Littérature scientifique sur le sujet « ULTRAFINE PARTICLESIN »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « ULTRAFINE PARTICLESIN ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "ULTRAFINE PARTICLESIN"

1

Neuberger, Manfred. « Ultrafine Particles in Viennese Gastronomy after Introduction of a National Smoking Ban ». Advances in Clinical Toxicology 8, no 2 (2023) : 1–9. http://dx.doi.org/10.23880/act-16000264.

Texte intégral
Résumé :
Background: Ultrafine particles have a substantial influence on the pathogenesis of diseases from ambient air pollution including personal and indoor tobacco smoke. In public rooms such as gastronomy venues without complete smoking ban, the main source of ultrafine particles is cigarette smoke. Objectives: In accordance with the research question if the legislative smoking ban reduced ultrafine particle pollution in Viennese bars, cafés and pubs, the effectiveness of this ban for the protection of nonsmokers was evaluated. As a further objective, the comparison with the ultrafine particle concentrations in smoking and non-smoking areas before and after the general smoking ban was relevant, whereby the data from the survey period April to October 2019 were used. Hereby, the effectiveness of the measure could be derived from the direct comparison of the earlier and the current recordings. Methods: 2 years after the national Non-Smoking Protection Law in November 2019 had gone into force, the indoor exposures with ultrafine particles were surveyed in 22 Viennese bars/discotheques, 5 cafés and 12 pubs/restaurants and bars. By unannounced and undercover measurements over 20 minutes each, these well frequented gastronomy locations were investigated between October 2021 and February 2022. The concentration of ultrafine particles (PNC, pt/cm³), the corresponding diameter (10 - 300 nm) and lung deposited surface area (LDSA) were recorded via Miniature Diffusion Size Classifier (miniDiSC®) in all three types of locations. Results: The ultrafine particle loadings in 2021/22 in the three location types were not significantly different any more. Two years after the ban the median PNC (pt/cm³) was 19,751 in bars, 18,854 in cafés and 19,357 in pubs. The average diameter (AD, nm) was 54.17 in bars, 44.27 in cafés and 52.08 in pubs. For average LDSA (µm²/cm³), the values were 51.65 in bars, 35.76 in cafés, and 60.71 in pubs. 2019 data had shown significantly higher median values for PNC (pt/cm³) for smoking locations at 72,802 versus non-smoking areas at 27,776 and non-smoking locations at 18,854. Similarly, smoking locations showed significantly higher values for AD (nm) at 78 versus non-smoking areas at 62 and non-smoking locations at 52. For average LDSA (µm²/cm³), smoking locations also had the highest values at 402.0 versus non-smoking areas at 108.0 and non-smoking locations at 51.9. From comparison of data, it was possible to derive the UFP concentrations above which a hospitality indoor area - regardless of its declared status - may be classified as polluted by nanoparticles (tobacco smoke): For PNC, 34,435 pt/ cm³, for average diameter 67.45 nm and for LDSA 163.68 µm²/cm³ are proposed as cut-off values. Conclusion: The national smoking ban significantly improved air quality in Viennese hospitality venues. Two years after the ban ultrafines were comparably low and not significantly different between bars, cafés and pubs, whether they were used before for smoking or not. The decrease of ultrafine particle pollution was attributed to regular non-smoking in localities. Some outliers of the present investigation after the smoking ban indicated, that control of compliance with the law has to be continued.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Joo, Song-Yi, Ji-Hee Hwang, Seung-Hon Ham et Ki-Young Lee. « Exposures of Ultrafine Particles for Passengers of Elephant Vehicle in the Seoul Grand Park ». Korean Journal of Environmental Health Sciences 38, no 5 (31 octobre 2012) : 393–97. http://dx.doi.org/10.5668/jehs.2012.38.5.393.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eckert, Kerstin, Edgar Schach, Gunter Gerbeth et Martin Rudolph. « Carrier Flotation : State of the Art and its Potential for the Separation of Fine and Ultrafine Mineral Particles ». Materials Science Forum 959 (juin 2019) : 125–33. http://dx.doi.org/10.4028/www.scientific.net/msf.959.125.

Texte intégral
Résumé :
Critical raw materials (CRMs) are of primary importance for energy storage systems as needed for electromobility. Many mineral deposits which contain CRMs are low-grade ores. To liberate the CRMs, a grinding of the mineral ores to very fine sizes below 20 µm particle size is necessary. However, the present class of industrial flotation plants fail to extract such fine and ultrafine particles. To improve the recovery in fine particle flotation, techniques have been developed which attempt to agglomerate the fine valuable particles into larger aggregates which subsequently can be separated by established technologies such as froth flotation. Carrier flotation is one of these techniques. The present work reviews the state of the art of this technique for the recovery of fines and ultrafines.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Uda, Masahiro. « Ultrafine particles. » Journal of the Japan Welding Society 54, no 6 (1985) : 318–29. http://dx.doi.org/10.2207/qjjws1943.54.318.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

KATO, AKIO. « Ultrafine particles. » Nihon Kessho Gakkaishi 31, no 2 (1989) : 116–18. http://dx.doi.org/10.5940/jcrsj.31.116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hayashi, Chikara. « Ultrafine particles ». Journal of Vacuum Science & ; Technology A : Vacuum, Surfaces, and Films 5, no 4 (juillet 1987) : 1375–84. http://dx.doi.org/10.1116/1.574773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Donaldson, K. « Ultrafine particles ». Occupational and Environmental Medicine 58, no 3 (1 mars 2001) : 211–16. http://dx.doi.org/10.1136/oem.58.3.211.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hayashi, Chikara. « Ultrafine Particles ». Physics Today 40, no 12 (décembre 1987) : 44–51. http://dx.doi.org/10.1063/1.881093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sahni, V. « Ultrafine particles ». British Dental Journal 234, no 3 (10 février 2023) : 136. http://dx.doi.org/10.1038/s41415-023-5563-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Choi, Wonsik. « Indoor and Outdoor Ultrafine Particle Number Concentrations and Deposition Fractions in the Respiratory Tract in a Single-family House near the Major Roadway ». Journal of Korean Society for Atmospheric Environment 37, no 2 (30 avril 2021) : 276–91. http://dx.doi.org/10.5572/kosae.2021.37.2.276.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "ULTRAFINE PARTICLESIN"

1

Washbourne, Martyn Edward. « Bus user exposure to ultrafine particles ». Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hama, Sarkawt Muhammad Lateef. « Ultrafine particles in the urban environment ». Thesis, University of Leicester, 2018. http://hdl.handle.net/2381/42396.

Texte intégral
Résumé :
Ultrafine particles (UFP) are the smallest constituents of atmospheric particulate matter (PM). Until now, their potential adverse effects on human health are of great concern because of their specific properties and acting mechanisms. The work in this thesis focuses on the measurement of UFP and their effect and contribution to air quality in Leicester, UK and a set of cities in North West (NW) Europe. The thesis explores novel work around new particle formation (NPF) events and their association with Lung Deposited Surface Area (LDSA) in an urban environment. A final focus of this thesis was the identification sources are contribute to the PM10 across NW Europe region. Particle number size distribution were measured at two urban background locations (automatic urban and rural network (AURN), and Brookfield (BF)) in Leicester in order to quantify NPF events. Quantification of primary and secondary sources of UFP was undertaken using black carbon as a tracer for the primary UFP in urban areas. At the AURN site, which is influenced by fresh vehicle exhaust emissions, total number concentrations (TNC) was segregated into two components, TNC = N1 + N2. The component N1 represents components directly emitted as particles and compounds which nucleate immediately after emission. The component N2 represents the particles formed during the dilution and cooling of vehicle exhaust emissions and by in situ NPF. Furthermore, the composition of the PM10 was studied at five sites across NW Europe. The samples collected at four urban background, and one industrial sites were analysed for elements, water soluble ions, organic matter, and monosaccharides, and the principal component analysis (PCA) was applied to the data set. Overall, during the measurement period, the frequency of NPF events was 13.3%, and 22.2% at AURN and BF sites, respectively. The percentage of N2 (57%) was greater than the percentage of N1 (43%) for all days at the AURN site. The PCA yielded 5 factors which apportioned the main pollution sources to PM10 concentrations across NW Europe: (1) traffic emissions, (2) secondary inorganic aerosols, (3) organic matter, (4) industrial and sea salt, (5) biomass burning.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vogt, Carsten. « Ultrafine particles in concrete : Influence of ultrafine particles on concrete properties and application to concrete mix design ». Doctoral thesis, KTH, Betongbyggnad, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wells, S. « Preparation and properties of ultrafine magnetic particles ». Thesis, Bangor University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Joutsensaari, Jorma. « Aerosol synthesis of nanostructured, ultrafine fullerene particles / ». Espoo [Finland] : Technical Research Centre of Finland, 1999. http://www.vtt.fi/inf/pdf/publications/1999/P400.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Carnerero, Quintero Cristina. « Dynamics of ultrafine particles and tropospheric ozone episodes ». Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672660.

Texte intégral
Résumé :
Atmospheric aerosol particles, particularly ultrafine particles (UFPs; particles with less than 100 nm in diameter), and tropospheric ozone (O3) are atmospheric pollutants highly influenced by photochemical reactions, i.e., processes initiated by the absorption of solar radiation. High concentrations of ambient UFPs and O3 have important adverse effects on human health and impact on climate. Areas with high insolation and atmospheric dynamics favoring the accumulation of pollutants by vertical recirculation of air masses, such as the Western Mediterranean and other regions of Southern Europe, often register episodes with high concentrations of UFPs and O3, especially in spring and summer. UFPs episodes might be caused by the emission and accumulation of particles or by the photochemical formation of particles from gaseous precursors (new particle formation; NPF). The objective of this thesis is to characterize the relationship between UFPs and O3 in areas and periods with important photochemical activity. More specifically, this thesis aims at (i) identifying the atmospheric patterns causing the episodes, (ii) establishing whether these pollutants are driven by the same processes or occurring in parallel and (iii) describing how UFP concentrations have evolved over the last years. Based on these objectives, we analyzed data gathered during intensive field campaigns of simultaneous surface-level and vertical measurements, as well as long-term series of continuous measurements. Combining these, we focus on evaluating the seasonality and simultaneity of UFPs and O3 episodes, identifying the key contributing atmospheric factors and providing insights on the influence of NPF on the concentration of UFPs. We found that two distinct scenarios govern the formation and transport of UFPs and O3: recirculation of air masses and venting. The occurrence of either scenario is determined by large-scale meteorology, whereas the magnitude of concentrations is modulated by the availability of precursors and local atmospheric and orographic conditions. Our results indicate that acute UFPs episodes are undoubtedly linked with O3 episodes. Yet, the episodes may or may not be simultaneous on the same day. The occurrence of an O3 episode seems to be always concurrent with an UFPs episode caused by accumulation of primary and secondary particles during recirculation periods. However, high UFPs concentrations caused by NPF are mainly occurring with lower (but relatively high in absolute values) O3 concentrations during venting periods. When considering the average annual UFPs concentrations in urban locations, primary traffic emissions have a greater contribution to the total number of particles than NPF. Yet, on days with NPF events, the contribution from NPF to UFPs might be higher than that from primary emissions. Although NPF events do not occur in most of the days, the number of days with NPF events is increasing, probably due to a decreasing trend in the anthropogenic atmospheric emissions in recent years, which caused a decline in the particle sinks. Thus, the contribution of NPF to the number concentration of UFPs is also increasing. The total concentration of UFPs may either increase or decrease, depending on the local conditions and precursor emissions. In urban environments, the decline in anthropogenic emissions causes a direct decrease in the concentration of UFPs. In rural environments, NPF becomes more favorable and the concentration of UFPs increases. This might be related to increasing local biogenic emission of precursors, as well as a reduction of sinks due to a decline in transported anthropogenic emissions. Abatement policies implemented in recent years aiming at decreasing anthropogenic emissions of atmospheric pollutants have had a major impact in the concentration of UFPs at urban environments. However, these policies have not had a significant impact in the regional background, where UFPs have increased.
Els aerosols atmosfèrics, particularment partícules ultrafines (UFPs; partícules de menys de 100 nm de diàmetre), i l'ozó troposfèric (O3) són contaminants atmosfèrics molt influenciats per reaccions fotoquímiques, processos iniciats per l'absorció de radiació solar. Concentracions elevades d'UFPs i O3 en l'ambient tenen importants afectes adversos en la salut humana i impactes en el clima. En àrees amb una alta insolació i dinàmiques atmosfèriques que afavoreixen l'acumulació de contaminants degut a recirculacions verticals de masses d¿aire, com el Mediterrani occidental i altres regions del sud d'Europa, sovint s'enregistren episodis d'altes concentracions d'UFPs i O3, especialment a la primavera i a l¿estiu. Els episodis d¿UFPs poden estar causats per l'emissió i acumulació de partícules o per la formació fotoquímica de partícules a partir de precursors gasosos (formació de partícules noves; NPF). L'objectiu d¿aquesta tesi és caracteritzar la relació entre UFPs i O3 en àrees amb una alta activitat fotoquímica. Concretament, aquesta tesi té com objectius identificar els patrons atmosfèrics que causen els episodis, determinant si aquests contaminants estan regits pels mateixos processos o bé ocorren en paral·lel, i descriure l'evolució de les concentracions d'UFP en els darrers anys. S'han analitzat dades recopilades durant campanyes intensives de mesures simultànies a nivell de superfície i en altura, així com sèries de dades de mesures contínues de llarg termini. Mitjançant la combinació d¿aquestes dades, s'ha avaluat l'estacionalitat i la simultaneïtat dels episodis d'UFPs i d'O3, identificant els factors que hi contribueixen i aportant informació sobre la influencia de la NPF en les concentracions d'UFPs. Hi ha dos escenaris que controlen la formació i el transport d'UFPs i O3: la recirculació vertical de masses d'aire i la ventilació. L'ocurrència d'un o altre escenari ve determinada per les condicions meteorològiques a escala sinòptica, mentre que la magnitud de les concentracions ve donada per la disponibilitat de precursors i les condicions atmosfèriques i orogràfiques locals. Els episodis aguts d¿UFPs estan indubtablement vinculats amb els episodis d¿O3. Tot i així, els episodis poden ser simultanis en un mateix dia o no ser-ho. Un episodi d'O3 és sempre simultani amb un episodi d'UFPs causat per acumulació de partícules primàries i secundàries durant períodes de recirculació. Tanmateix, altes concentracions d'UFPs causades per NPF es donen principalment amb concentracions relativament baixes d'O3 durant períodes de ventilació. Quan es consideren les concentracions mitjanes anuals d'UFPs en àrees urbanes, les emissions primàries del trànsit tenen una major contribució al nombre total de partícules que la NPF. No obstant, en dies amb episodis de NPF, la NPF contribueix més al nombre total d'UFPs que les emissions primàries. Tot i que en la majoria dels dies no es detecten episodis de NPF, el nombre de dies amb NPF està incrementant, probablement degut a una tendència a la baixa de les emissions atmosfèriques antropogèniques en els darrers anys, que han causat una disminució en les embornals de condensació i coagulació de partícules. En conseqüència, la contribució de NPF al nombre d'UFPs també està augmentat. La concentració total d'UFPs pot augmentar o disminuir, depenent de les condicions locals. En àrees urbanes, la disminució d'emissions antropogèniques causa una disminució directa de la concentració d¿UFPs. En canvi, en ambients rurals, la NPF esdevé més favorable fins al punt que la concentració d'UFPs creix. Això pot ser degut a un augment de les emissions biogèniques locals de precursors i a una disminució del transport d'emissions antropogèniques. Les polítiques implementades en els darrers anys amb l'objectiu de reduir les emissions antropogèniques de contaminants atmosfèrics han tingut un gran impacte en la concentració del nombre de partícules en ambients urbans. Per contra, aquestes polítiques no han tingut un impacte significatiu en el fons regional, on el nombre de partícules ha augmentat
Los aerosoles atmosféricos, en particular las partículas ultrafinas (UFPs por sus siglas en inglés; partículas de menos de 100 nanómetros de diámetro), y el ozono troposférico (O3) son contaminantes atmosféricos muy influenciados por reacciones fotoquímicas, i.e., procesos iniciados por la absorción de radiación solar. Concentraciones elevadas de UFPs y O3 en el ambiente tienen importantes efectos adversos en la salud humana e impactos en el clima. En áreas con una alta insolación y dinámicas atmosféricas que favorecen la acumulación de contaminantes debido a recirculaciones verticales de masas de aire, como en el Mediterráneo occidental y otras regiones del sur de Europa, a menudo se registran episodios de altas concentraciones de UFPs y O3, especialmente en primavera y verano. Los episodios de UFPs pueden estar causados por la emisión y acumulación de partículas o por la formación fotoquímica de partículas a partir de precursores gaseosos (formación de nuevas partículas; NPF por sus siglas en inglés). El objetivo de esta tesis es caracterizar la relación entre UFPs y O3 en áreas y períodos con una actividad fotoquímica importante. Concretamente, esta tesis tiene como objetivos identificar los patrones atmosféricos que causan los episodios, determinando si estos contaminantes están regidos por los mismos procesos o bien ocurren en paralelo, así como describir la evolución de las concentraciones de UFPs en los últimos años. Basándonos en estos objetivos, se han analizado datos recopilados durante campañas de medidas intensivas simultáneas a nivel de superficie y en altura, así como series de datos de medidas continuas a largo plazo. Mediante la combinación de estos datos, se ha evaluado la estacionalidad y la simultaneidad de los episodios de UFPs y O3, identificando los factores que contribuyen a ellos y aportando información sobre la influencia de la NPF en las concentraciones de UFPs. Hemos encontrado que hay dos escenarios que controlan la formación y el transporte de UFPs y O3: la recirculación vertical de masas de aire y la ventilación. El acontecimiento de uno u otro escenario viene determinado por las condiciones meteorológicas a escala sinóptica, mientras que la magnitud de las concentraciones viene dada por la disponibilidad de precursores y las condiciones atmosféricas y orográficas locales. Nuestros resultados indican que los episodios agudos de UFPs están indudablemente vinculados con los episodios de O3. Aun así, los episodios pueden ser simultáneos en el mismo día o no serlo. Un episodio de O3 parece ser siempre simultáneo con un episodio de UFPs causado por acumulación de partículas primarias y secundarias durante períodos de recirculación. Sin embargo, altas concentraciones de UFPs causadas por NPF tienen lugar principalmente con concentraciones relativamente bajas (pero altas en valor absoluto) de O3 durante períodos de ventilación. Cuando se considera el promedio de las concentraciones anuales de UFPs en áreas urbanas, las emisiones primarias del tráfico tienen una mayor contribución al número total de partículas que la NPF. No obstante, en días con episodios de NPF, la contribución de NPF al número total de UFPs puede ser mayor que la de las emisiones primarias. Aunque en la mayoría de días no se detectan episodios de NPF, el número de días con NPF está incrementando, probablemente debido a una tendencia a la baja en los últimos años de las emisiones atmosféricas antrópicas, que han causado una disminución en los sumideros de condensación y coagulación. En consecuencia, la contribución de la NPF al número de UFPs también va en aumento. La concentración total de UFPs puede aumentar o disminuir, dependiendo de las condiciones locales y las emisiones de precursores. En áreas urbanas, la disminución de emisiones antrópicas causa una disminución directa de la concentración de UFPs. En cambio, en ambientes rurales, la NPF se hace más favorable, hasta el punto de aumentar las concentraciones de UFPs. Esto puede ser debido a un incremento de las emisiones biogénicas locales de precursores debido al aumento de temperaturas, así como a una reducción de los sumideros de partículas debido a una disminución del transporte de emisiones antrópicas. Las políticas implementadas en los últimos años con el objetivo de reducir las emisiones antrópicas de contaminantes atmosféricos han tenido un gran impacto en las concentraciones del número de UFPs en ambientes urbanos. Por el contrario, estas políticas no han tenido un impacto significativo en el fondo regional, donde la concentración de UFPs ha aumentado.
Enginyeria ambiental
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Ke. « Ambient and plume processing of atmospheric ultrafine particles / ». For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kejík, Pavel. « Low-Cost Filtration Barriers for Ultrafine Particles Separation ». Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401605.

Texte intégral
Résumé :
V mnoha oborech jsou stále využívána anorganická filtrační media založená na materiálech, jejichž výroba využívá primární suroviny. Jejich výroba je tedy energeticky náročná a v důsledku nákladná a neohleduplná k životnímu prostředí. Cílem této práce je ověřit možnost využití alkalicky aktivovaných materiálů na bázi sekundárních surovin, především vysokopecních strusek (BFS) a popílků z uhelných elektráren (FA), pro výrobu porézních médií schopných v budoucnosti nahradit keramické a jiné anorganické filtry. Výzkum je rozvinut skrze experimentální design založený na výpočetním schématu samostatně vyvinutém s pomocí programu MATLAB. Toto schéma počítá vhodná složení směsí na základě poměrů obsahu nejdůležitějších oxidů ve vstupních surovinách. Tak je zajištěno zohlednění proměnlivého složení vstupních surovin a práce je tím hodnotnější, že její výsledky jsou skrze početní nástroj zohledňující základní oxidové složení surovin zobecnitelné. Zároveň byly však pro srovnání a lepší názornost závislostí vlastností na složení navrhnuty a připraveny i série vzorků založené vždy pouze na jedné ze surovin. Z výsledků vyplývá, že pevnost vzorků z těchto směsí (vytvrzených 24 hodin při 70 °C) ve čtyřbodové ohybové zkoušce dle ČSN EN 12390 5 může přesáhnout 7,6 MPa. Dosažením co možná nejvyšší porozity však zákonitě negativně ovlivňuje pevnost materiálu a výsledný materiál tedy dosahuje pevnosti těsně nad hranicí 6,3 MPa. Výsledky obecně dokazují, že nejvíce je pevnost materiálů ovlivněna poměrem SiO2/Al2O3 a množstvím alkalického aktivátoru. Z výsledků vyplývá, že alkalicky aktivované materiály (AAM) na bázi strusky dosahují i více než dvojnásobné pevnosti analogických materiálů na bázi elektrárenského popílku. Velikost pórů materiálů připravených z tříděných surovin s velikostí zrna od desítek po lehce přes sto mikronů se ve většině případů pohybuje v rozmezí desetin ž jednotek mikronů, v případě výsledného materiálu je to pak přibližně 0,2 mikronu. Celková porozita lisovaných těles se pohybuje těsně pod 40 %, což je v tomto případě téměř dvojnásobek ve srovnání s totožnými materiály na bázi netříděných surovin. Výsledky rovněž ukazují, že materiály na bázi strusky vykazují nižší porozitu než ty na bázi popílku, což je patrně způsobeno rozdílnou morfologií částic obou materiálů – částice strusky jsou nepravidelně hranaté a částice popílku kulaté. V průběhu experimentální činnosti byla pozorována tvorba výkvětů u materiálů na bázi elektrárenských popílků. Pomocí Energo-disperzní spektroskopické analýzy (EDS) byly výkvěty identifikovány jako hydroxid sodný procházející karbonatací za účasti vzdušného CO2. Test permeability vyžadoval, kvůli velmi jemné povaze porézní struktury, přípravu asymetrických filtračních přepážek. Tyto přepážky dosáhli propustnosti 138 L/h.m2.bar pro vodu a 1320 L/h.m2.bar pro vzduch.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Martin, Claire Louise. « Transportation of Urban Ultrafine Particles in Four Euorpean Cities ». Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jasevičius, Raimondas. « The Numerical Modelling of Normal Interaction of Ultrafine Particles ». Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20110224_161120-06365.

Texte intégral
Résumé :
Recently, powders of the size d (0.1 μm < d < 10 μm) have been referred to ultrafine particles. The particle shape considered is assumed to be a sphere of the diameter d. The handling of powders is of great importance for processing of pharmaceuticals, cement, chemicals and other products. Most of these technological processes involve powder compaction, storage, transportation, mixing, etc, therefore, understanding of the fundamentals of particles interaction behaviour is very essential in the design of machines and equipment as well as in powder technology, cleaning of environment and other areas. The dynamic behaviour of particulate systems is very complicated due to the complex interactions between individual particles and their interaction with the surroundings. Understanding the underlying mechanisms can be effectively achieved via particle scale research. The problem of a normal contact may be resolved in a number of ways. In spite of huge progress in experimental techniques, direct lab tests with individual particles are still rather time-consuming and expensive. The interaction of particles as solid bodies is actually a classical problem of contact mechanics. In the case of ultrafine particles, the reduction of the particle size shifts the contact zones into the nanoscale or subnanoscale. Thus, steadily increasing contribution of adhesion has to be considered in the development of the physically correct constitutive models and numerical tools. Consequently, it may... [to full text]
Ultrasmulkios dalelės yra šiuolaikinės chemijos, farmacijos, maisto ir kitų pramonės šakų produktų sudėtinė dalis. Tiriant pramoninius technologinius procesus, neišvengiamai reikalingos teorinės žinios apie ultrasmulkių dalelių elgseną. Išsamus supratimas įmanomas tik atlikus įvairius tyrimus. Pastaruoju metu milteliai, klasifikuojami kaip ultrasmulkios (0,1 < d < 10 μm) dalelės, imti plačiai naudoti pramoniniuose procesuose, todėl suprasti ultrasmulkių dalelių elgsenos fundamentalumą miltelių technologijoje yra labai svarbu. Ultrasmulki dalelė yra itin maža, todėl su ja atlikti fizinį eksperimentą, kuris reikalauja specialios įrangos bei žinių, labai sunku. Tokiu atveju dažniausiai naudojamas skaitinis eksperimentas, kurį galima atlikti virtualiai. Skaitinio eksperimento metu yra tiriamos dinaminės ultrasmulkios dalelės savybės bei sprendžiamas dinaminis uždavinys. Taikant skaitinius modelius bei dalelės judėjimą aprašančias jėgų lygtis, naudojami sąveikos modeliai, apimantys adhezinę, klampią, tamprią bei tampriai plastinę sąveikas. Mikroskopinis adhezinės sąveikos modeliavimas – aktualus mechanikos mokslo uždavinys. Taikant sąveikos modelius, svarbu pritaikyti ir diskrečiųjų elementų metodą, kadangi, norint aprašyti dalelių elgseną, visų pirma reikia su-vokti ir aprašyti dalelės modelį. Dalelės elgsenos skaitiniam modeliavimui siūlomi teoriniai modeliai leidžia tirti dalelės sąveiką su dalele ar tampria puserdve bei sąveikos dinamiką. Šie modeliai galėtų būti pritaikyti... [toliau žr. visą tekstą]
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "ULTRAFINE PARTICLESIN"

1

Joutsensaari, Jorma. Aerosol synthesis of nanostructured, ultrafine fullerene particles. Espoo [Finland] : Technical Research Centre of Finland, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cassee, Flemming R., Nicholas L. Mills et David Newby, dir. Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910917.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cardiovascular effects of inhaled ultrafine and nano-sized particles. Hoboken, N.J : Wiley, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wonterghem, Jacques van. Mössbauer spectroscopy studies of ultrafine particles of crystalline and amorphous materials. Lyngby : Laboratoriet for Teknisk Fysik II, Danmarks Tekniske Højskole, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

International Workshop on the Synthesis and Measurement of Ultrafine Particles (1993 Delft, Netherlands). Synthesis and measurement of ultrafine particles : Proceedings of the International Workshop on the Synthesis and Measurement of Ultrafine Particles, held in Delft on May 28-29 1993. Sous la direction de Marijnissen Jan et Pratsinis S. Delft : Delft University Press, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Produkteigenschaften ultrafeiner Partikel : Mikromechanik, Fliess- und Kompressionsverhalten kohäsiver Pulver. Leipzig : Sächsische Akademie der Wissenschaften zu Leipzig, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

United States. National Aeronautics and Space Administration., dir. Atmospheric condensational properties of ultrafine chain and fractal aerosol particles : Final technical report : NASA Innovative Research Program (grant number NAGW-3054). [Washington, DC : National Aeronautics and Space Administration, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Brown, L. M., N. Collings, R. M. Harrison, A. D. Maynard et R. L. Maynard. Ultrafine Particles in the Atmosphere. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2003. http://dx.doi.org/10.1142/p287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ultrafine Particles in the Atmosphere. Imperial College Press, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brugge, Doug. Ambient Combustion Ultrafine Particles and Health. Nova Science Publishers, Incorporated, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "ULTRAFINE PARTICLESIN"

1

Spiegel-Ciobanu, Vilia Elena, Luca Costa et Wolfgang Zschiesche. « Ultrafine Particles (UFP) ». Dans IIW Collection, 51–61. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36926-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hadjipanayis, G. C., S. Gangopadhyay, L. Yiping, C. M. Sorensen et K. J. Klabunde. « Ultrafine Magnetic Particles ». Dans NATO ASI Series, 497–510. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2590-9_54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Uyeda, Ryozi. « Crystallography of Ultrafine Particles ». Dans Sintering Key Papers, 715–37. Dordrecht : Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0741-6_48.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kofman, R., P. Cheyssac, R. Garrigos, Y. Lereah et G. Deutscher. « Melting of non-spherical ultrafine particles ». Dans Small Particles and Inorganic Clusters, 717–21. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lanki, Timo, Josef Cyrys, H. Erich Wichmann et Jeroen de Hartog. « Exposure Assessment for Ambient Ultrafine Particles ». Dans Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles, 89–107. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910917.ch5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Koneva, N. A., A. N. Zhdanov, L. N. Ignatenko, N. A. Popova, E. E. Pekarskaya et E. V. Kozlov. « Structure and Stability of Ultrafine -Grained Materials. Role of Impurities and Second-Phase Particles ». Dans Ultrafine Grained Materials II, 505–14. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118804537.ch57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Y. K., A. A. Menovsky et F. R. de Boer. « Spontaneous coalescence in ultrafine metal particle aggregates ». Dans Small Particles and Inorganic Clusters, 743–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hall, B. D., M. Flüeli, R. Monot et J. P. Borel. « Electron diffraction on unsupported ultrafine silver particles ». Dans Small Particles and Inorganic Clusters, 97–101. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kilinç, Evren, Goran Rudež, Henri M. H. Spronk, Abderrahim Nemmar, Moniek P. M. de Maat, Hugo ten Cate et Marc F. Hoylaerts. « Particles, Coagulation, and Thrombosis ». Dans Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles, 403–20. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910917.ch20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mills, Nicholas L., et Mark R. Miller. « Particles and the Vascular Endothelium ». Dans Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles, 379–402. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470910917.ch19.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "ULTRAFINE PARTICLESIN"

1

Tobias, Aurelio, Cristina Reche, Noemi Perez et Xavier Querol. « Respiratory effects of vehicle exhaust ultrafine particles versus secondary ultrafine particles in ambient air ». Dans ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.oa460.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Higashimine, Koichi. « Characteristic structure of H2TiO3 ultrafine particles ». Dans European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chow, J. C., et J. G. Watson. « Overview of ultrafine particles and human health ». Dans RAVAGE OF THE PLANET 2006. Southampton, UK : WIT Press, 2006. http://dx.doi.org/10.2495/rav060601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Richmond, Clinton T. « Modeling the Asymmetric Burning of Ultrafine Particles ». Dans SHOCK COMPRESSION OF CONDENSED MATTER - 2005 : Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2006. http://dx.doi.org/10.1063/1.2263368.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gangopadhyay, S., G. C. Hadjipanayis, C. M. Sorensenz et K. J. Klabunde. « Magnetism in Ultrafine Fe And Co Particles ». Dans 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Linghong, Zhenyan Pan, Kefa Cen, Kunzan Qiu et Gerard Grehan. « Laser-Induced Emission of Ultrafine Particulates Evolved by Pulverized Coal Pyrolysis ». Dans ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55449.

Texte intégral
Résumé :
The importance of on line measurement of ultrafine particulates in pulverized coal flames is mainly due to the detection of ultrafine particulate in the effluent for pollution control, and the quantification of fuel burnout in real time within a boiler for improved understanding of the flame heat transfer soot modeling as well. A method has been investigated using laser-heated emission within an O2-free flame which provides a continuous in situ measurement of ultrafine particles during high-temperature pulverized coal pyrolysis. Bituminous coal particles are entrained by nitrogen along the centerline of a laminar flow flat flame burner, where a hydrogen-air flame under fuel-rich condition is used as a heat source. The temperatures of the hydrogen flame were measured by a finite-wire silica-coated Platinum-Rhodium type B Thermocouple. Volatiles released during the coal pyrolysis form a cloud of ultrafine particles at high temperature. A pulse laser sheet introduced to the flame heats the ultrafine particles to incandescent temperatures. The time-resolved laser-induced emission signals with different incident laser-pulse fluences were evaluated. The volume faction of ultrafine particles was associated with the peak value of the signals, and the mean particle size characterized by a time constant of the exponential signal decay. A strong dependence of the characteristic peak value and emission time constant during laser-heated particle cooling from the measured coal particle class could be determined. Specialties in signal evaluation due to residence time in the hydrogen flame for two sizes of coal particles are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cheng, Daolai, Meng Cai, Fang Zhao, Huimin Hu et Junfeng Yao. « The Study on the Removal of Ultrafine Particles ». Dans 2015 3rd International Conference on Advances in Energy and Environmental Science. Paris, France : Atlantis Press, 2015. http://dx.doi.org/10.2991/icaees-15.2015.120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

RUI, LUAN, et HAN ENSHAN. « PREPARATION OF NICKEL SULFIDE ULTRAFINE PARTICLES BY MICROEMULSION ». Dans Proceedings of the International Symposium on Solid State Chemistry in China. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776846_0058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

SHEVCHENKO, G. P., Z. M. AFANAS`EVA, V. V. SVIRIDOV et M. V. BAYKOV. « PREPARATION OF ULTRAFINE PbCrO4 PARTICLES IN OXIDE MATRICES ». Dans Reviews and Short Notes to Nanomeeting '97. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814503938_0059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Axmann, Harald, Alexander Bergmann et Bernd Eichberger. « Measurement of ultrafine exhaust particles using light scattering ». Dans 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013. http://dx.doi.org/10.1109/icsenst.2013.6727787.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "ULTRAFINE PARTICLESIN"

1

Birlingmair, D., W. Buttermore, T. Chmielewski et J. Pollard. Study of fine and ultrafine particles for coal cleaning. Office of Scientific and Technical Information (OSTI), avril 1990. http://dx.doi.org/10.2172/6225159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Olawoyin, L. A system for aerodynamically sizing ultrafine environmental radioactive particles. Office of Scientific and Technical Information (OSTI), septembre 1995. http://dx.doi.org/10.2172/105040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

James K. Neathery, Gary Jacobs, Amitava Sarkar et Burtron H. Davis. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles. Office of Scientific and Technical Information (OSTI), mars 2006. http://dx.doi.org/10.2172/901639.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

James K. Neathery, Gary Jacobs, Amitava Sarkar, Adam Crawford et Burtron H. Davis. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles. Office of Scientific and Technical Information (OSTI), septembre 2006. http://dx.doi.org/10.2172/896672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Amitava Sarkar, James K. Neathery et Burtron H. Davis. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles. Office of Scientific and Technical Information (OSTI), décembre 2006. http://dx.doi.org/10.2172/920235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

James K. Neathery, Gary Jacobs et Burtron H. Davis. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/835648.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

James K. Neathery, Gary Jacobs et Burtron H. Davis. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES. Office of Scientific and Technical Information (OSTI), mars 2004. http://dx.doi.org/10.2172/823533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

James K. Neathery, Gary Jacobs et Burtron H. Davis. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES. Office of Scientific and Technical Information (OSTI), mars 2005. http://dx.doi.org/10.2172/840359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

James K. Neathery, Gary Jacobs, Amitava Sarkar et Burtron H. Davis. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles. Office of Scientific and Technical Information (OSTI), septembre 2005. http://dx.doi.org/10.2172/861070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Singer, Brett C., William W. Delp, Douglas R. Black et Iain S. Walker. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house. Office of Scientific and Technical Information (OSTI), décembre 2016. http://dx.doi.org/10.2172/1375633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie