Littérature scientifique sur le sujet « Twistronics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Twistronics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Twistronics"

1

Hu, Guangwei, Cheng-Wei Qiu, and Andrea Alù. "Twistronics for photons: opinion." Optical Materials Express 11, no. 5 (2021): 1377. http://dx.doi.org/10.1364/ome.423521.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Armghan, Ammar, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, and Shobhit K. Patel. "Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties." Mathematics 11, no. 7 (2023): 1579. http://dx.doi.org/10.3390/math11071579.

Texte intégral
Résumé :
Graphene twistronics using multilayer graphene is presented in such a way that it provides a metamaterial effect. This manuscript also analyzes the prediction of behavior using machine learning. The metamaterial effect is achieved by twisting the graphene layers. Graphene twistronics is a new concept for changing the electrical and optical properties of bilayer graphene by applying a small angle twist between the layers. The angle twists of 5°, 10°, and 15° are analyzed for the proposed graphene twistronics design. Tuning in the absorption spectrum is achieved by applying small twists to the angles of the bilayer graphene. Results in the form of absorption, conductivity, permeability, permittivity, and impedance are presented for different twist angles. The twisted graphene layers also demonstrate negative permittivity and negative permeability, similar to metamaterials. These negative refraction properties of graphene twistronics provide flexibility and transparency, which can be applied in photovoltaic applications. Machine-learning-based regression models are used to reduce the simulation time and resources. The results show that a regression model can reliably estimate intermediate wavelength absorption values with an R2 of 0.9999.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gardezi, S. Minhal, Harris Pirie, Stephen Carr, William Dorrell, and Jennifer E. Hoffman. "Simulating twistronics in acoustic metamaterials." 2D Materials 8, no. 3 (2021): 031002. http://dx.doi.org/10.1088/2053-1583/abf252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wu, Di, Yi Pan, and Tai Min. "Twistronics in Graphene, from Transfer Assembly to Epitaxy." Applied Sciences 10, no. 14 (2020): 4690. http://dx.doi.org/10.3390/app10144690.

Texte intégral
Résumé :
The twistronics, which is arising from the moiré superlattice of the small angle between twisted bilayers of 2D materials like graphene, has attracted much attention in the field of 2D materials and condensed matter physics. The novel physical properties in such systems, like unconventional superconductivity, come from the dispersionless flat band that appears when the twist reaches some magic angles. By tuning the filling of the fourfold degeneracy flat bands, the desired effects are induced due to the strong correlation of the degenerated Bloch electrons. In this article, we review the twistronics in twisted bi- and multi-layer graphene (TBG and TMG), which is formed both by transfer assembly of exfoliated monolayer graphene and epitaxial growth of multilayer graphene on SiC substrates. Starting from a brief history, we then introduce the theory of flat band in TBG. In the following, we focus on the major achievements in this field: (a) van Hove singularities and charge order; (b) superconductivity and Mott insulator in TBG and (c) transport properties in TBG. In the end, we give the perspective of the rising materials system of twistronics, epitaxial multilayer graphene on the SiC.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Veerpal and Ajay. "Exotic Electronic Properties of Twisted Bilayer Graphene-Emergence of Twistronics." Journal of Physics: Conference Series 2518, no. 1 (2023): 012013. http://dx.doi.org/10.1088/1742-6596/2518/1/012013.

Texte intégral
Résumé :
Abstract In Twistronics we study the effect of relative twist between the layers of a material on the electronic properties of that layered materials. There are expected to be hundreds of layered materials which can give rise to thousands or even more layered materials with combination of layers and relative twist between the layers. There is a great possibility to encounter many exotic electronic properties in these rather less explored layered materials with relative twist between the layers. There is a lot to explore and understand, to unlock full potential of twistronics. A lot of theoretical and experimental studies have been done and are being done to explore the electronic properties of twisted bilayer graphene, making it a good material to start with to explore the hidden potential of twistronics. Here we present a simple theoretical model study for commensurate twisted bilayer graphene. Starting from understanding of moire pattern in twisted bilayer graphene our study goes through writing of tight binding Hamiltonian, computational codes to determine various model parameters, solution of Hamiltonian to obtain quasi particle energies and density of states near Fermi energy in twisted bilayer graphene. Our theoretical calculations have produced flat band near Dirac point and Van-Hove singularities near Fermi energy, which agree qualitatively with recent experimental studies.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Liu, Mengya, Liping Wang, and Gui Yu. "Developing Graphene‐Based Moiré Heterostructures for Twistronics." Advanced Science 9, no. 1 (2021): 2103170. http://dx.doi.org/10.1002/advs.202103170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Donaldson, Laurie. "Twistronics breakthrough on manipulation of 2D materials." Materials Today 44 (April 2021): 3–4. http://dx.doi.org/10.1016/j.mattod.2021.01.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kang, Peng, Wanting Zhang, Vincent Michaud-Rioux, Xin Wang, Jiangni Yun, and Hong Guo. "Twistronics in tensile strained bilayer black phosphorus." Nanoscale 12, no. 24 (2020): 12909–16. http://dx.doi.org/10.1039/d0nr02179b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hennighausen, Zachariah, and Swastik Kar. "Twistronics: a turning point in 2D quantum materials." Electronic Structure 3, no. 1 (2021): 014004. http://dx.doi.org/10.1088/2516-1075/abd957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie