Articles de revues sur le sujet « Turbid materials »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Turbid materials.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Turbid materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

van Putten, E. G., A. Lagendijk et A. P. Mosk. « Optimal concentration of light in turbid materials ». Journal of the Optical Society of America B 28, no 5 (21 avril 2011) : 1200. http://dx.doi.org/10.1364/josab.28.001200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tualle, J. M., E. Tinet, J. Prat et S. Avrillier. « Light propagation near turbid–turbid planar interfaces ». Optics Communications 183, no 5-6 (septembre 2000) : 337–46. http://dx.doi.org/10.1016/s0030-4018(00)00880-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Matousek, P., C. Conti, M. Realini et C. Colombo. « Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials ». Analyst 141, no 3 (2016) : 731–39. http://dx.doi.org/10.1039/c5an02129d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schmitt, J. M., et G. Kumar. « Spectral Distortions in Near-Infrared Spectroscopy of Turbid Materials ». Applied Spectroscopy 50, no 8 (août 1996) : 1066–73. http://dx.doi.org/10.1366/0003702963905295.

Texte intégral
Résumé :
A liquid suspension consisting of a mixture of H2O, D2O, and polystyrene latex microspheres was used to study the effects of multiple scattering on the near-infrared (800–1600 nm) spectrum of a pure absorber (H2O) in a turbid medium. This simple experimental model enabled us to isolate and explain the spectral distortions introduced by variations in the optical pathlength of scattered photons. We observe the following: (1) Reflectance spectra measured with the detector positioned close to and far from the point of illumination have distinctly different sensitivities to background scattering variations. Within a certain range of detector positions, the use of spectral derivatives to correct for multiplicative scattering effects is most effective. (2) The wavelength dependence of the scattering background of the log(1/ R) spectrum depends not only on particle size but also on the separation between the source and detector probes. And (3) the ratio of the magnitudes of the spectral peaks caused by absorption within the background medium and absorption within the scattering particles decreases as multiple scattering increases. We explain these observations in the context of photon-diffusion theory and point out their significance with respect to the design of diffuse-reflectance spectrometers. Photon diffusion theory proves to be valuable for interpretation of diffuse spectra, but it fails to account for spectral distortions introduced by low-order backscattering at close source–detector separations.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bolt, René A., et Jaap J. ten Bosch. « On the determination of optical parameters for turbid materials ». Waves in Random Media 4, no 3 (juillet 1994) : 233–42. http://dx.doi.org/10.1088/0959-7174/4/3/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kim, Choong-Jae, Yun-Ho Jung, Chi-Yong Ahn, Young-Ki Lee et Hee-Mock Oh. « Adsorption of turbid materials by the cyanobacterium Phormidium parchydematicum ». Journal of Applied Phycology 22, no 2 (9 mai 2009) : 181–86. http://dx.doi.org/10.1007/s10811-009-9440-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Martín-Badosa, Estela. « Trapping through turbid media ». Nature Photonics 4, no 6 (juin 2010) : 349–50. http://dx.doi.org/10.1038/nphoton.2010.132.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schmidt, Werner. « A multipurpose, fast scan spectrophotometer for measuring turbid (biological) materials ». Experimental Biology Online 2, no 4 (décembre 1997) : 1–13. http://dx.doi.org/10.1007/s00898-997-0004-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

El-wakil, S. A., E. M. Abulwafa, A. R. Degheidy et N. K. Radwan. « The Pomraning-Eddington approximation to diffusion of light in turbid materials ». Waves in Random Media 4, no 2 (avril 1994) : 127–38. http://dx.doi.org/10.1088/0959-7174/4/2/003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brenan, Colin J. H., et Ian W. Hunter. « Volumetric Raman Microscopy Through a Turbid Medium ». Journal of Raman Spectroscopy 27, no 8 (août 1996) : 561–70. http://dx.doi.org/10.1002/(sici)1097-4555(199608)27:8<561 ::aid-jrs7>3.0.co;2-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Schmitt, J. M., A. Knüttel et M. Yadlowsky. « Confocal microscopy in turbid media ». Journal of the Optical Society of America A 11, no 8 (1 août 1994) : 2226. http://dx.doi.org/10.1364/josaa.11.002226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Yuan, Xin, Linxu Guo, Citong Luo, Xiaoteng Zhou et Changli Yu. « A Survey of Target Detection and Recognition Methods in Underwater Turbid Areas ». Applied Sciences 12, no 10 (12 mai 2022) : 4898. http://dx.doi.org/10.3390/app12104898.

Texte intégral
Résumé :
Based on analysis of state-of-the-art research investigating target detection and recognition in turbid waters, and aiming to solve the problems encountered during target detection and the unique influences of turbidity areas, in this review, the main problem is divided into two areas: image degradation caused by the unique conditions of turbid water, and target recognition. Existing target recognition methods are divided into three modules: target detection based on deep learning methods, underwater image restoration and enhancement approaches, and underwater image processing methods based on polarization imaging technology and scattering. The relevant research results are analyzed in detail, and methods regarding image processing, target detection, and recognition in turbid water, and relevant datasets are summarized. The main scenarios in which underwater target detection and recognition technology are applied are listed, and the key problems that exist in the current technology are identified. Solutions and development directions are discussed. This work provides a reference for engineering tasks in underwater turbid areas and an outlook on the development of underwater intelligent sensing technology in the future.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Xiong, Fei Bing, N. Djeu et Wen Zhang Zhu. « An Optical Fiber Sensor for Measuring Light Absorption in Suspension Solutions ». Applied Mechanics and Materials 121-126 (octobre 2011) : 2509–13. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.2509.

Texte intégral
Résumé :
An optical fiber sensor based on attenuated total reflectance (ATR) for extraction chemical information from highly scattering turbid materials has been evaluated. The influence of particles on bulk absorption and ATR transmitted spectra of micron-sized graphite flakes and spherical glassy carbon suspensions were investigated. The ATR transmitted spectra of coiled fiber-optic sensor in those suspensions with various concentrations are insensitive to scattering of suspended particles, especially for graphite flake suspensions. The reason for different influence of graphite flakes and spherical glassy carbon particles suspensions on e ATR spectra analyzed. This study demonstrates that fiber-optic sensor based on ATR technique is a feasible technique in application for monitoring turbid suspensions.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Joshi, Neel, Craig Donner et Henrik Wann Jensen. « Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination ». Optics Letters 31, no 7 (1 avril 2006) : 936. http://dx.doi.org/10.1364/ol.31.000936.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

He, Hexiang, Xiangsheng Xie, Yikun Liu, Haowen Liang et Jianying Zhou. « Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method ». Journal of Innovative Optical Health Sciences 12, no 04 (juillet 2019) : 1930005. http://dx.doi.org/10.1142/s1793545819300052.

Texte intégral
Résumé :
Visual perception of humans penetrating turbid medium is hampered by scattering. Various techniques have been prompted recently to recover optical imaging through turbid materials. Among them, speckle correlation based on deconvolution is one of the most attractive methods taking advantage of high imaging quality, robustness, ease-of-use, and ease-of-integration. By exploiting the point spread function (PSF) of the scattering system, large Field-of-View, extended Depth-of-Field, noninvasiveness and spectral resoluation are now available as successful solutions for high quality and multifunctional image reconstruction. In this paper, we review the progress of imaging through a scattering medium based on deconvolution method, including the principle, the breakthrough of the limitation of the optical memory effect, the improvement of the deconvolution algorithm and innovative applications.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Reble, Carina, Ingo Gersonde, Stefan Andree, Hans Joachim Eichler et Jürgen Helfmann. « Quantitative Raman spectroscopy in turbid media ». Journal of Biomedical Optics 15, no 3 (2010) : 037016. http://dx.doi.org/10.1117/1.3456370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kienle, Alwin. « Light diffusion through a turbid parallelepiped ». Journal of the Optical Society of America A 22, no 9 (1 septembre 2005) : 1883. http://dx.doi.org/10.1364/josaa.22.001883.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Soloviev, Vadim Y. « Light transport in refractive turbid media ». Journal of the Optical Society of America A 33, no 3 (23 février 2016) : 383. http://dx.doi.org/10.1364/josaa.33.000383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gorodnichev, E. E., S. V. Ivliev, A. I. Kuzovlev et D. B. Rogozkin. « Transmission of polarized light through turbid media ». Optics and Spectroscopy 110, no 4 (avril 2011) : 586–94. http://dx.doi.org/10.1134/s0030400x11040114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Thompson, Jonathan V., Brett H. Hokr, Wihan Kim, Charles W. Ballmann, Brian E. Applegate, Javier Jo, Alexey Yamilov, Hui Cao, Marlan O. Scully et Vladislav V. Yakovlev. « Enhanced coupling of light into a turbid medium through microscopic interface engineering ». Proceedings of the National Academy of Sciences 114, no 30 (12 juillet 2017) : 7941–46. http://dx.doi.org/10.1073/pnas.1705612114.

Texte intégral
Résumé :
There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light–matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Huang, Ching-Chuan, et Chun-Chang Liao. « Abrasion damage of geogrids induced by turbid flow ». Geotextiles and Geomembranes 25, no 2 (avril 2007) : 128–38. http://dx.doi.org/10.1016/j.geotexmem.2006.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ntwampe, I. O. « Treatment of AMD using a combination of saw dust, bentonite clay and phosphate in the removal of turbid materials and toxic metals ». Water Practice and Technology 16, no 2 (18 février 2021) : 541–56. http://dx.doi.org/10.2166/wpt.2021.014.

Texte intégral
Résumé :
Abstract Acid mine drainage collected from the western decant in South Africa was treated in a series of small-scale laboratory experiments. 200 mL of the sample was poured into five 500 mL glass beakers using flocculants formed by mixing size-optimized 1.5 g of bentonite clay with 3.5 g saw dust and 1.0 g of Na3PO4 in triplicates (experiment A). Four similar sets of control experiments were conducted using the same amount of bentonite clay and saw dust with varying Na3PO4, contents in AMD treatment; the rationale being to determine the efficiency of Na3PO4 (experiments B, C and D). The results show that conductivity has an influence in the removal of the turbid materials. The removal efficiency of toxic metals using a flocculant containing 220 μm bentonite clay particle size and 0.012 or 0.25 M of Na3PO4 is higher than 96% when compared to that of the samples dosed with a flocculant containing 0.05 M Na3PO4, which is less than 91%. The flocculant also showed optimal removal efficiency of both turbid materials and toxic metals, i.e. removal efficiency within a range 96.5–99.3%. The flocculants containing 0.025 M Na3PO4 showed optimal removal efficiency of turbidity, colour, toxic metals and natural organic compounds.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Neuman, Magnus, et Per Edström. « Anisotropic reflectance from turbid media I Theory ». Journal of the Optical Society of America A 27, no 5 (13 avril 2010) : 1032. http://dx.doi.org/10.1364/josaa.27.001032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Neuman, Magnus, et Per Edström. « Anisotropic reflectance from turbid media II Measurements ». Journal of the Optical Society of America A 27, no 5 (13 avril 2010) : 1040. http://dx.doi.org/10.1364/josaa.27.001040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ghosh, N., A. Banerjee et J. Soni. « Turbid medium polarimetry in biomedical imaging and diagnosis ». European Physical Journal Applied Physics 54, no 3 (juin 2011) : 30001. http://dx.doi.org/10.1051/epjap/2011110017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Babaie, Jonathan, Mehrdad Abolbashari, Navid Farahi, Sun Myong Kim et Faramarz Farahi. « Optical film thickness measurement of turbid materials using the fractional BiSpectrum noise-reduction technique ». Optics Communications 440 (juin 2019) : 106–16. http://dx.doi.org/10.1016/j.optcom.2019.01.066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Svensson, Tomas, Erik Alerstam, Dmitry Khoptyar, Jonas Johansson, Staffan Folestad et Stefan Andersson-Engels. « Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm ». Review of Scientific Instruments 80, no 6 (juin 2009) : 063105. http://dx.doi.org/10.1063/1.3156047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

He, Duo-Min, et Gerald G. L. Seet. « Divergent-beam Lidar imaging in turbid water ». Optics and Lasers in Engineering 41, no 1 (janvier 2004) : 217–31. http://dx.doi.org/10.1016/s0143-8166(02)00138-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Urban, Claus, Sara Romer, Frank Scheffold et Peter Schurtenberger. « Static and dynamic light scattering in turbid suspensions ». Macromolecular Symposia 162, no 1 (décembre 2000) : 235–48. http://dx.doi.org/10.1002/1521-3900(200012)162:1<235 ::aid-masy235>3.0.co;2-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Silverman, M. P., et Wayne Strange. « Ellipsometric penetration of turbid media : depolarization and surface characterization ». Thin Solid Films 313-314 (février 1998) : 831–35. http://dx.doi.org/10.1016/s0040-6090(97)01004-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Putra, Rudy Syah, Desi Nasriyanti et Muhammad Sarkawi. « Coagulation activity of liquid extraction of Leucaena leucocephala and Sesbania grandiflora on the removal of turbidity ». Open Chemistry 20, no 1 (1 janvier 2022) : 1239–49. http://dx.doi.org/10.1515/chem-2022-0230.

Texte intégral
Résumé :
Abstract Turbidity is removed by adding a chemical coagulant, which produces a secondary toxic of alumina residues in the water. Therefore, the aim of study was to evaluate the coagulation activity of NaCl extract from Leucaena leucocephala and Sesbania grandiflora seeds on the removal of turbidity for water purification. The proximate composition of the seeds was determined. Fourier transform infrared spectroscopy was used to identify the functional groups of protein, and the surface morphology was observed by SEM-EDS. To obtain the optimized condition, all experiments were evaluated by artificial turbid water before being applied on the natural water (i.e., Selokan Mataram). The coagulation process was evaluated by concentration (M), dosage (mL/L), and pH in terms of turbidity, total dissolved solids, and transmittance of light. The results showed that both coagulant seeds contained 25.32 and 30.81% of protein. These coagulants could remove the turbidity by 99.7% for L. leucocephala and 94.24% for S. grandiflora from artificial turbid water at the optimized concentration of 1.0 M, and dosage of 5 and 10 mL/L, respectively. At pH 5 the removal of turbidity from Selokan Mataram was 99.4% for L. leucocephala and 97.23% for S. grandiflora.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xing Chong, 幸翀, 黄家寿 Huang Jiashou et 罗硕 Luo Shuo. « Measurment of Turbid Media′s Backscattering Mueller Matrix ». Chinese Journal of Lasers 36, no 10 (2009) : 2587–92. http://dx.doi.org/10.3788/cjl20093610.2587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Donner, Craig, et Henrik Wann Jensen. « Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials ». Journal of the Optical Society of America A 23, no 6 (1 juin 2006) : 1382. http://dx.doi.org/10.1364/josaa.23.001382.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Qin, Jianwei, et Renfu Lu. « Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials ». Applied Optics 45, no 32 (10 novembre 2006) : 8366. http://dx.doi.org/10.1364/ao.45.008366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Schmidt, Werner. « Novel single-beam optical spectrophotometer for fast luminescence, absorption, and reflection measurements of turbid materials ». Optical Engineering 34, no 2 (1 février 1995) : 589. http://dx.doi.org/10.1117/12.188591.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Rogers, Geoffrey L. « Multiple path analysis of reflectance from turbid media ». Journal of the Optical Society of America A 25, no 11 (31 octobre 2008) : 2879. http://dx.doi.org/10.1364/josaa.25.002879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kokhanovsky, Alexander A. « Radiative properties of optically thick fluorescent turbid media ». Journal of the Optical Society of America A 26, no 8 (30 juillet 2009) : 1896. http://dx.doi.org/10.1364/josaa.26.001896.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Gan, X. S., S. P. Schilders et Min Gu. « Image formation in turbid media under a microscope ». Journal of the Optical Society of America A 15, no 8 (1 août 1998) : 2052. http://dx.doi.org/10.1364/josaa.15.002052.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kokhanovsky, Alexander A. « Reflection of light from semi-infinite turbid media ». Journal of the Optical Society of America A 15, no 11 (1 novembre 1998) : 2877. http://dx.doi.org/10.1364/josaa.15.002877.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Rogers, Geoffrey. « Transmission point spread function of a turbid slab ». Journal of the Optical Society of America A 36, no 10 (4 septembre 2019) : 1617. http://dx.doi.org/10.1364/josaa.36.001617.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Bonner, R. F., R. Nossal, S. Havlin et G. H. Weiss. « Model for photon migration in turbid biological media ». Journal of the Optical Society of America A 4, no 3 (1 mars 1987) : 423. http://dx.doi.org/10.1364/josaa.4.000423.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Schröer, W., J. Köser et F. Kuhnen. « Light–scattering in turbid fluids : The single-scattering intensity ». Journal of Molecular Liquids 134, no 1-3 (mai 2007) : 40–48. http://dx.doi.org/10.1016/j.molliq.2006.12.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ulcickas, James R. W., et Garth J. Simpson. « Mueller Tensor Nonlinear Optical Polarization Analysis in Turbid Media ». Journal of Physical Chemistry B 123, no 30 (10 juillet 2019) : 6643–50. http://dx.doi.org/10.1021/acs.jpcb.9b04961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yang, Hong Ying, Jin Li Zhou, Zhi Wen Que et Xiao Dan Ma. « The Influence of Dye Concentration on Kubelka-Munk Fundamental Optical Parameters of Fabric ». Advanced Materials Research 332-334 (septembre 2011) : 481–84. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.481.

Texte intégral
Résumé :
Kubelka-Munk theory and a functional hypothesis on the relationship between colored turbid materials and colorant concentration (the so called additivity color-mixing law) work together and play an important role in color science and technology. This paper is to investigate the relations between the dye concentration and the Kubelka-Munk fundamental optical parameters through a series of systematical experiments, data processing and analyzing on fabrics dyed by disperse dyes. The experimental results question the hypothesis.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gan, Xiaosong, et Min Gu. « Microscopic image reconstruction through tissue-like turbid media ». Optics Communications 207, no 1-6 (juin 2002) : 149–54. http://dx.doi.org/10.1016/s0030-4018(02)01425-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gopal, Venkatesh, Sushil Mujumdar, Hema Ramachandran et A. K. Sood. « Imaging in turbid media using quasi-ballistic photons ». Optics Communications 170, no 4-6 (novembre 1999) : 331–45. http://dx.doi.org/10.1016/s0030-4018(99)00468-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Jin, Peng Kang, Yong Ning Feng, Jie Xu et Xian Bao Wang. « The Effect of Polyacrylamide on Floc Structure of Typical Systems ». Applied Mechanics and Materials 260-261 (décembre 2012) : 887–90. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.887.

Texte intégral
Résumé :
Based on that floc structure is an important factor that influencing the coagulation effect and the post-treatment load, the effect of PAM on floc structure of typical system is analyzed and evaluated in this paper. The results show that PAM has a notable influence on floc morphological structure characteristics. For inorganic turbid system, the fractal dimension and diameter of kaolin flocs adding PAM are bigger than that formed by adding aluminum sulfate merely, and the shear-resistant ability of flocs is stronger. With regard to dissolved organic system, adding PAM under two typical pH conditions, the floc morphological characteristic has the same variation with that in inorganic turbid system. PAM could improve the floc morphological structure. However, the improving effect will be relatively weaker under slightly acidic condition, which indicates that the chemical effect of PAM is restrained under this condition. While for the coexisting system, PAM shows an obvious improvement on floc structure under two pH conditions, the floc is compact, bigger and with a higher strength. The chemical effect of PAM is not restrained under slightly acidic condition, which may owe to the interaction between PAM and inorganic suspended materials and dissolved organics in coexisting system.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Goto, Shogo, Kentaro Yasui, Kaito Kassai, Mitsuhiro Sezaki, Yoshimi Okamura et Hiroyuki Kinoshita. « Application of ceramics made by mixing waste GFRP with clay to filtration materials for turbid water ». Proceedings of Conference of Kyushu Branch 2017.70 (2017) : 509. http://dx.doi.org/10.1299/jsmekyushu.2017.70.509.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Schmidt, Werner. « A novel single beam optical spectrophotometer for fast luminescence, absorption, and reflection measurements of turbid materials ». TrAC Trends in Analytical Chemistry 12, no 2 (février 1993) : 74–82. http://dx.doi.org/10.1016/0165-9936(93)87054-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Oelkrug, Dieter, Barbara Boldrini et Karsten Rebner. « Comparative Raman study of transparent and turbid materials : models and experiments in the remote sensing mode ». Analytical and Bioanalytical Chemistry 409, no 3 (30 avril 2016) : 673–81. http://dx.doi.org/10.1007/s00216-016-9582-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie