification of aeroelastic wind turbine simulation tools ». Journal of Physics : Conference Series 2265, no 4 (1 mai 2022) : 042039. http://dx.doi.org/10.1088/1742-6596/2265/4/042039.
Texte intégralCacuci, Dan Gabriel. « Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems ». Energies 15, no 17 (1 septembre 2022) : 6379. http://dx.doi.org/10.3390/en15176379.
Texte intégralOh, Deog Yeon, Young Seok Bang, Kwang Won Seul et Sweng Woong Woo. « ICONE23-1466 UNCERTAINTY QUANTIFICATION OF PHYSICAL MODELS USING CIRCE METHOD ». Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015) : _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_213.
Texte intégralHu, Juxi, Lei Wang et Xiaojun Wang. « Non-Probabilistic Uncertainty Quantification of Fiber-Reinforced Composite Laminate Based on Micro- and Macro-Mechanical Analysis ». Applied Sciences 12, no 22 (18 novembre 2022) : 11739. http://dx.doi.org/10.3390/app122211739.
Texte intégralSun, X., T. Kirchdoerfer et M. Ortiz. « Rigorous uncertainty quantification and design with uncertain material models ». International Journal of Impact Engineering 136 (février 2020) : 103418. http://dx.doi.org/10.1016/j.ijimpeng.2019.103418.
Texte intégralCheng, Xi, Clément Henry, Francesco P. Andriulli, Christian Person et Joe Wiart. « A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data ». International Journal of Environmental Research and Public Health 17, no 7 (9 avril 2020) : 2586. http://dx.doi.org/10.3390/ijerph17072586.
Texte intégralErnst, Oliver, Fabio Nobile, Claudia Schillings et Tim Sullivan. « Uncertainty Quantification ». Oberwolfach Reports 16, no 1 (26 février 2020) : 695–772. http://dx.doi.org/10.4171/owr/2019/12.
Texte intégralSalehghaffari, S., et M. Rais-Rohani. « Material model uncertainty quantification using evidence theory ». Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science 227, no 10 (8 janvier 2013) : 2165–81. http://dx.doi.org/10.1177/0954406212473390.
Texte intégralTuczyński, Tomasz, et Jerzy Stopa. « Uncertainty Quantification in Reservoir Simulation Using Modern Data Assimilation Algorithm ». Energies 16, no 3 (20 janvier 2023) : 1153. http://dx.doi.org/10.3390/en16031153.
Texte intégralThèses sur le sujet "Uncertainly quantification"
Nguyen, Trieu Nhat Thanh. « Modélisation et simulation d'éléments finis du système pelvien humain vers un outil d'aide à la décision fiable : incertitude des données et des lois de comportement ». Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0015.
Texte intégralApproximately 0.5 million deaths during childbirth occur annually, as reported by the World Health Organization (WHO). One prominent cause is complicated obstructed labor, also known as labor dystocia. This condition arises when the baby fails to navigate the birth canal despite normal uterine contractions. Therefore, understanding this complex physiological process is essential for improving diagnosis, optimizing clinical interventions, and defining predictive and preventive strategies. Currently, due to the complexity of experimental protocols and associated ethical issues, computational modeling and simulation of childbirth have emerged as the most promising solutions to achieve these objectives. However, it is crucial to quantify the significant influence of inherent uncertainties in the parameters and behaviors of the human pelvic system and their propagation through simulations to establish reliable indicators for clinical decision-making. Specifically, epistemic uncertainties due to lack of knowledge and aleatoric uncertainties due to intrinsic variability in physical domain geometries, material properties, and loads are often not fully understood and are frequently overlooked in current literature on childbirth computational modeling and simulation.This PhD thesis addresses three original contributions aimed at overcoming these challenges: 1) development and evaluation of a computational workflow for the uncertainty quantification of hyperelastic properties of the soft tissue using precise and imprecise probabilities; 2) extrapolation of the developed protocol for the uncertainty quantification of the active uterine contraction during the second stage of labor simulation; and 3) development and evaluation of a fetus descent simulation with the active uterine contraction using MRI-based observations and associated uncertainty quantification process.This thesis pays the way to a more reliable childbirth modeling and simulation under passive and active uterine contractions. In fact, the developed computational protocols could be extrapolated into a patient-specific modeling and simulation to identify the risk factors and associated strategies for vaginal delivery complications in a straightforward manner. Finally, the investigation of stochastic finite element formulation will allow to improve the computational cost for the uncertainty quantification process
Elfverson, Daniel. « Multiscale Methods and Uncertainty Quantification ». Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262354.
Texte intégralParkinson, Matthew. « Uncertainty quantification in Radiative Transport ». Thesis, University of Bath, 2019. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767610.
Texte intégralCarson, J. « Uncertainty quantification in palaeoclimate reconstruction ». Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29076/.
Texte intégralBoopathy, Komahan. « Uncertainty Quantification and Optimization Under Uncertainty Using Surrogate Models ». University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1398302731.
Texte intégralKalmikov, Alexander G. « Uncertainty Quantification in ocean state estimation ». Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79291.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (p. 158-160).
Quantifying uncertainty and error bounds is a key outstanding challenge in ocean state estimation and climate research. It is particularly difficult due to the large dimensionality of this nonlinear estimation problem and the number of uncertain variables involved. The "Estimating the Circulation and Climate of the Oceans" (ECCO) consortium has developed a scalable system for dynamically consistent estimation of global time-evolving ocean state by optimal combination of ocean general circulation model (GCM) with diverse ocean observations. The estimation system is based on the "adjoint method" solution of an unconstrained least-squares optimization problem formulated with the method of Lagrange multipliers for fitting the dynamical ocean model to observations. The dynamical consistency requirement of ocean state estimation necessitates this approach over sequential data assimilation and reanalysis smoothing techniques. In addition, it is computationally advantageous because calculation and storage of large covariance matrices is not required. However, this is also a drawback of the adjoint method, which lacks a native formalism for error propagation and quantification of assimilated uncertainty. The objective of this dissertation is to resolve that limitation by developing a feasible computational methodology for uncertainty analysis in dynamically consistent state estimation, applicable to the large dimensionality of global ocean models. Hessian (second derivative-based) methodology is developed for Uncertainty Quantification (UQ) in large-scale ocean state estimation, extending the gradient-based adjoint method to employ the second order geometry information of the model-data misfit function in a high-dimensional control space. Large error covariance matrices are evaluated by inverting the Hessian matrix with the developed scalable matrix-free numerical linear algebra algorithms. Hessian-vector product and Jacobian derivative codes of the MIT general circulation model (MITgcm) are generated by means of algorithmic differentiation (AD). Computational complexity of the Hessian code is reduced by tangent linear differentiation of the adjoint code, which preserves the speedup of adjoint checkpointing schemes in the second derivative calculation. A Lanczos algorithm is applied for extracting the leading rank eigenvectors and eigenvalues of the Hessian matrix. The eigenvectors represent the constrained uncertainty patterns. The inverse eigenvalues are the corresponding uncertainties. The dimensionality of UQ calculations is reduced by eliminating the uncertainty null-space unconstrained by the supplied observations. Inverse and forward uncertainty propagation schemes are designed for assimilating observation and control variable uncertainties, and for projecting these uncertainties onto oceanographic target quantities. Two versions of these schemes are developed: one evaluates reduction of prior uncertainties, while another does not require prior assumptions. The analysis of uncertainty propagation in the ocean model is time-resolving. It captures the dynamics of uncertainty evolution and reveals transient and stationary uncertainty regimes. The system is applied to quantifying uncertainties of Antarctic Circumpolar Current (ACC) transport in a global barotropic configuration of the MITgcm. The model is constrained by synthetic observations of sea surface height and velocities. The control space consists of two-dimensional maps of initial and boundary conditions and model parameters. The size of the Hessian matrix is 0(1010) elements, which would require 0(60GB) of uncompressed storage. It is demonstrated how the choice of observations and their geographic coverage determines the reduction in uncertainties of the estimated transport. The system also yields information on how well the control fields are constrained by the observations. The effects of controls uncertainty reduction due to decrease of diagonal covariance terms are compared to dynamical coupling of controls through off-diagonal covariance terms. The correlations of controls introduced by observation uncertainty assimilation are found to dominate the reduction of uncertainty of transport. An idealized analytical model of ACC guides a detailed time-resolving understanding of uncertainty dynamics. Keywords: Adjoint model uncertainty, sensitivity, posterior error reduction, reduced rank Hessian matrix, Automatic Differentiation, ocean state estimation, barotropic model, Drake Passage transport.
by Alexander G. Kalmikov.
Ph.D.
Malenova, Gabriela. « Uncertainty quantification for high frequency waves ». Licentiate thesis, KTH, Numerisk analys, NA, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186287.
Texte intégralQC 20160510
Roy, Pamphile. « Uncertainty quantification in high dimensional problems ». Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0038.
Texte intégralUncertainties are predominant in the world that we know. Referring therefore to a nominal value is too restrictive, especially when it comes to complex systems. Understanding the nature and the impact of these uncertainties has become an important aspect of engineering work. On a societal point of view, uncertainties play a role in terms of decision-making. From the European Commission through the Better Regulation Guideline, impact assessments are now advised to take uncertainties into account. In order to understand the uncertainties, the mathematical field of uncertainty quantification has been formed. UQ encompasses a large palette of statistical tools and it seeks to link a set of input perturbations on a system (design of experiments) towards a quantity of interest. The purpose of this work is to propose improvements on various methodological aspects of uncertainty quantification applied to costly numerical simulations. This is achieved by using existing methods with a multi-strategy approach but also by creating new methods. In this context, novel sampling and resampling approaches have been developed to better capture the variability of the physical phenomenon when dealing with a high number of perturbed inputs. These allow to reduce the number of simulation required to describe the system. Moreover, novel methods are proposed to visualize uncertainties when dealing with either a high dimensional input parameter space or a high dimensional quantity of interest. The developed methods can be used in various fields like hydraulic modelling and aerodynamic modelling. Their capabilities are demonstrated in realistic systems using well established computational fluid dynamics tools. Lastly, they are not limited to the use of numerical experiments and can be used equally for real experiments
Alvarado, Martin Guillermo. « Quantification of uncertainty during history matching ». Texas A&M University, 2003. http://hdl.handle.net/1969/463.
Texte intégralJimenez, Edwin. « Uncertainty quantification of nonlinear stochastic phenomena ». Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-11092009-161351/.
Texte intégralAdvisor: M.Y. Hussaini, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed on Mar. 16, 2010). Document formatted into pages; contains xii, 113 pages. Includes bibliographical references.
Livres sur le sujet "Uncertainly quantification"
Soize, Christian. Uncertainty Quantification. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0.
Texte intégralSullivan, T. J. Introduction to Uncertainty Quantification. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23395-6.
Texte intégralGhanem, Roger, David Higdon et Houman Owhadi, dir. Handbook of Uncertainty Quantification. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-11259-6.
Texte intégralSouza de Cursi, Eduardo. Uncertainty Quantification using R. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17785-9.
Texte intégralSouza de Cursi, Eduardo. Uncertainty Quantification with R. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-48208-3.
Texte intégralLe Maître, O. P., et Omar M. Knio. Spectral Methods for Uncertainty Quantification. Dordrecht : Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3520-2.
Texte intégralDienstfrey, Andrew M., et Ronald F. Boisvert, dir. Uncertainty Quantification in Scientific Computing. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32677-6.
Texte intégralMcClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0.
Texte intégralBijl, Hester, Didier Lucor, Siddhartha Mishra et Christoph Schwab, dir. Uncertainty Quantification in Computational Fluid Dynamics. Cham : Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00885-1.
Texte intégralBardsley, Johnathan M. Computational Uncertainty Quantification for Inverse Problems. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975383.
Texte intégralChapitres de livres sur le sujet "Uncertainly quantification"
Soize, Christian. « Fundamental Notions in Stochastic Modeling of Uncertainties and Their Propagation in Computational Models ». Dans Uncertainty Quantification, 1–15. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_1.
Texte intégralSoize, Christian. « Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media ». Dans Uncertainty Quantification, 245–300. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_10.
Texte intégralSoize, Christian. « Elements of Probability Theory ». Dans Uncertainty Quantification, 17–40. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_2.
Texte intégralSoize, Christian. « Markov Process and Stochastic Differential Equation ». Dans Uncertainty Quantification, 41–59. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_3.
Texte intégralSoize, Christian. « MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors ». Dans Uncertainty Quantification, 61–76. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_4.
Texte intégralSoize, Christian. « Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties ». Dans Uncertainty Quantification, 77–132. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_5.
Texte intégralSoize, Christian. « Brief Overview of Stochastic Solvers for the Propagation of Uncertainties ». Dans Uncertainty Quantification, 133–39. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_6.
Texte intégralSoize, Christian. « Fundamental Tools for Statistical Inverse Problems ». Dans Uncertainty Quantification, 141–53. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_7.
Texte intégralSoize, Christian. « Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics ». Dans Uncertainty Quantification, 155–216. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_8.
Texte intégralSoize, Christian. « Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design ». Dans Uncertainty Quantification, 217–43. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_9.
Texte intégralActes de conférences sur le sujet "Uncertainly quantification"
Misaka, Takashi, Shigeru Obayashi et Shinkyu Jeong. « Uncertainly Quantification of Lidar-Derived Wake Vortex Parameters with/without Data Assimilation (Invited) ». Dans 8th AIAA Atmospheric and Space Environments Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3271.
Texte intégralZhang, Qian, Shenren Xu, Xianjun Yu, Jiaxin Liu, Dingxi Wang et Xiuquan Huang. « Quantification of Compressor Aerodynamic Performance Deviation due to Manufacturing Uncertainty Using the Adjoint Method ». Dans GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-59.
Texte intégralLee, Nian-Ze, Yen-Shi Wang et Jie-Hong R. Jiang. « Solving Stochastic Boolean Satisfiability under Random-Exist Quantification ». Dans Twenty-Sixth International Joint Conference on Artificial Intelligence. California : International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/96.
Texte intégralKotteda, V. M. Krushnarao, Anitha Kommu, Vinod Kumar et William Spotz. « Uncertainty Quantification of a Fluidized Bed Reactor ». Dans ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4844.
Texte intégralJayaraman, Buvana, Manas Khurana, Andrew Wissink et Rohit Jain. « Uncertainty Quantification Approach for Rotorcraft Simulations ». Dans Vertical Flight Society 78th Annual Forum & Technology Display. The Vertical Flight Society, 2022. http://dx.doi.org/10.4050/f-0078-2022-17462.
Texte intégralBudzien, Joanne, James Byerly, Rob Aulwes, Rao Garimella, Angela Herring et Jon Woodring. « Linking Material Models Between Codes : Establishing Thermodynamic Consistency ». Dans ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86808.
Texte intégralEça, L., K. Dowding et P. J. Roache. « On the Application of the Area Metric to Validation Exercises of Stochastic Simulations ». Dans ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86809.
Texte intégralDavis, Brad, Gregory Langone et Nicholas Reisweber. « Sensitivity Analysis and Bayesian Calibration of a Holmquist-Johnson-Cook Material Model for Cellular Concrete Subjected to Impact Loading ». Dans ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86800.
Texte intégral« VVUQ2022 Front Matter ». Dans ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-fm1.
Texte intégralKirsch, Jared, Nima Fathi et Joshua Hubbard. « Validation Analysis of Medium-Scale Methanol Pool Fire ». Dans ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86806.
Texte intégralRapports d'organisations sur le sujet "Uncertainly quantification"
Caldeira, Joao. Deeply Uncertain : Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms. Office of Scientific and Technical Information (OSTI), avril 2020. http://dx.doi.org/10.2172/1623354.
Texte intégralUrban, Nathan Mark. Climate Uncertainty Quantification at LANL. Office of Scientific and Technical Information (OSTI), avril 2016. http://dx.doi.org/10.2172/1250690.
Texte intégralThiagarajan, J. Uncertainty Quantification in Scientific ML. Office of Scientific and Technical Information (OSTI), septembre 2020. http://dx.doi.org/10.2172/1670557.
Texte intégralStracuzzi, David, Maximillian Chen, Michael Darling, Matthew Peterson et Charlie Vollmer. Uncertainty Quantification for Machine Learning. Office of Scientific and Technical Information (OSTI), juin 2017. http://dx.doi.org/10.2172/1733262.
Texte intégralKarpius, Peter. Nuclide Identification, Quantification, and Uncertainty. Office of Scientific and Technical Information (OSTI), mai 2021. http://dx.doi.org/10.2172/1782632.
Texte intégralCroft, Stephen, et Andrew Nicholson. OR14-V-Uncertainty-PD2La Uncertainty Quantification Workshop Report. Office of Scientific and Technical Information (OSTI), juillet 2017. http://dx.doi.org/10.2172/1784220.
Texte intégralSeifried, Jeffrey E. Adjoint-Based Uncertainty Quantification with MCNP. Office of Scientific and Technical Information (OSTI), septembre 2011. http://dx.doi.org/10.2172/1110395.
Texte intégralSrinivasan, Gowri. Need for Uncertainty Quantification in Predictions. Office of Scientific and Technical Information (OSTI), juillet 2015. http://dx.doi.org/10.2172/1191117.
Texte intégralDe Bord, Sarah. Tutorial examples for uncertainty quantification methods. Office of Scientific and Technical Information (OSTI), août 2015. http://dx.doi.org/10.2172/1213490.
Texte intégralWilliams, Mark L. Whitepaper on Uncertainty Quantification for MPACT. Office of Scientific and Technical Information (OSTI), décembre 2015. http://dx.doi.org/10.2172/1255677.
Texte intégral