Littérature scientifique sur le sujet « Turbulent shear flows »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Turbulent shear flows ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Turbulent shear flows"

1

Tuckerman, Laurette S., Matthew Chantry et Dwight Barkley. « Patterns in Wall-Bounded Shear Flows ». Annual Review of Fluid Mechanics 52, no 1 (5 janvier 2020) : 343–67. http://dx.doi.org/10.1146/annurev-fluid-010719-060221.

Texte intégral
Résumé :
Experiments and numerical simulations have shown that turbulence in transitional wall-bounded shear flows frequently takes the form of long oblique bands if the domains are sufficiently large to accommodate them. These turbulent bands have been observed in plane Couette flow, plane Poiseuille flow, counter-rotating Taylor–Couette flow, torsional Couette flow, and annular pipe flow. At their upper Reynolds number threshold, laminar regions carve out gaps in otherwise uniform turbulence, ultimately forming regular turbulent–laminar patterns with a large spatial wavelength. At the lower threshold, isolated turbulent bands sparsely populate otherwise laminar domains, and complete laminarization takes place via their disappearance. We review results for plane Couette flow, plane Poiseuille flow, and free-slip Waleffe flow, focusing on thresholds, wavelengths, and mean flows, with many of the results coming from numerical simulations in tilted rectangular domains that form the minimal flow unit for the turbulent–laminar bands.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Duguet, Yohann. « Intermittency in Transitional Shear Flows ». Entropy 23, no 3 (26 février 2021) : 280. http://dx.doi.org/10.3390/e23030280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

LESCHZINER, M. A., G. M. FISHPOOL et S. LARDEAU. « TURBULENT SHEAR FLOW : A PARADIGMATIC MULTISCALE PHENOMENON ». Journal of Multiscale Modelling 01, no 02 (avril 2009) : 197–222. http://dx.doi.org/10.1142/s1756973709000104.

Texte intégral
Résumé :
The paper provides a broad discussion of multiscale and structural features of sheared turbulent flows. Basic phenomenological aspects of turbulence are first introduced, largely in descriptive terms with particular emphasis placed on the range of scales encountered in turbulent flows and in the identification of characteristic scale ranges. There follows a discussion of essential aspects of computational modeling and simulation of turbulence. Finally, the results of simulations for two groups of flows are discussed. These combine shear, separation, and periodicity, the last feature provoked by either a natural instability or by unsteady external forcing. The particular choice of examples is intended to illustrate the capabilities of such simulations to resolve the multiscale nature of complex turbulent flows, as well as the challenges encountered.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Libby, P. A. « Turbulent shear flows 5 ». International Journal of Heat and Fluid Flow 9, no 3 (septembre 1988) : 348. http://dx.doi.org/10.1016/0142-727x(88)90053-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Zhiyu, S. A. Thorpe et W. D. Smyth. « Instability and hydraulics of turbulent stratified shear flows ». Journal of Fluid Mechanics 695 (20 février 2012) : 235–56. http://dx.doi.org/10.1017/jfm.2012.13.

Texte intégral
Résumé :
AbstractThe Taylor–Goldstein (T–G) equation is extended to include the effects of small-scale turbulence represented by non-uniform vertical and horizontal eddy viscosity and diffusion coefficients. The vertical coefficients of viscosity and diffusion, ${A}_{V} $ and ${K}_{V} $, respectively, are assumed to be equal and are expressed in terms of the buoyancy frequency of the flow, $N$, and the dissipation rate of turbulent kinetic energy per unit mass, $\varepsilon $, quantities that can be measured in the sea. The horizontal eddy coefficients, ${A}_{H} $ and ${K}_{H} $, are taken to be proportional to the dimensionally correct form, ${\varepsilon }^{1/ 3} {l}^{4/ 3} $, found appropriate in the description of horizontal dispersion of a field of passive markers of scale $l$. The extended T–G equation is applied to examine the stability and greatest growth rates in a turbulent shear flow in stratified waters near a sill, that at the entrance to the Clyde Sea in the west of Scotland. Here the main effect of turbulence is a tendency towards stabilizing the flow; the greatest growth rates of small unstable disturbances decrease, and in some cases flows that are unstable in the absence of turbulence are stabilized when its effects are included. It is conjectured that stabilization of a flow by turbulence may lead to a repeating cycle in which a flow with low levels of turbulence becomes unstable, increasing the turbulent dissipation rate and so stabilizing the flow. The collapse of turbulence then leads to a condition in which the flow may again become unstable, the cycle repeating. Two parameters are used to describe the ‘marginality’ of the observed flows. One is based on the proximity of the minimum flow Richardson number to the critical Richardson number, the other on the change in dissipation rate required to stabilize or destabilize an observed flow. The latter is related to the change needed in the flow Reynolds number to achieve zero growth rate. The unstable flows, typical of the Clyde Sea site, are relatively further from neutral stability in Reynolds number than in Richardson number. The effects of turbulence on the hydraulic state of the flow are assessed by examining the speed and propagation direction of long waves in the Clyde Sea. Results are compared to those obtained using the T–G equation without turbulent viscosity or diffusivity. Turbulence may change the state of a flow from subcritical to supercritical.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nagano, Y., et M. Hishida. « Improved Form of the k-ε Model for Wall Turbulent Shear Flows ». Journal of Fluids Engineering 109, no 2 (1 juin 1987) : 156–60. http://dx.doi.org/10.1115/1.3242636.

Texte intégral
Résumé :
An improved k-ε turbulence model for predicting wall turbulence is presented. The model was developed in conjunction with an accurate calculation of near-wall and low-Reynolds-number flows to meet the requirements of the Evaluation Committee report of the 1980–1981 Stanford Conference on Complex Turbulent Flows. The proposed model was tested by application to turbulent pipe and channel flows, a flat plate boundary layer, a relaminarizing flow, and a diffuser flow. In all cases, the predicted values of turbulent quantities agreed almost completely with measurements, which many previously proposed models failed to predict correctly, over a wide range of the Reynolds number.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fortova, S. V. « Numerical Simulation of Turbulence Flows in Shear Layer ». Archives of Metallurgy and Materials 59, no 3 (28 octobre 2014) : 1155–58. http://dx.doi.org/10.2478/amm-2014-0201.

Texte intégral
Résumé :
Abstract For various problems of continuum mechanics described by the equations of hyperbolic type, the comparative analysis of scenarios of development of turbulent flows in shear layers is carried out. It is shown that the development of the hydrodynamic instabilities leads to a vortex cascade that corresponds to the development stage of the vortices in the energy and the inertial range during the transition to the turbulent flow stage. It is proved that for onset of turbulence the spatial problem definition is basic. At the developed stage of turbulence the spectral analysis of kinetic energy is carried out and the Kolmogorov “-5/3” power law is confirmed.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Neuhaus, Lars, Daniel Ribnitzky, Michael Hölling, Matthias Wächter, Kerstin Avila, Martin Kühn et Joachim Peinke. « Model wind turbine performance in turbulent–non-turbulent boundary layer flow ». Journal of Physics : Conference Series 2767, no 4 (1 juin 2024) : 042018. http://dx.doi.org/10.1088/1742-6596/2767/4/042018.

Texte intégral
Résumé :
Abstract With increasing distance from the coast and greater hub heights, wind turbines expand into unknown, hardly researched environmental conditions. As height increases, laminar flow conditions become more likely. With the simultaneous increase in rotor diameter, very different flow conditions, from laminar to turbulent, occur over the rotor area. It is crucial to understand the effects of these different flow conditions on wind turbines. We approach this through wind tunnel experiments, presenting a setup with two different active grids. This setup enables the generation of four different flows – homogeneous, shear, turbulent–non-turbulent, and turbulent–non-turbulent shear flow – each with four different turbulence levels. The turbulent–non-turbulent flows exhibit a turbulence intensity gradient between the quasi-laminar flow at the upper and turbulent flow at the lower rotor half, establishing a turbulent–non-turbulent interface between the two rotor halves. In a second step, we investigate the Model Wind Turbine Oldenburg with a rotor diameter of 1.8 m (MoWiTO 1.8) under these conditions and analyze their effects on power output and blade loads. While the power fluctuations depend directly on the turbulence intensity, an additional turbulence intensity gradient shows no significant effect. A stronger effect can be observed for the blade root bending moments, the fluctuations of which increase with shear and also in turbulent–non-turbulent flow.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sarkar, S. « Compressibility Effects on Turbulence Growth in High-Speed Shear Flows ». Applied Mechanics Reviews 47, no 6S (1 juin 1994) : S179—S183. http://dx.doi.org/10.1115/1.3124401.

Texte intégral
Résumé :
Compressibility effects on the evolution of turbulence are obtained from direct numerical simulation of homogeneous shear flow. It is found that when the gradient Mach number - a parameter based on the mean shear rate, integral length scale and speed of sound - increases, the growth of turbulent kinetic energy is inhibited. The reduced ‘efficiency’ of production is shown to lead to the inhibited growth of turbulent kinetic energy. Implications for inhomogeneous shear flows are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

DOU, HUA-SHU, et BOO CHEONG KHOO. « CRITERIA OF TURBULENT TRANSITION IN PARALLEL FLOWS ». Modern Physics Letters B 24, no 13 (30 mai 2010) : 1437–40. http://dx.doi.org/10.1142/s0217984910023815.

Texte intégral
Résumé :
Based on the energy gradient method, criteria for turbulent transition are proposed for pressure driven flow and shear driven flow, respectively. For pressure driven flow, the necessary and sufficient condition for turbulent transition is the presence of the velocity inflection point in the averaged flow. For shear driven flow, the necessary and sufficient condition for turbulent transition is the existence of zero velocity gradient in the averaged flow profile. It is shown that turbulent transition can be effected via a singularity of the energy gradient function which may be associated with the chaotic attractor in dynamic system. The role of disturbance in the transition is also clarified in causing the energy gradient function to approach the singularity. Finally, it is interesting that turbulence can be controlled by modulating the distribution of the energy gradient function.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Turbulent shear flows"

1

COHEN, JACOB. « INSTABILITIES IN TURBULENT FREE SHEAR FLOWS ». Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188143.

Texte intégral
Résumé :
The evolution of the large scale structures and the mean field were investigated in axisymmetric and plane mixing layers. Some aspects of the linear instability of an axisymmetric jet have been demonstrated. The axisymmetric geometry admits two additional length scales with relation to the two-dimensional shear layer: the radius of the jet column and the azimuthal wavelength. The importance of these two length scales in governing the instability of an axisymmetric jet was explored. The special case of a thin axisymmetric shear layer was analyzed and the results stressing the evolution of different azimuthal modes were compared with some phase-locked data which was produced by subjecting the jet to axisymmetric and helical excitation. The importance of the initial spectral distribution in a natural jet was demonstrated when it is used as an input to the amplification curve obtained from linear stability theory to predict a measured spectral distribution at a further downstream location. The inclusion of the nonlinear terms in the stability analysis reveals two main interactions: mean flow-wave interaction and wave-wave interaction. The modification of the mean flow of an axisymmetric jet was examined by exciting two azimuthal modes simultaneously. The interaction resulted in an azimuthal modulation of the mean velocity profile having a cosine shape. Effectively, the geometry of the jet was modified without changing the geometry of the nozzle. The coupling between an excited periodic disturbance and the mean flow was analyzed and the spatial evolution of both were compared with experimental results obtained in a plane mixing layer. The behavior of the concommittant Reynolds stresses is discussed in detail. The conditions under which one disturbance will transfer energy to another were derived and demonstrated in an axisymmetric jet. The interaction between a large amplitude plane wave with a weak subharmonic component was shown to enhance the amplification rate of the subharmonic. It was further shown that the nonlinear interaction between two azimuthal modes can produce a third azimuthal mode which was not initially present in the flow. The coupling between a fundamental wave and its subharmonic in a parallel plane mixing layer was demonstrated numerically.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Buxton, Oliver R. H. « Fine scale features of turbulent shear flows ». Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9080.

Texte intégral
Résumé :
This thesis presents an investigation into kinematic features of fine scale turbulence in free shear flows. In particular it seeks to examine the interaction between the different length scales present in shear flow turbulence as well as the interaction between the strain-rate tensor and the rotation tensor, which are the symmetric and skew-symmetric components of the velocity gradient tensor respectively. A new multi-scale particle image velocimetry (PIV) technique is developed that is capable of resolving the flow at two different dynamic ranges, centred on inertial range scales and on dissipative range scales, simultaneously. This data is used to examine the interaction between large-scale fluctuations, of the order of the integral scale, and inertial and dissipative range fluctuations. The large-scale fluctuations are observed to have an amplitude and frequency modulation effect on the small scales, and the small scales are shown to have a slight effect on the large scales, illustrating the two way nature of the energy cascade. A mechanism whereby integral scale rollers leave behind a wake of intense small-scale fluctuations is proposed. The interaction between strain and rotation is examined with regards to the rate of enstrophy amplification (ωiSijωj). It is found that the mechanism that is responsible for the nature of enstrophy amplification is the alignment tendency between the extensive strain-rate eigenvector and the vorticity vector. This mechanism is also observed to be scale dependent for ωiSijωj > 0, but independent for ωiSijωj < 0. This is subsequently confirmed with new dual-plane stereoscopic PIV experiments performed as part of this study. Finally, computational data is used to examine the effect of experimental noise and variation of spatial resolution on the observation and understanding of this strain - rotation interaction.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Naaseri, Masud. « Studies of complex three-dimensional turbulent flows ». Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/7379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Strömgren, Tobias. « Model predictions of turbulent gas-particle shear flows ». Doctoral thesis, KTH, Mekanik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12135.

Texte intégral
Résumé :
A turbulent two-phase flow model using kinetic theory of granularflows for the particle phase is developed and implmented in afinite element code. The model can be used for engineeringapplications. However, in this thesis it is used to investigateturbulent gas-particle flows through numerical simulations.  The feedback from the particles on the turbulence and the meanflow of the gas in a vertical channel flow is studied. In particular,the influence of the particle response time, particle volumefraction and particle diameter on the preferential concentration ofthe particles near the walls, caused by the turbophoretic effect isexplored. The study shows that when particle feedback is includedthe accumulation of particles near the walls decreases. It is also foundthat even at low volume fractions particles can have a significant impacton the turbulence and the mean flow of the gas. The effect of particles on a developing turbulent vertical upward pipeflow is also studied. The development length is found to substantiallyincrease compared to an unladen flow. To understand what governs thedevelopment length a simple estimation was derived, showing that itincreases with decreasing particle diameters in accordance with themodel simulations. A model for the fluctuating particle velocity in turbulentgas-particle flow is derived using a set of stochastic differentialequations taking into account particle-particle collisions. Themodel shows that the particle fluctuating velocity increases whenparticle-particle collisions become more important and that increasingparticle response times reduces the fluctuating velocity. The modelcan also be used for an expansion of the deterministic model for theparticle kinetic energy.
QC20100726
Styles APA, Harvard, Vancouver, ISO, etc.
5

Raiford, John Phillip. « Numerical and physical modeling of turbulent shear flows ». Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1181669456/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

El-Baz, A. M. « The computational modelling of free turbulent shear flows ». Thesis, University of Manchester, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pantano-Rubino, Carlos. « Compressibility effects in turbulent nonpremixed reacting shear flows / ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9981965.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Horender, Stefan. « Experiments and simulations of particle-laden turbulent shear flows ». Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401859.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Li, Li. « Modelling of dispersive transport in turbulent free shear flows ». Thesis, University of the West of Scotland, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430898.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lindgren, Björn. « Flow facility design and experimental studies of wall-bounded turbulent shear-flows ». Doctoral thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3454.

Texte intégral
Résumé :

The presen present thesis spans a range of topics within thearea of turbulent flows, ranging from design of flow facilitiesto evaluation aluation of scaling laws and turbulence modelingdeling aspects through use of experimental data. A newwind-tunnel has been designed, constructed and evaluated at theDept. of Mechanics, KTH. Special attention was directed to thedesign of turning vanes that not only turn the flow but alsoallow for a large expansion without separation in the corners.The investigation of the flow quality confirmed that theconcept of expanding corners is feasible and may besuccessfully incorporated into low turbulence wind-tunnels. Theflow quality in the MTL wind-tunnel at the Dept. of Mechanics,KTH, was as also in investigated confirming that it still isvery good. The results are in general comparable to thosemeasured when the tunnel was as new, with the exception of thetemperature variation ariation that has decreased by a factorof 4 due to an improved cooling system.

Experimental data from high Reynolds number zeropressure-gradient turbulent layers have been investigated.These studies have primarily focused on scaling laws withe.g.confirmation of an exponential velocity defect lawin a region, about half the size of the boundary layerthickness, located outside the logarithmic overlap region. Thestreamwise velocity probability density functions in theoverlap region was found to be self-similar when scaled withthe local rms value. Flow structures in the near-wall andbuffer regions were studied ande.g. the near-wall streak spacing was confirmed to beabout 100 viscous length units although the relative influenceof the near-wall streaks on the flow was as found to decreasewith increasing Reynolds number.

The separated flow in an asymmetric plane diffuser wasdetermined using PIV and LDV. All three velocity componentswere measured in a plane along the centerline of the diffuser.Results for mean velocities, turbulence intensities andturbulence kinetic energy are presented, as well as forstreamlines and backflow coefficientcien describing theseparated region. Instantaneous velocity fields are alsopresented demonstrating the highly fluctuating flow. Resultsfor the above mentioned velocity quantities, together with theproduction of turbulence kinetic energy and the secondanisotropy inariant are also compared to data from simulationsbased on the k -wformulation with an EARSM model. The simulation datawere found to severely underestimate the size of the separationbubble.

Keywords:Fluid mechanics, wind-tunnels, asymmetricdiffuser, turbulent boundary layer, flow structures, PDFs,modeling, symmetry methods.

Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Turbulent shear flows"

1

Durst, Franz, Rainer Friedrich, Brian E. Launder, Frank W. Schmidt, Ulrich Schumann et James H. Whitelaw, dir. Turbulent Shear Flows 8. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77674-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Durst, Franz, Brian E. Launder, John L. Lumley, Frank W. Schmidt et James H. Whitelaw, dir. Turbulent Shear Flows 5. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71435-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bradbury, Leslie J. S., Franz Durst, Brian E. Launder, Frank W. Schmidt et James H. Whitelaw, dir. Turbulent Shear Flows 4. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

André, Jean-Claude, Jean Cousteix, Franz Durst, Brian E. Launder, Frank W. Schmidt et James H. Whitelaw, dir. Turbulent Shear Flows 6. Berlin, Heidelberg : Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Durst, Franz, Brian E. Launder, William C. Reynolds, Frank W. Schmidt et James H. Whitelaw, dir. Turbulent Shear Flows 7. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Durst, Franz, Nobuhide Kasagi, Brian E. Launder, Frank W. Schmidt, Kenjiro Suzuki et James H. Whitelaw, dir. Turbulent Shear Flows 9. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78823-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Goldstein, Marvin E. Aeroacoustics of subsonic turbulent shear flows. [Washington, DC] : National Aeronautics and Space Administration, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chatwin, P. C. Scala transport in turbulent shear flows. Uxbridge, Middx : Department of Mahtematics and Statistics, Brunel University, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

F, Durst, et International Symposium on Turbulent Shear Flows, (9th : 1993 : Kyoto, Japan), dir. Turbulent shear flows 9 : Selected papers from the Ninth International Symposium on Turbulent Shear Flows, Kyoto, Japan, August 16-18, 1993. Berlin : Springer-Verlag, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

C, Benocci, Olivari D et Von Karman Institute for Fluid Dynamics., dir. Turbulent shear flows : February 6-10, 1989. Rhode Saint Genese, Belgium : Von Karman Institute for Fluid Dynamics, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Turbulent shear flows"

1

Piquet, Jean. « Turbulent Two-Dimensional Shear Flows ». Dans Turbulent Flows, 305–469. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03559-7_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ramaprian, B. R., S. W. Tu et A. N. Menendez. « Periodic Turbulent Shear Flows ». Dans Turbulent Shear Flows 4, 301–10. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lockwood, F. C., et P. Stolakis. « Assessment of Two Turbulence Models for Turbulent Round Diffusion Jets with Combustion ». Dans Turbulent Shear Flows 4, 328–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bilger, R. W. « Reacting Flows — Introductory Remarks ». Dans Turbulent Shear Flows 4, 313–18. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Henningson, Dan S., et John Kim. « Turbulent Characteristics inside a Turbulent Spot in a Plane Poiseuille Flow ». Dans Turbulent Shear Flows 7, 155–65. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

André, Jean-Claude. « Fundamental Aspects of Turbulent Shear Flows — Introductory Remarks ». Dans Turbulent Shear Flows 4, 3–6. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Osaka, Hideo, Hidemi Yamada et Ikuo Nakamura. « Statistical Characteristics of the Turbulent Wake Behind an Intersecting Cruciform Circular Cylinder ». Dans Turbulent Shear Flows 4, 124–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Koyama, Hide S. « Effects of Streamline Curvature on Laminar and Turbulent Wakes ». Dans Turbulent Shear Flows 4, 141–55. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Leuchter, O., et J. L. Solignac. « Experimental Investigation of the Turbulent Structure of Vortex Wakes ». Dans Turbulent Shear Flows 4, 156–68. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nallasamy, M., et A. K. M. F. Hussain. « Numerical Study of the Phenomenon of Turbulence Suppression in a Plane Shear Layer ». Dans Turbulent Shear Flows 4, 169–81. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Turbulent shear flows"

1

Nakabayashi, Koichi, Osami Kitoh et Yoshitaka Katou. « TURBULENCE CHARACTERISTICS OF COUETTE-POISEUILLE TURBULENT FLOWS ». Dans Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut : Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.80.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

MOIN, P., J. KIM et H. CHOI. « On the active control of wall-bounded turbulent flows ». Dans 2nd Shear Flow Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-960.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ahn, Junsun, Jae Hwa Lee et Hyung Jin Sung. « Inner-scaled turbulent statistics of turbulent pipe flows ». Dans Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut : Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.670.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bonnet, J., J. Delville, M. Glauser, J. Bonnet, J. Delville et M. Glauser. « Large scale structures in free turbulent shear flows ». Dans 4th Shear Flow Control Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

« Mixing layer control for tangential slot injection in turbulent flows ». Dans Shear Flow Control Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yoshizawa, Akira, Hitoshi Fujiwara, Fujihiro Hamba, Shoiti Nisizima et Yukihiro Kumagai. « MODELING OF SUPERSONIC TURBULENT FLOWS BASED ON NONEQUILIBRIUM TURBULENT VISCOSITY ». Dans Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut : Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.1850.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sen, P. K., Srinivas V. Veeravalli, T. Vijaya Kumar et S. Hegde. « Algebraic growth in turbulent shear flows ». Dans 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yoder, Dennis A., James R. DeBonis et Nicholas J. Georgiadis. « Modeling of Turbulent Free Shear Flows ». Dans 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2721.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

GOLDSTEIN, MARVIN. « Aeroacoustics of subsonic turbulent shear flows ». Dans 11th Aeroacoustics Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2731.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sandham, Neil D. « COMPRESSIBILITY EFFECTS ON TURBULENT SHEAR FLOWS ». Dans Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut : Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Turbulent shear flows"

1

Hussain, Fazle. Basic Studies in Turbulent Shear Flows. Fort Belvoir, VA : Defense Technical Information Center, mars 1992. http://dx.doi.org/10.21236/ada247420.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ho, Chih-Ming, P. Huerre et L. G. Redekopp. Unsteady Behavior of Turbulent Shear Flows. Fort Belvoir, VA : Defense Technical Information Center, juillet 1990. http://dx.doi.org/10.21236/ada231836.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Glezer, Ari, Mark Allen et Martin Brooke. MEMS-Based Diagnostics for Turbulent Shear Flows. Fort Belvoir, VA : Defense Technical Information Center, avril 1997. http://dx.doi.org/10.21236/ada326143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Truman, C. R. Research Training in Optical Propagation Through Turbulent Shear Flows. Fort Belvoir, VA : Defense Technical Information Center, mars 2002. http://dx.doi.org/10.21236/ada400113.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bernard, P. S., J. M. Wallace et J. L. Balint. Lagrangian analysis of contaminant dispersal in bounded turbulent shear flows. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/6111497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bernard, P. S., J. M. Wallace et J. L. Balint. Lagrangian analysis of contaminant dispersal in bounded turbulent shear flows. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6995372.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Dahm, W. J. A High Resolution Four-Dimensional Imaging Measurement System to Investigate Molecular Mixing in Gaseous Turbulent Shear Flows. Fort Belvoir, VA : Defense Technical Information Center, août 1999. http://dx.doi.org/10.21236/ada374878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bernard, P. S., J. M. Wallace et J. L. Balint. Lagrangian analysis of contaminant dispersal in bounded turbulent shear flows. Progress report, February 1, 1991--December 31, 1991. Office of Scientific and Technical Information (OSTI), décembre 1991. http://dx.doi.org/10.2172/10102084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bernard, P. S., J. M. Wallace et J. L. Balint. Lagrangian analysis of contaminant dispersal in bounded turbulent shear flows. Progress report, February 1, 1992--January 31, 1993. Office of Scientific and Technical Information (OSTI), novembre 1992. http://dx.doi.org/10.2172/10189814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hart, Carl, et Gregory Lyons. A tutorial on the rapid distortion theory model for unidirectional, plane shearing of homogeneous turbulence. Engineer Research and Development Center (U.S.), juillet 2022. http://dx.doi.org/10.21079/11681/44766.

Texte intégral
Résumé :
The theory of near-surface atmospheric wind noise is largely predicated on assuming turbulence is homogeneous and isotropic. For high turbulent wavenumbers, this is a fairly reasonable approximation, though it can introduce non-negligible errors in shear flows. Recent near-surface measurements of atmospheric turbulence suggest that anisotropic turbulence can be adequately modeled by rapid-distortion theory (RDT), which can serve as a natural extension of wind noise theory. Here, a solution for the RDT equations of unidirectional plane shearing of homogeneous turbulence is reproduced. It is assumed that the time-varying velocity spectral tensor can be made stationary by substituting an eddy-lifetime parameter in place of time. General and particular RDT evolution equations for stochastic increments are derived in detail. Analytical solutions for the RDT evolution equation, with and without an effective eddy viscosity, are given. An alternative expression for the eddy-lifetime parameter is shown. The turbulence kinetic energy budget is examined for RDT. Predictions by RDT are shown for velocity (co)variances, one-dimensional streamwise spectra, length scales, and the second invariant of the anisotropy tensor of the moments of velocity. The RDT prediction of the second invariant for the velocity anisotropy tensor is shown to agree better with direct numerical simulations than previously reported.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie