Articles de revues sur le sujet « ULTRANARROW LASER »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : ULTRANARROW LASER.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « ULTRANARROW LASER ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ou, Zhonghua, Xiaoyi Bao, Yang Li, Bhavaye Saxena et Liang Chen. « Ultranarrow Linewidth Brillouin Fiber Laser ». IEEE Photonics Technology Letters 26, no 20 (15 octobre 2014) : 2058–61. http://dx.doi.org/10.1109/lpt.2014.2346783.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhang, Wei, Liron Stern, David Carlson, Douglas Bopp, Zachary Newman, Songbai Kang, John Kitching et Scott B. Papp. « Ultranarrow Linewidth Photonic‐Atomic Laser ». Laser & ; Photonics Reviews 14, no 4 (mars 2020) : 1900293. http://dx.doi.org/10.1002/lpor.201900293.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cromwell, E., T. Trickl, Y. T. Lee et A. H. Kung. « Ultranarrow bandwidth VUV‐XUV laser system ». Review of Scientific Instruments 60, no 9 (septembre 1989) : 2888–92. http://dx.doi.org/10.1063/1.1140623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hu, Zhilin, et Xizhi Zeng. « A laser pumped ultranarrow bandwidth optical filter ». Applied Physics Letters 73, no 15 (12 octobre 1998) : 2069–71. http://dx.doi.org/10.1063/1.122380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chang, C. H., P. C. Peng, R. K. Shiu, J. J. Jhang, Y. H. Chen et T. L. Chang. « Multiwavelength Laser With Adjustable Ultranarrow Wavelength Spacing ». IEEE Photonics Journal 8, no 4 (août 2016) : 1–7. http://dx.doi.org/10.1109/jphot.2016.2580941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rossi, Leonardo, Filippo Bastianini et Gabriele Bolognini. « Stabilized, short cavity Brillouin ring laser source design for fiber sensing applications ». EPJ Web of Conferences 255 (2021) : 12013. http://dx.doi.org/10.1051/epjconf/202125512013.

Texte intégral
Résumé :
A new pump-seeded, short-cavity Brillouin ring laser source layout intended for Brillouin sensing applications is showcased, showing increased high maximum output (1.5 mW), a strong linewidth narrowing effect (producing light with a linewidth of 10 kHz) and limited RIN (~-145 dB/Hz), providing an ultranarrow, highly stable BRL source that can also be employed as a pump-probe source for BOTDA applications.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Zhi, et Michiko Minty. « Ultranarrow bandwidth pulses from a regeneratively mode-locked fiber laser ». Optics Express 29, no 16 (23 juillet 2021) : 25358. http://dx.doi.org/10.1364/oe.433642.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zulkifli, M. Z., F. D. Muhammad, M. F. Mohd Azri, M. K. Mohd Yusof, K. Z. Hamdan, S. A. Samsudin et M. Yasin. « Tunable passively Q-switched ultranarrow linewidth erbium-doped fiber laser ». Results in Physics 16 (mars 2020) : 102949. http://dx.doi.org/10.1016/j.rinp.2020.102949.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liang, W., V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel et L. Maleki. « Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser ». Optics Letters 35, no 16 (13 août 2010) : 2822. http://dx.doi.org/10.1364/ol.35.002822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jihong Geng, S. Staines, Zuolan Wang, Jie Zong, M. Blake et Shibin Jiang. « Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth ». IEEE Photonics Technology Letters 18, no 17 (septembre 2006) : 1813–15. http://dx.doi.org/10.1109/lpt.2006.881145.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

González-Rubio, Guillermo, Pablo Díaz-Núñez, Antonio Rivera, Alejandro Prada, Gloria Tardajos, Jesús González-Izquierdo, Luis Bañares et al. « Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances ». Science 358, no 6363 (2 novembre 2017) : 640–44. http://dx.doi.org/10.1126/science.aan8478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Bloom, S. H., P. A. Searcy, K. Choi, R. Kremer et Eric Korevaar. « Helicopter plume detection by using an ultranarrow-band noncoherent laser Doppler velocimeter ». Optics Letters 18, no 3 (1 février 1993) : 244. http://dx.doi.org/10.1364/ol.18.000244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chen, Mo, Zhou Meng, Yichi Zhang, Jianfei Wang et Wei Chen. « Ultranarrow-Linewidth Brillouin/Erbium Fiber Laser Based on 45-cm Erbium-Doped Fiber ». IEEE Photonics Journal 7, no 1 (février 2015) : 1–6. http://dx.doi.org/10.1109/jphot.2015.2399354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yamaguchi, A., S. Uetake et Y. Takahashi. « A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms ». Applied Physics B 91, no 1 (26 février 2008) : 57–60. http://dx.doi.org/10.1007/s00340-008-2953-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Shevy, Yaakov, et Hua Deng. « Frequency-stable and ultranarrow-linewidth semiconductor laser locked directly to an atomic-cesium transition ». Optics Letters 23, no 6 (15 mars 1998) : 472. http://dx.doi.org/10.1364/ol.23.000472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Böttger, Thomas, G. J. Pryde, C. W. Thiel et R. L. Cone. « Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4 ». Journal of Luminescence 127, no 1 (novembre 2007) : 83–88. http://dx.doi.org/10.1016/j.jlumin.2007.02.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Verkerk, P., D. Grand-Clément, F. Tréhin et G. Grynberg. « Spectral analysis of an injection-locked flash-lamp pumped dye-laser of ultranarrow linewidth ». Optics Communications 58, no 6 (juillet 1986) : 413–16. http://dx.doi.org/10.1016/0030-4018(86)90321-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Wang, Yunjia, Jianwen Wang et Qiao Wen. « MXene/Graphene Oxide Heterojunction as a Saturable Absorber for Passively Q-Switched Solid-State Pulse Lasers ». Nanomaterials 11, no 3 (12 mars 2021) : 720. http://dx.doi.org/10.3390/nano11030720.

Texte intégral
Résumé :
Owing to their unique characteristics, two-dimensional (2-D) materials and their complexes have become very attractive in photoelectric applications. Two-dimensional heterojunctions, as novel 2-D complex materials, have drawn much attention in recent years. Herein, we propose a 2-D heterojunction composed of MXene (Ti2CTx) materials and graphene oxide (GO), and apply it to an Nd:YAG solid-state laser as a saturable absorber (SA) for passive Q-switching. Our results suggest that a nano-heterojunction between MXene and GO was achieved based on morphological characterization, and the advantages of a broadband response, higher stability in GO, and strong interaction with light waves in MXene could be combined. In the passively Q-switched laser study, the single-pulse energy was measured to be approximately 0.79 µJ when the pump power was 3.72 W, and the corresponding peak power was approximately 7.25 W. In addition, the generation of a stable ultrashort pulse down to 109 ns was demonstrated, which is the narrowest pulse among Q-switched solid-state lasers using a 2-D heterojunction SA. Our work indicates that the MXene–GO nano-heterojunction could operate as a promising SA for ultrafast systems with ultrahigh pulse energy and ultranarrow pulse duration. We believe that this work opens up a new approach to designing 2-D heterojunctions and provides insight into the formation of new 2-D materials with desirable photonic properties.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Zhang Chengzhu, 张成竹, et 陈辉 Chen Hui. « Effect of Microstructures of Ultranarrow Gap Laser Welded B950CF Steel Joints on Residual Stress Distribution ». Chinese Journal of Lasers 48, no 6 (2021) : 0602101. http://dx.doi.org/10.3788/cjl202148.0602101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chen, Xiaopei, Ming Han, Yizheng Zhu, Bo Dong et Anbo Wang. « Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement ». Applied Optics 45, no 29 (10 octobre 2006) : 7712. http://dx.doi.org/10.1364/ao.45.007712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bastard, Lionel. « Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications ». Optical Engineering 42, no 10 (1 octobre 2003) : 2800. http://dx.doi.org/10.1117/1.1600729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cappellini, G., P. Lombardi, M. Mancini, G. Pagano, M. Pizzocaro, L. Fallani et J. Catani. « A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition ». Review of Scientific Instruments 86, no 7 (juillet 2015) : 073111. http://dx.doi.org/10.1063/1.4927165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Okai, M., M. Suzuki et T. Taniwatari. « Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth ». Electronics Letters 29, no 19 (1993) : 1696. http://dx.doi.org/10.1049/el:19931128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ahmad, H., N. F. Razak, M. Z. Zulkifli, M. F. Ismail, Y. Munajat et S. W. Harun. « Tunable single Stokes extraction from 20 GHz Brillouin fiber laser using ultranarrow bandwidth optical filter ». Applied Optics 53, no 29 (10 octobre 2014) : 6944. http://dx.doi.org/10.1364/ao.53.006944.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Yamaguchi, A., S. Uetake, S. Kato, H. Ito et Y. Takahashi. « High-resolution laser spectroscopy of a Bose–Einstein condensate using the ultranarrow magnetic quadrupole transition ». New Journal of Physics 12, no 10 (5 octobre 2010) : 103001. http://dx.doi.org/10.1088/1367-2630/12/10/103001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ahmad, H., N. F. Razak, M. Z. Zulkifli, F. D. Muhammad, Y. Munajat et S. W. Harun. « Closely spaced dual-wavelength fiber laser using an ultranarrow bandwidth optical filter for low radio frequency generation ». Applied Optics 53, no 19 (23 juin 2014) : 4123. http://dx.doi.org/10.1364/ao.53.004123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Fang, Naiwen, Erjun Guo, Kai Xu, Ruisheng Huang, Yiming Ma, Caiyou Zeng, Yicheng Yang, Jilin Xie et Hao Cao. « Effect of Shielding Gas on Microstructures and Mechanical Properties of TC4 Titanium Alloy Ultranarrow Gap Welded Joint by Laser Welding with Filler Wire ». Advances in Materials Science and Engineering 2021 (31 juillet 2021) : 1–10. http://dx.doi.org/10.1155/2021/9582421.

Texte intégral
Résumé :
A 20 mm thick TC4 titanium alloy plate was welded by ultranarrow gap laser welding with filler wire with Ar and He as shielding gas, respectively. A characterization analysis of the microstructures and mechanical properties of the welded joint was conducted with OM, SEM, XRD, and EBSD and through the microhardness test and tensile test. The results showed that HAZ of the welded joint formed with Ar as shielding gas was much wider than that with He, and weld microstructure composition with the two shielding gases was basically consistent; phase boundary of the weld metal obtained with Ar was clearer, with a larger misorientation between the laths; α′ martensite lath in weld metal prepared with He showed obvious preferred orientation distribution, and α′ martensite microstructure was much finer; the misorientation of α′ phase grain boundary of weld microstructure prepared with Ar was slightly less distributed in high angle grain boundary than that with He; tensile property of the welded joint prepared with He was better than that with Ar; the hardness of each zone of welded joint prepared with He was less fluctuated and the hardness value measured was slightly higher than that with Ar.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Li Xia, P. Shum, YiXin Wang et Tee Hiang Cheng. « Stable triple-wavelength fiber ring laser with ultranarrow wavelength spacing using a triple-transmission-band fiber Bragg grating filter ». IEEE Photonics Technology Letters 18, no 20 (octobre 2006) : 2162–64. http://dx.doi.org/10.1109/lpt.2006.883183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Xia, L., P. Shum, J. Zhou et T. H. Cheng. « Eight-wavelength switchable fiber ring laser with ultranarrow wavelength spacing using a quadruple-transmission-band polarization maintaining fiber Bragg grating ». Applied Physics B 88, no 2 (20 juin 2007) : 185–88. http://dx.doi.org/10.1007/s00340-007-2696-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chen, Xiangfei, Jianping Yao et Zhichao Deng. « Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser ». Optics Letters 30, no 16 (15 août 2005) : 2068. http://dx.doi.org/10.1364/ol.30.002068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Xia, L., P. Shum, M. Yan, Y. Wang et T. H. Cheng. « Tunable and Switchable Fiber Ring Laser Among Four Wavelengths With Ultranarrow Wavelength Spacing Using a Quadruple-Transmission-Band Fiber Bragg Grating Filter ». IEEE Photonics Technology Letters 18, no 19 (octobre 2006) : 2038–40. http://dx.doi.org/10.1109/lpt.2006.883326.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zhu, Hui. « Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser ». Optical Engineering 47, no 9 (1 septembre 2008) : 094301. http://dx.doi.org/10.1117/1.2976431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Christensen, C. Paul, B. J. Feldman et A. Huston. « Ultranarrow linewidth waveguide excimer lasers ». Applied Optics 28, no 17 (1 septembre 1989) : 3771. http://dx.doi.org/10.1364/ao.28.003771.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bobretsova, Yu K., D. A. Veselov, A. A. Klimov, L. S. Vavilova, V. V. Shamakhov, S. O. Slipchenko et N. A. Pikhtin. « Ultranarrow-waveguide AlGaAs/GaAs/InGaAs lasers ». Quantum Electronics 49, no 7 (15 juillet 2019) : 661–65. http://dx.doi.org/10.1070/qel16944.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yin, Yue-Xin, Xiao-Jie Yin, Xiao-Pei Zhang, Guan-Wen Yan, Yue Wang, Yuan-Da Wu, Jun-Ming An, Liang-Liang Wang et Da-Ming Zhang. « High-Q-Factor Silica-Based Racetrack Microring Resonators ». Photonics 8, no 2 (6 février 2021) : 43. http://dx.doi.org/10.3390/photonics8020043.

Texte intégral
Résumé :
In this paper, ultrahigh-Q factor racetrack microring resonators (MRRs) are demonstrated based on silica planar lightwave circuits (PLCs) platform. A loaded ultrahigh-Q factor Qload of 1.83 × 106 is obtained. The MRRs are packaged with fiber-to-fiber loss of ~5 dB. A notch depth of 3 dB and ~137 pm FSR are observed. These MRRs show great potential in optical communications as filters. Moreover, the devices are suitable used in monolithic integration and hybrid integration with other devices, especially in external cavity lasers (ECLs) to realize ultranarrow linewidths.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Okai, Makoto, Makoto Suzuki, Tuyoshi Taniwatari et Naoki Chinone. « Corrugation-Pitch-Modulated Distributed Feedback Lasers with Ultranarrow Spectral Linewidth ». Japanese Journal of Applied Physics 33, Part 1, No. 5A (15 mai 1994) : 2563–70. http://dx.doi.org/10.1143/jjap.33.2563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Karachinsky, L. Ya, I. I. Novikov, Yu M. Shernyakov, S. M. Kuznetsov, N. Yu Gordeev, M. V. Maximov, P. S. Kop’ev et al. « High power GaAs∕AlGaAs lasers (λ∼850nm) with ultranarrow vertical beam divergence ». Applied Physics Letters 89, no 23 (4 décembre 2006) : 231114. http://dx.doi.org/10.1063/1.2403906.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Sadeghi, S. M., et W. Li. « Inversionless distributed feedback semiconductor lasers : Ultranarrow linewidth and immunity against spatial hole burning ». Journal of Applied Physics 104, no 1 (juillet 2008) : 014507. http://dx.doi.org/10.1063/1.2952530.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kettler, T., K. Posilovic, L. Ya Karachinsky, P. Ressel, A. Ginolas, J. Fricke, U. W. Pohl et al. « High-Brightness and Ultranarrow-Beam 850-nm GaAs/AlGaAs Photonic Band Crystal Lasers and Single-Mode Arrays ». IEEE Journal of Selected Topics in Quantum Electronics 15, no 3 (2009) : 901–8. http://dx.doi.org/10.1109/jstqe.2009.2013179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wang, Haotian, Rui Xu, Jianing Zhang, Wei Zhou et Deyuan Shen. « Ultranarrow filter based on Fano resonance in a single cylindrical microresonator for single-longitudinal-mode fiber lasers ». Optics Express 27, no 16 (25 juillet 2019) : 22717. http://dx.doi.org/10.1364/oe.27.022717.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Pietrzak, A., P. Crump, H. Wenzel, G. Erbert, F. Bugge et G. Tränkle. « Combination of Low-Index Quantum Barrier and Super Large Optical Cavity Designs for Ultranarrow Vertical Far-Fields From High-Power Broad-Area Lasers ». IEEE Journal of Selected Topics in Quantum Electronics 17, no 6 (novembre 2011) : 1715–22. http://dx.doi.org/10.1109/jstqe.2011.2109939.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bai, Zhenxu, Zhongan Zhao, Yaoyao Qi, Jie Ding, Sensen Li, Xiusheng Yan, Yulei Wang et Zhiwei Lu. « Narrow-Linewidth Laser Linewidth Measurement Technology ». Frontiers in Physics 9 (24 novembre 2021). http://dx.doi.org/10.3389/fphy.2021.768165.

Texte intégral
Résumé :
A narrow-linewidth laser with excellent temporal coherence is an important light source for microphysics, space detection, and high-precision measurement. An ultranarrow-linewidth output with a linewidth as narrow as subhertz has been generated with a theoretical coherence length over millions of kilometers. Traditional grating spectrum measurement technology has a wide wavelength scanning range and an extended dynamic range, but the spectral resolution can only reach the gigahertz level. The spectral resolution of a high-precision Fabry–Pérot interferometer can only reach the megahertz level. With the continuous improvement of laser coherence, the requirements for laser linewidth measurement technology are increasing, which also promotes the rapid development of narrow-linewidth lasers and their applications. In this article, narrow-linewidth measurement methods and their research progress are reviewed to provide a reference for researchers engaged in the development, measurement, and applications of narrow-linewidth lasers.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bolognini, Gabriele, Filippo Bastianini et Leonardo Rossi. « Study of injection-locked stabilized, short cavity Brillouin ring laser source design for fiber sensing applications ». Journal of the European Optical Society-Rapid Publications, 28 juillet 2022. http://dx.doi.org/10.1051/jeos/2022005.

Texte intégral
Résumé :
A new pump-seeded, short-cavity Brillouin ring laser source layout intended for Brillouin sensing applications is showcased, showing increased high maximum output (1.5 mW), a strong linewidth narrowing effect (producing light with a linewidth of 10 kHz) and limited RIN (~-145 dB/Hz), providing an ultranarrow, highly stable BRL source that can also be employed as a pump-probe source for BOTDA applications.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lin, Jintian, Saeed Farajollahi, Zhiwei Fang, Ni Yao, Renhong Gao, Jianglin Guan, Li Deng et al. « Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser ». Advanced Photonics 4, no 03 (3 mai 2022). http://dx.doi.org/10.1117/1.ap.4.3.036001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

« Spin polarization of 87Rb atoms with ultranarrow linewidth diode laser : Numerical simulation ». AIP Advances 6, no 8 (août 2016) : 085110. http://dx.doi.org/10.1063/1.4961375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Lv, Q. Z., E. Raicher, C. H. Keitel et K. Z. Hatsagortsyan. « High-Brilliance Ultranarrow-Band X Rays via Electron Radiation in Colliding Laser Pulses ». Physical Review Letters 128, no 2 (13 janvier 2022). http://dx.doi.org/10.1103/physrevlett.128.024801.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Martin, M. J., D. Meiser, J. W. Thomsen, Jun Ye et M. J. Holland. « Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization ». Physical Review A 84, no 6 (5 décembre 2011). http://dx.doi.org/10.1103/physreva.84.063813.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Petrov, Andrey, Grigory Mikhailovsky, Alexander Gorbatchev, Maxim Odnoblyudov, Joona Rissanen, Valery Filippov et Regina Gumenyuk. « High power ultranarrow linewidth picosecond laser system based on tapered fiber amplifier and gain-switched DFB laser diode ». Journal of Lightwave Technology, 2022, 1. http://dx.doi.org/10.1109/jlt.2022.3149350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Li, Lingzhi, Yuan Cao, Yanyan Zhi, Jiejun Zhang, Yuting Zou, Xinhuan Feng, Bai-Ou Guan et Jianping Yao. « Polarimetric parity-time symmetry in a photonic system ». Light : Science & ; Applications 9, no 1 (27 septembre 2020). http://dx.doi.org/10.1038/s41377-020-00407-3.

Texte intégral
Résumé :
Abstract Parity-time (PT) symmetry has attracted intensive research interest in recent years. PT symmetry is conventionally implemented between two spatially distributed subspaces with identical localized eigenfrequencies and complementary gain and loss coefficients. The implementation is complicated. In this paper, we propose and demonstrate that PT symmetry can be implemented between two subspaces in a single spatial unit based on optical polarimetric diversity. By controlling the polarization states of light in the single spatial unit, the localized eigenfrequencies, gain, loss, and coupling coefficients of two polarimetric loops can be tuned, leading to PT symmetry breaking. As a demonstration, a fiber ring laser based on this concept supporting stable and single-mode lasing without using an ultranarrow bandpass filter is implemented.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Guan, Xiaolei, Wei Zhuang, Tiantian Shi, Jianxiang Miao, Jia Zhang, Jingbiao Chen et Bin Luo. « Cold-atom optical filtering enhanced by optical pumping ». Frontiers in Physics 10 (9 décembre 2022). http://dx.doi.org/10.3389/fphy.2022.1090483.

Texte intégral
Résumé :
Atomic optical filters such as Faraday anomalous dispersion optical filters (FADOFs) or similar technologies can achieve very narrow optical bandwidth close to the scale of atomic linewidth, which can be greatly reduced in cold atoms. However, limited by the number of cold atoms and the size of the cold atomic cloud, the number of atoms interacting with the laser is reduced, and the transmission remains as low as 2%. In this work, we introduce the optical pumping into the cold atomic optical filter to solve this problem. Circular polarized optical pumping can produce polarization of the atomic ensemble and induce dichromatic as well as the Faraday rotation. We demonstrate a cold-atom optical filter which operates on the 87Rb 52S1/2 (F=2) to 52P3/2 (F′=2) transition at 780 nm. The filter achieves an ultranarrow bandwidth of 6.6(4) MHz, and its peak transmission is 15.6%, which is nearly 14 times higher than that of the cold-atom optical filter realized by Faraday magneto-optic effect. This scheme can be extended to almost all kinds of atomic optical filters and may find applications in self-stabilizing laser and active optical clock.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie