Littérature scientifique sur le sujet « Ultra High Intensity Laser »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ultra High Intensity Laser ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ultra High Intensity Laser"
DAIDO, Hiroyuki. « Ultra-Short Ultra-High Intensity Laser-Matter Interaction ». Review of Laser Engineering 31, no 11 (2003) : 698–706. http://dx.doi.org/10.2184/lsj.31.698.
Texte intégralABDULRAHMAN, Hayder J., et Suzan B. MOHAMMED. « DEVELOPMENT OF ULTRA-SHORT HIGH INTENSITY LASERS FOR THE VISIBLE SPECTRA RANGE ». Periódico Tchê Química 17, no 35 (20 juillet 2020) : 739–52. http://dx.doi.org/10.52571/ptq.v17.n35.2020.63_abdulrahman_pgs_739_752.pdf.
Texte intégralNajmudin, Z., M. Tatarakis, K. Krushelnick, E. L. Clark, V. Malka, J. Faure et A. E. Dangor. « Ultra-high-intensity laser propagation through underdense plasma ». IEEE Transactions on Plasma Science 30, no 1 (février 2002) : 44–45. http://dx.doi.org/10.1109/tps.2002.1003915.
Texte intégralBorne, F., D. Delacroix, J. M. Gel, D. Mass et F. Amiranoff. « Radiation Protection for an Ultra-high Intensity Laser ». Radiation Protection Dosimetry 102, no 1 (1 septembre 2002) : 61–70. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006074.
Texte intégralLi, Zerui. « Analysis of the Principles and Applications of Ultra-intensity and Ultrashort Laser ». Highlights in Science, Engineering and Technology 76 (31 décembre 2023) : 441–49. http://dx.doi.org/10.54097/9s9fm882.
Texte intégralTrtica, M., B. Gaković, D. Maravić, D. Batani, T. Desai et R. Redaelli. « Surface Modification of Titanium by High Intensity Ultra-Short Nd:YAG Laser ». Materials Science Forum 518 (juillet 2006) : 167–72. http://dx.doi.org/10.4028/www.scientific.net/msf.518.167.
Texte intégralKiriyama, Hiromitsu, Alexander S. Pirozhkov, Mamiko Nishiuchi, Yuji Fukuda, Akito Sagisaka, Akira Kon, Yasuhiro Miyasaka et al. « Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal ». Crystals 10, no 9 (3 septembre 2020) : 783. http://dx.doi.org/10.3390/cryst10090783.
Texte intégralBOURDIER, A., D. PATIN et E. LEFEBVRE. « Stochastic heating in ultra high intensity laser-plasma interaction ». Laser and Particle Beams 25, no 1 (28 février 2007) : 169–80. http://dx.doi.org/10.1017/s026303460707022x.
Texte intégralChériaux, Gilles, et Jean-Paul Chambaret. « Ultra-short high-intensity laser pulse generation and amplification ». Measurement Science and Technology 12, no 11 (9 octobre 2001) : 1769–76. http://dx.doi.org/10.1088/0957-0233/12/11/303.
Texte intégralChériaux, Gilles, et Jean-Paul Chambaret. « Ultra-short high-intensity laser pulse generation and amplification ». Measurement Science and Technology 19, no 12 (4 novembre 2008) : 129801. http://dx.doi.org/10.1088/0957-0233/19/12/129801.
Texte intégralThèses sur le sujet "Ultra High Intensity Laser"
Bernath, Robert Thomas. « High-Intensity Ultra-Fast Laser Interaction Technologies ». Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2173.
Texte intégralPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Flacco, Alessandro. « Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam ». École polytechnique, 2010. http://www.theses.fr/2008EPXX0071.
Texte intégralThe production of energetic proton/ion beams with laser pulses at relativistic intensities (I>10^{18}W/cm^2) has received, in the past few years, increasing interest from the scientific community in plasma, optics and accelerator physics. A fraction of electrons is heated to high temperature during the ultrafast interaction between a femtosecond laser pulse and an overdense plasma. Ions and protons are extracted and accelerated by the charge separation set up during the expansion of the plasma. The results presented in this manuscript report on the realization of ion acceleration experiments using a high contrast (XPW) multi-terawatt laser system. Two preparatory experiments are set up, aiming to study the pedestal of a laser pulse interacting with the target. The expansion of a plasma created by a laser at moderate intensity is measured by interferometry; the evolution of the density gradient length is deduced from the electron density maps at different moments. The variation of the absolute reflectivity of a thin aluminium foil is correlated to the electron temperature and is used to monitor the arrival time of the laser produced shock. The crossing between the two experiments is finally used to define the optimum condition for proton acceleration. Proton acceleration experiments with high contrast laser are reported, including the construction and the validation of a real-time, single shot ion spectrometer (Micro-channel Plate and Thomson Parabola), and other details of the realised setup. The obtained results show that the increased contrast enables the use of thinner targets and the production of more stable and controllable interaction conditions. Proton beams with kinetic energy higher than 4 MeV are produced, with a shot-to-shot stability better than 4% rms. Proton acceleration experiment with two laser beams confirms that the laser energy absorption is enhanced when the target is pre-heated by a laser pulse with proper parameters
Flacco, A. « Experimental Study of Proton Acceleration with Ultra-High Intensity, High Contrast Laser Beam ». Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00005616.
Texte intégralChen, Sophia Nan. « X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser ». Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3352706.
Texte intégralTitle from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 117-126).
Debayle, Arnaud. « Theoretical study of Ultra High Intensity laser-produced high-current relativistic electron beam transport through solid targets ». Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13708/document.
Texte intégralThis PhD thesis is a theoretical study of high-current relativistic electron beam transport through solid targets. In the ?rst part, we present an interpretation of a part of experimental results of laser– produced electron beam transport in aluminium foil targets. We have estimated the fast electron beam characteristics and we demonstrated that the collective e?ects dominate the transport in the ?rst tens of µm of propagation. These quantitative estimates were done with the transport models already existing at the beginning of this thesis. These models are no longer su?cient in the case a fast electron beam propagation in insulator targets. Thus, in the second part, we have developed a propagation model of the beam that includes the e?ects of electric ?eld ionization and the collisional ionization by the plasma electrons. We present estimates of the electron energy loss induced by the target ionization, and we discuss its dependence on the beam and target parameters. In the case of a relatively low fast electron density, we demonstrated that the beam creates a plasma where the electons are not in a local thermodynamic equilibrium with ions. We have examined the beam stability and we demonstrated that transverse instabilities can be excited by the relativistic electron beam over the propagation distances of 30 - 300 µm depending on the perturbation wavelength
Moulanier, Ioaquin. « Modélisation réaliste de l'accélération laser-plasma ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP173.
Texte intégralThe interaction of a short laser pulse with an underdense plasma generates strong electric field gradients in the laser beam wake, trapping electrons of the plasma and accelerating them to ultra-relativistic energies. For laser peak intensities above 10 to the power 18 Watt per squared centimeter, the process is non-linear, and the spatiotemporal laser characteristics evolve during its propagation in the plasma.The modeling of the laser transverse distribution measured in experiment, together with its spectral phase,is used to describe the imperfections of the laser and improve the accuracy of the description of the mechanisms during interaction and the resulting electron bunch properties. Numerical tools were developped for the reconstruction of the laser distribution and its integration in particle-in-cell simulations, allowing us to achieve a better agreement between numerical diagnostics and experimental measurements of the electron spectra.The reconstruction algorithm of the laser distribution is introduced, as well as its integration in a quasi-3D particle-in-cell code. Specific examples show the impact of the laser distribution transverse asymmetry in the non-linear interaction regime through simulations that reproduce accurately laser-plasma acceleration experiments performed in the long-focal area of the APOLLON laser facility and at the Lund Laser Centre
Carrié, Michaël. « Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochore ». Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00608050.
Texte intégralKallala, Haithem. « Massively parallel algorithms for realistic PIC simulations of ultra high intensity laser-plasma interaction, application to attosecond pulses separation of Doppler harmonics ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS052.
Texte intégralThe complexity of the physical mechanisms involved in ultra-high intensity laser-plasma interaction requires the use of particularly heavy PIC simulations. At the heart of these computational codes, high-order pseudo-spectral Maxwell solvers have many advantages in terms of numerical accuracy. This numerical approach comes however with an expensive computational cost. Indeed, existing parallelization methods for pseudo-spectral solvers are only scalable to few tens of thousands of cores, or induce an important memory footprint, which also hinders the scaling of the method at large scales. In this thesis, we developed a novel, arbitrarily scalable, parallelization strategy for pseudo-spectral Maxwell's equations solvers which combines the advantages of existing parallelization techniques. This method proved to be more scalable than previously proposed approaches, while ensuring a significant drop in the total memory use.By capitalizing on this computational work, we conducted an extensive numerical and theoretical study in the field of high order harmonics generation on solid targets. In this context, when an ultra-intense (I>10¹⁶W.cm⁻²) ultra-short (few tens of femtoseconds) laser pulse irradiates a solid target, a reflective overdense plasma mirror is formed at the target-vacuum interface. The subsequent laser pulse non linear reflection is accompanied with the emission of coherent high order laser harmonics, in the form of attosecond X-UV light pulses (1 attosecond = 10⁻¹⁸s). For relativistic laser intensities (I>10¹⁹ W.cm⁻²), the plasma surface is curved under the laser radiation pressure. And the plasma mirror acts as a focusing optics for the radiated harmonic beam. In this thesis, we investigated feasible ways for producing isolated attosecond light pulses from relativistic plasma-mirror harmonics, with the so called attosecond lighthouse effect. This effect relies introducing a wavefront rotation on the driving laser pulse in order to send attosecond pulses emitted during different laser optical cycles along different directions. In the case of high order harmonics generated in the relativistic regime, the plasma mirror curvature significantly increases the attosecond pulses divergence and prevents their separation with the attosecond lighthouse scheme. For this matter, we developed two harmonic divergence reduction techniques, based on tailoring the laser pulse phase or amplitude profiles in order to significantly inhibit the plasma mirror focusing effect and allow for a clear separation of attosecond light pulses by reducing the harmonic beam divergence. Furthermore, we developed an analytical model to predict optimal interaction conditions favoring attosecond pulses separation. This model was fully validated with 2D and 3D PIC simulations over a broad range of laser and plasma parameters. In the end, we show that under realistic laser and plasma conditions, it is possible to produce isolated attosecond pulses from Doppler harmonics
Ramirez, Lourdes Patricia. « Few-cycle OPCPA laser chain ». Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00806245.
Texte intégralSutherland, Julia Robin Miller. « Phase-Matching Optimization of Laser High-Order Harmonics Generated in a Gas Cell ». Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd880.pdf.
Texte intégralLivres sur le sujet "Ultra High Intensity Laser"
John, Alcock A., et National Research Council Canada, dir. High intensity laser processes. Bellingham, Wash., USA : SPIE--the International Society for Optical Engineering, 1986.
Trouver le texte intégralHiromitsu, Kiriyama, dir. Science and technology created by ultra-short, ultra-high-peak power lasers. Trivandrum : Transworld Research Network, 2007.
Trouver le texte intégralMichael, Campbell E., Baldis Hector, Society of Photo-optical Instrumentation Engineers. et American Academy of Otolaryngology--Head and Neck Surgery., dir. High intensity laser-matter interactions : 12-13 January 1988, Los Angeles, California. Bellingham, Wash., USA : SPIE, 1988.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Ultra-high bypass ratio jet noise. [Washington, D.C.] : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Ultra-high bypass ratio jet noise. [Washington, D.C.] : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. Ultra-high bypass ratio jet noise. [Washington, D.C.] : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralJohn, Alcock A., National Research Council Canada et Société inter-port de Québec, dir. High intensity laser processes : 2-4 June 1986, Québec City, Canada. Bellingham, Wash., USA : SPIE--the International Society for Optical Engineering, 1986.
Trouver le texte intégralservice), SpringerLink (Online, dir. Ultra-high Frequency Linear Fiber Optic Systems. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011.
Trouver le texte intégralMagill, Joseph, Heinrich Schwoerer et Burgard Beleites. Lasers and nuclei : Applications of ultrahigh intensity lasers in nuclear science. Berlin : Springer, 2011.
Trouver le texte intégralA, Baldis Hector, et Society of Photo-optical Instrumentation Engineers., dir. Short-pulse high-intensity lasers and applications II : 21-22 January 1993, Los Angeles, California. Bellingham, Wash : SPIE, 1993.
Trouver le texte intégralChapitres de livres sur le sujet "Ultra High Intensity Laser"
Yanovsky, V., V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk et al. « Ultra-high intensity-High Contrast 300-TW laser at 0.1 Hz repetition rate ». Dans Springer Series in Chemical Physics, 750–52. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_243.
Texte intégralTanyag, Rico Mayro P., Bruno Langbehn, Thomas Möller et Daniela Rupp. « X-Ray and XUV Imaging of Helium Nanodroplets ». Dans Topics in Applied Physics, 281–341. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_7.
Texte intégralSchwoerer, H. « High-Intensity Laser–Matter Interaction ». Dans Lasers and Nuclei, 7–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30272-7_2.
Texte intégralGibson, G. N., R. R. Freeman et T. J. McIlrath. « High Intensity Molecular Multiphoton Ionization ». Dans Coherence Phenomena in Atoms and Molecules in Laser Fields, 125–31. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3364-1_12.
Texte intégralFalcone, R. W., M. M. Murnane et H. C. Kapteyn. « High-Intensity, Ultrashort Pulse Laser Heated Solids ». Dans Laser Optics of Condensed Matter, 83–86. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3726-7_12.
Texte intégralFeldhaus, J., et B. Sonntag. « Free-Electron Lasers – High-Intensity X-Ray Sources ». Dans Strong Field Laser Physics, 91–107. New York, NY : Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34755-4_5.
Texte intégralGiessen, Harald, Andreas Knorr, Jürgen Kuhl et Stephan W. Koch. « High-intensity laser pulse propagation in semiconductors ». Dans Advances in Solid State Physics, 483–93. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0107506.
Texte intégralGavrila, M. « Atomic Processes in High-Intensity, High-Frequency Laser Fields ». Dans Atoms in Unusual Situations, 225–39. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-9337-6_9.
Texte intégralMuirhead, I. T., K. L. Lewis, A. M. Pitt, N. G. Chew, A. G. Cullis, T. J. Wyatt-Davies, L. Charlwood et O. D. Dosser. « Fabrication of Optical Coatings Using Ultra-High Vacuum Techniques ». Dans Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 470–77. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_95.
Texte intégralFortuna, Damiano. « High-Intensity Laser Therapy for the Equine Patient ». Dans Laser Therapy in Veterinary Medicine, 415–21. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119220190.ch37.
Texte intégralActes de conférences sur le sujet "Ultra High Intensity Laser"
Vasilyev, Sergey, Mike Goma, Igor Moskalev, Oleg Mishechkin, Yury Barnakov et Mike Mirov. « Ultra-Low Noise Cr:ZnS Laser Source for High Performance Dual Comb Spectroscopy ». Dans CLEO : Science and Innovations, SM1H.4. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm1h.4.
Texte intégralGe, Renyou, Bigeng Chen, Yuan Shen, Yannong Luo et Shaoliang Yu. « Hybrid Integrated Arbitrary-Polarized Pulsed Laser with Ultra-High Intensity- and Polarization-Extinction-Ratio ». Dans 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 1–4. IEEE, 2024. https://doi.org/10.1109/acp/ipoc63121.2024.10809642.
Texte intégralEdwards, M. R., N. M. Fasano, V. M. Perez-Ramirez, M. M. Wang, K. Ou, S. Cao, D. Seyler, A. Giakas, P. Michel et J. M. Mikhailova. « Structured Light from Structured Plasma : Manipulating Extreme Lasers with Plasma Optics ». Dans CLEO : Applications and Technology, ATh1H.4. Washington, D.C. : Optica Publishing Group, 2024. https://doi.org/10.1364/cleo_at.2024.ath1h.4.
Texte intégralPérez-Hernández, José Antonio, Roland Guichard, Amelle Zaïr, Luis Roso et Luis Plaja. « Valley Structure in the Harmonic Efficiency at Ultra-high Laser Intensities ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/hilas.2012.ht4c.8.
Texte intégralCarbajo, Sergio, Liang J. Wong, Emilio Nanni, Damian N. Schimpf et Franz X. Kärtner. « Ultra-intense Few-cycle Radial Polarization Source for Vacuum Laser Acceleration ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.htu2c.6.
Texte intégralPogorelsky, I., M. Polyanskiy, W. Li, M. Babzien et M. A. Palmer. « Emerging Ultra-Fast Multi-Terawatt Long-Wave Infrared Lasers ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/hilas.2024.htu2b.6.
Texte intégralRothhardt, Jan, Carolin Rothhardt, Michael Müller, Arno Klenke, Marco Kienel, Stefan Demmler, Tino E. Elsmann, Manfred Rothhardt, Jens Limpert et Andreas Tünnermann. « 100 W Average Power Femtosecond UV Laser for Ultra-High Photon Flux XUV Sources ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm8b.3.
Texte intégralPomerantz, Ishay, Eddie McCary, Alexander Ross Meadows, Alexey Arefiev, Aaron C. Bernstein, Clay Chester, Jose Cortez et al. « An Ultra-Short Pulsed Neutron Source ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.hth1b.1.
Texte intégralGolovin, Grigory, Sudeep Banerjee, Cheng Liu, Shouyuan Chen, Jun Zhang, Baozhen Zhao, Ping Zhang et al. « Laser-Driven Electron Beams With Ultra-Low Emittance Measured Via Inverse-Compton-Scattered X-Rays ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm3b.4.
Texte intégralManzoni, Cristian, Shu-Wei Huang, Giovanni Cirmi, Jeffrey Moses, Franz Kärtner et Giulio Cerullo. « Coherent Synthesis of Ultra-broadband Optical Parametric Amplifiers ». Dans High Intensity Lasers and High Field Phenomena. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/hilas.2012.ht3c.5.
Texte intégralRapports d'organisations sur le sujet "Ultra High Intensity Laser"
N.J. Fisch et V.M. Malkin. Generation of Ultra-high Intensity Laser Pulses. Office of Scientific and Technical Information (OSTI), juin 2003. http://dx.doi.org/10.2172/814677.
Texte intégralRax, J. M., et N. J. Fisch. Third harmonic generation with ultra-high intensity laser pulses. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/10142743.
Texte intégralRax, J. M., et N. J. Fisch. Third harmonic generation with ultra-high intensity laser pulses. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/5588583.
Texte intégralGold, David Michael. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses. Office of Scientific and Technical Information (OSTI), juin 1994. http://dx.doi.org/10.2172/45569.
Texte intégralRax, J. M. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/10142736.
Texte intégralRax, J. M. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/5393785.
Texte intégralSprangle, Phillip, et Bahman Hafizi. High-Power, High-Intensity Laser Propagation and Interactions. Fort Belvoir, VA : Defense Technical Information Center, mars 2014. http://dx.doi.org/10.21236/ada596959.
Texte intégralFisch, Nathaniel J. Ultra-High Intensity Magnetic Field Generation in Dense Plasma. Office of Scientific and Technical Information (OSTI), janvier 2014. http://dx.doi.org/10.2172/1115189.
Texte intégralCousineau, Sarah, Alexander Aleksandrov, Yun Liu, David Jonson et Timofey Gorlov. Laser Stripping for High Intensity Proton Beams. Office of Scientific and Technical Information (OSTI), juillet 2018. http://dx.doi.org/10.2172/1496019.
Texte intégralDitmire, T. High intensity laser interactions with atomic clusters. Office of Scientific and Technical Information (OSTI), août 2000. http://dx.doi.org/10.2172/15001992.
Texte intégral