Littérature scientifique sur le sujet « Tunneling Time »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tunneling Time ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Tunneling Time"

1

Nimtz, Günter, et Horst Aichmann. « Zero-Time Tunneling – Revisited ». Zeitschrift für Naturforschung A 72, no 9 (28 août 2017) : 881–84. http://dx.doi.org/10.1515/zna-2017-0172.

Texte intégral
Résumé :
AbstractSince 1931, the nonclassical process of tunneling was conjectured to have a zero-time delay in the barrier. These theories have been rejected and denied. However, photonic and recent electronic tunneling experiments have proven the zero-time prediction. Tunneling is due to virtual wave packets in electromagnetic, elastic, and Schrödinger wave fields up to the macroscopic level. In this article we cite theoretical and experimental studies on zero-time tunneling, which have proven this striking behavior.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Davies, P. C. W. « Quantum tunneling time ». American Journal of Physics 73, no 1 (janvier 2005) : 23–27. http://dx.doi.org/10.1119/1.1810153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Van Labeke, Daniel, Jean-Marie Vigoureux et Gilles Parent. « Photon tunneling time ». Ultramicroscopy 71, no 1-4 (mars 1998) : 11–20. http://dx.doi.org/10.1016/s0304-3991(97)00061-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Xiao, Zhi, Hai Huang et Xiang-Xiang Lu. « Resonant tunneling dynamics and the related tunneling time ». International Journal of Modern Physics B 29, no 08 (30 mars 2015) : 1550052. http://dx.doi.org/10.1142/s0217979215500526.

Texte intégral
Résumé :
In close analogy with optical Fabry–Pérot (FP) interferometer, we rederive the transmission and reflection coefficients of tunneling through a rectangular double barrier (RDB). Based on the same analogy, we also get an analytic finesse formula for its filtering capability of matter waves, and with this formula, we reproduce the RDB transmission rate in exactly the same form as that of FP interferometer. Compared with the numerical results obtained from the original finesse definition, we find the formula works well. Next, we turn to the elusive time issue in tunneling, and show that the "generalized Hartman effect" can be regarded as an artifact of the opaque limit βl → ∞. In the thin barrier approximation, phase (or dwell) time does depend on the free inter-barrier distance d asymptotically. Further, the analysis of transmission rate in the neighborhood of resonance shows that, phase (or dwell) time could be a good estimate of the resonance lifetime. The numerical results from the uncertainty principle support this statement. This fact can be viewed as a support to the idea that, phase (or dwell) time is a measure of lifetime of energy stored beneath the barrier. To confirm this result, we shrink RDB to a double Dirac δ-barrier. The landscape of the phase (or dwell) time in k and d axes fits excellently well with the lifetime estimates near the resonance. As a supplementary check, we also apply phase (or dwell) time formula to the rectangular well, where no obstacle exists to the propagation of particle. However, due to the self-interference induced by the common cavity-like structure, phase (or dwell) time calculation leads to a counterintuitive "slowing down" effect, which can be explained appropriately by the lifetime assumptions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

PARK, CHANG-SOO. « TUNNELING TIME OF A PARTICLE : TWO-DIMENSIONAL APPROACH ». Modern Physics Letters B 21, no 26 (10 novembre 2007) : 1733–50. http://dx.doi.org/10.1142/s0217984907014218.

Texte intégral
Résumé :
A two-dimensional problem of tunneling of a particle is studied to propose an experiment to measure tunneling time. We consider a 2D rectangular barrier in which the particle undergoes both tunneling and free lateral motion at the same time. The two processes are coupled by the same tunneling time, which leads to a simple relation between the tunneling time and the corresponding lateral shift such that L = vτ. Since the lateral speed v is constant the tunneling time can be obtained by measuring the lateral shift. The shifted length can be controlled by an initial lateral speed and become over a hundred nanometers when the particle is provided with sufficient initial lateral speed. The present model may also be used for examining the relationships between characteristic tunneling times suggested in previous articles. We also demonstrate physical differences between the 2D problem of a particle tunneling and the frustrated total internal reflection of electromagnetic waves.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dumont, Randall S., et T. L. Marchioro II. « Tunneling-time probability distribution ». Physical Review A 47, no 1 (1 janvier 1993) : 85–97. http://dx.doi.org/10.1103/physreva.47.85.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Buttiker, Markus, et Rolf Landauer. « Traversal time for tunneling ». IBM Journal of Research and Development 30, no 5 (septembre 1986) : 451–54. http://dx.doi.org/10.1147/rd.305.0451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Azbel', M. Ya. « Time, tunneling and turbulence ». Uspekhi Fizicheskih Nauk 168, no 06 (juin 1998) : 613–23. http://dx.doi.org/10.3367/ufnr.0168.199806b.0613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Azbel', M. Ya. « Time, tunneling and turbulence ». Physics-Uspekhi 41, no 6 (30 juin 1998) : 543–52. http://dx.doi.org/10.1070/pu1998v041n06abeh000402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mullen, Kieran, Eshel Ben-Jacob, Yuval Gefen et Zeev Schuss. « Time of Zener tunneling ». Physical Review Letters 62, no 21 (22 mai 1989) : 2543–46. http://dx.doi.org/10.1103/physrevlett.62.2543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Tunneling Time"

1

Teeny, Nicolas [Verfasser], et Christoph H. [Akademischer Betreuer] Keitel. « Tunneling Time, Exit Time and Exit Momentum in Strong Field Tunnel Ionization / Nicolas Teeny ; Betreuer : Christoph H. Keitel ». Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180736109/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Decker, Jeramy Bruyn. « Building, Updating and Verifying Fracture Models in Real Time for Hard Rock Tunneling ». Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27220.

Texte intégral
Résumé :
Fractures and fracture networks govern the mechanical and fluid flow behavior of rock masses. Tunneling and other rock mechanics applications therefore require the characterization of rock fractures based on geological data. Field investigations produce only a limited amount of data from boreholes, outcrops, cut slopes, and geophysical surveys. In tunneling, the process of excavation creates a priceless opportunity to gather more data during construction. Typically, however, these data are not utilized due to the impedance of sampling and analysis on the flow of construction, and safety concerns with sampling within unlined tunnel sections. However, the use of this additional data would increase the overall safety, quality, and cost savings of tunneling. This study deals with several aspects of the above, with the goal of creating methods and tools to allow engineers and geologists to gather and analysis fracture data in tunnels without interrupting the excavation and without compromising safety. Distribution-independent trace density and mean trace length estimators are developed using principles of stereology. An optimization technique is developed utilizing Differential Evolution to infer fracture size and shape from trace data obtained on two or more nonparallel sampling planes. A method of producing nearly bias free empirical trace length CDF's is also introduced. These new methods and tools were validated using Monte Carlo simulations. A field study was conducted in an existing tunnel allowing the above methods and tools to be further validated and tested. A relational database was developed to aid in storage, retrieval, and analysis of field data. Fracture models were built and updated using fracture data from within the tunnel. Utilization of state of the art imaging techniques allowed for remote sampling and analysis, which were enhanced by the use of 3d visualization techniques.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

De, la Fuente Mata Manuel. « Tunneling under squeezing conditions : Effect of the excavation method ». Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1071/document.

Texte intégral
Résumé :
L’excavation d’un tunnel profond dans des terrains poussants pose des difficultés particulières de conception et d’exécution. Ce type de terrain est caractérisé par des fortes convergences en paroi du tunnel de nature différée et souvent anisotrope. Le comportement d’un tunnel excavé en terrain poussant est très influencé par la technique d’excavation utilisée. Le cas d’étude du tunnel routier du Fréjus et de sa galerie de sécurité permet d’illustrer ce phénomène. Il s’agit de deux tunnels parallèles qui montrent une configuration très intéressante étant donné qu’ils traversent des conditions géotechniques similaires et qu’ils sont creusés avec des techniques d’excavation différentes : le tunnel routier a été creusé par méthode conventionnelle à l’explosif tandis que la galerie de sécurité a été creusée avec un tunnelier à bouclier simple. Les mesures d’auscultation réalisées pendant l’excavation des deux tunnels ont été analysées et comparées. Des modélisations numériques pour simuler la réponse des deux tunnels ont été développées avec le logiciel Flac3D. Le comportement du terrain est simulé avec un modèle visco-elasto-plastique et anisotrope. L’anisotropie liée à la schistosité du terrain est introduite dans le modèle par la présence de plans de faiblesse d’orientation donnée (ubiquitous joint model) insérés dans une matrice rocheuse caractérisée par un comportement visco-elasto-plastique isotrope. Une rétro-analyse a été réalisée sur les mesures de convergence obtenues lors du creusement du tunnel routier du Fréjus. Le comportement du terrain identifié dans le tunnel routier est ensuite extrapolé pour prédire la réponse de la galerie de sécurité. L’objectif est de reproduire l’état des contraintes observé dans les voussoirs de la galerie de sécurité et d’extrapoler les sollicitations à long terme. L’influence que la technique d’excavation, en particulier sur le comportement différé du terrain a été prise en compte dans les simulations numériques. On a mis en évidence que les déformations différées du terrain sont réduites lorsque l’excavation est réalisée au tunnelier.Par ailleurs, une synthèse critique de la méthode convergence-confinement et de ses variantes a été réalisée. Une discussion a été menée sur l’applicabilité des méthodes convergence-confinent quand elles sont utilisées pour le dimensionnement des tunnels circulaires excavés en section pleine avec l’installation d’un soutènement raide près du front d’excavation comme c’est le cas lors d’une excavation au tunnelier. Dans ce contexte, un ensemble de formules empiriques sont proposées. Elles permettent d’obtenir avec une bonne précision l’état d’équilibre entre le terrain et le soutènement et peuvent être utilisées dans la phase de pré-dimensionnement des ouvrages
During the excavation of deep tunnels, squeezing ground conditions are often encountered. The squeezing behavior of the ground is characterized by large time-dependent and usually anisotropic convergences that take place at the tunnel wall. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. This phenomenon is illustrated throughout the case study of the Fréjus road tunnel excavated with conventional drill and blast methods and of its safety gallery excavated with a single shield tunneling boring machine. They exhibit a very interesting configuration of two tunnels excavated in parallel under the same geotechnical conditions but with different excavation techniques. Monitored geotechnical data from both tunnels are analyzed and compared. Numerical simulations of both tunnels have been carried out with Flac3D. An anisotropic creep model which includes weakness planes of given orientation embedded in a visco-elasto-plastic matrix has been used for describing the behavior of the ground. A back-analysis of convergence measurements of the Fréjus road tunnel has been carried out. The behavior of the ground identified from the Fréjus road tunnel is extrapolated to predict the response of the Fréjus safety gallery in terms of the stress state in the lining. The influence of the technique of excavation on the time-dependent parameters of the ground is taken into account in the computations and its effects are discussed. It is shown that the long term ground deformation are significantly reduced with TBM excavation as compared to traditional blast and drill method.Furthermore, the convergence-confinement methods are reviewed and their applicability is discussed when they are applied to full face circular tunnels excavated in rock masses with a stiff support system near the face. In this context, a set of empirical formula are proposed which allows to accurately predict the equilibrium state between the ground and the lining in circular tunnels excavated in full section. These formula are useful in the preliminary phase of tunnel design
Styles APA, Harvard, Vancouver, ISO, etc.
4

Siddiqui, Aleem 1977. « Use of time domain capacitance spectroscopy in the study of tunneling into two-dimensional GaAs/AlGaAs heterostructures with an in-plane magnetic field ». Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Norell, Maria, et Kicki Öhman. « Kapacitet vid tunneldrivning : Studier av tidåtgång för olika arbetsmoment vid uppstarten ». Thesis, KTH, Byggteknik och design, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127272.

Texte intégral
Résumé :
Vid kalkylering inför en tunneldrivning finns det vissa svårigheter med att bestämma hur lång tid arbetet tar och framför allt vid uppstarten av produktionen. Det kan leda till att anbudsofferter blir felberäknade med avseende på både tiden och kostnaden. Vid en felberäkning av hur mycket tid ett projekt kan tänkas behöva kan det i längden ge högre kostnader och därmed lägre intäkter. För att förhindra sådana fallgropar är ett steg att identifiera de problem som kan uppstå under produktionen och förhindra dem. Mätningar har därför utförts under uppstarten av ett tunneldrivningsprojekt i Norsborg. Även om mätningarna utförs på ett specifikt projekt är förhoppningen att det även ska kunna användas vid andra tunneldrivningsprojekt. Många resultat och slutsatser kan också tillämpas vid andra tunneldrivningsprojekt och kanske även vid helt andra byggprojekt. Mätningarna har skett ute på projektet och har innefattat tidtagning på de olika arbetsmoment som har skett under uppstarten och inom varje cykel. En cykel omfattar alla de arbeten som sker vid sprängning av en hel stuff, det vill säga från det att borrning påbörjas inför en laddning av salva till dess att salvan sprängts av och allt berg har lastats och rensats bort från stuffen. Problem som har uppstått under tiden och anledningen till dem har även noterats. Kvantiteter på hur många borrhål som har borrats och hur långa dessa är, hur mycket sprängmedel som har använts och hur många hål som har laddats har dokumenterats för att kunna ta fram kapaciteten under de olika momenten. Uppstarten redovisas per vecka med cirkeldiagram som visar hur mycket av den totala arbetstiden som har gått åt för varje moment. Här redovisas också hur mycket stopp som har skett för respektive vecka. Diagrammen ger en bra överblick över vad som har skett under uppstarten och vilka moment som har varit mer tidskrävande än andra.   Av diagrammen vid uppstarten kan utläsas att många problem som uppstod vid uppstarten hade kunnat förhindras om det funnits bättre maskiner eller att tillgången till maskinist från leverantör hade funnits på plats redan från starten. En del av problemen hade alltså kunnat förhindras eller reduceras redan vid kalkyleringen. Av resultaten som kan avläsas kring cyklerna har många olika faktorer spelat en stor roll kring huruvida effektiviteten och kapaciteterna förbättras. Dessa resultat redovisas i diagram där helheten visas kring de cykler som uppmätts och i mer specifika diagram där varje moment behandlas var för sig. Många olika slutsatser har dragits gällande de olika faktorer som påverkar effektiviteten. Lastningen, som är det mest kritiska momentet i cykeln, har visat sig kunna effektiviseras desto längre projektet fortskridit.
Planning a tunnel project presents certain difficulties in deciding how long the job will take, particularly at the start of production. This can lead to miscalculated quotations concerning both time and cost. A miscalculation of how much time a project may need can increase costs long-term and thus lead to lower revenues. In order to avoid such pitfalls, one measure is to identify the problems that can arise during production and prevent them. Therefore, measuring’s have been made during the start-up of a tunnel project in Norsborg. Even if measuring’s have been performed on a specific project, the expectation is that they can be used at later tunnel projects as well. Many results and conclusions can also be applied to other tunnel projects, and possibly even to completely different types of construction projects. The measuring’s have taken place at the project site and have included timekeeping of the various work tasks that have taken place during start-up and each cycle. A cycle covers all work that happens when blasting a full tunnel opening; that is, from the initial drilling for a charge until the charge has burst and all the rock has been cleared and loaded from the tunnel opening. Any problems and their respective causes during this process have been recorded. The number of drill holes and their length, how much explosives that have been used and how many holes that have been primed with charges, has been documented so that capacity during the various tasks could be outlined. The start-up is recorded on a weekly circle chart showing how much of the total work time has been spent on each task. It also shows any stoppages during the week. The charts provide a good overview of the proceedings during start-up and what tasks have taken more time than others. The charts show that many of the problems that arose during start-up could have been prevented if better machinery or an operator from the contractor had been available on-site from the start. Some problems could also have been prevented or diminished as early as the project planning stage.  By the results that can be read from the cycles many factors have played a big role of the improvement of the efficiency and the capacity. These results are shown in charts where the whole cycles can be studied and in more specific charts where every task are examined individually. Many conclusions have been read regarding the different factors that affects the efficiency. The loading that is the most critical task within the cycle have been able to become more efficient the longer the project has proceeded.
Styles APA, Harvard, Vancouver, ISO, etc.
6

CARONE, FABIANI FILIPPO. « Adsorbption and scattering phenomena in materials science ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50846.

Texte intégral
Résumé :
The present work is divided in two part. The first is dedicated to the investigation of the gas-metal interactions, an interesting area in the basic surface science but also in applied one, since it could provide a more efficient way to design corrosion-resistant structural metals. In particular, we concentrate our attention on the study H2S on Fe surface. Experimental studies, of adsorption of H2S on Fe, and first-principle calculations were carried out for these systems, clarifying some important questions, such as adsorption geometry and dissociation pathways for H2S, on the above close-packed metal surfaces. However, real samples will also include a number of defects, in particular step edges where bonding of adsorbates is usually stronger than at facets. It is therefore interesting to investigate adsorption of H2S on a stepped Fe surface, a task which has not been considered yet to the best of our knowledge. In the present work we study the H2S interaction with Fe(310) surfaces by DFT calculations in order to understand the role of step defects in the adsorption properties. We recall that the (310) surface is relatively stable, and its surface energy predicted to be even smaller than that of Fe(110). We do not only obtain the binding sites and adsorption energies of H2S and its components, but we also relate bonding to the detailed features of the localdensity of states (LDOS). The second part of the present thesis is devoted to the dynamics of scattering. Scattering underlies various physical processes in different field of physics, mainly in solid state, as for example in thermoelectricity, about the filtering of hot electrons by defects, or adsorption and desorption by a surface, or in charge injection and field emission trough interface, usually associated with tunneling mechanisms. The recent developments of nanotechnology and the advent of modern high-speed high-density MOS devices, have revived the technological and theoretical interest of the scientific community on the scattering problem and in particular on quantun tunneling mechanism usually associated. Ultrascaled nanometric CMOS compatible single electron transistors (SETs) and single atom trasistors has lead the emergence of density of states graining and fluctuations in the contacts which may determine discretization of energy levels, charge localization at intradopant length scale and selection rules on quantum states in tunnelling. Consequently, the understanding of dependence of charge dynamics, across a barrier, from the initial position constitutes a relevant aspect in such systems. In this work we study the scattering process in the non stationary framework using Gaussian wave packet (GWP) to describe the particle wave function of the system so as to consider the dependence of scattering dynamics from the initial conditions. Through a numerical solution of the Schr¨odinger equation we analyse the evolution of the system calculating the transmission of the scattering GWP as a function of the initial spread and position x(0), and comparing simulated data with theoretical results. By our analysis a new important issue emerges: the time spent by the particle to reach its asymptotic probability to be observed beyond the barrier ( that we call formation time), strongly depends on initial conditions, and in particular on x(0). Finally, to analytically express such a dependence, we propose a semi-classical approximated model in which tf is described as the time spent by a finite support (accounting for the 0.99 of the probability) of the incident wave packet to cross the barrier, namely the time required to locate, in coordinate space, the greatest amount of the GWP’s probability distribution beyond the barrier interface.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cao, Ba Trung [Verfasser], Günther [Gutachter] Meschke et Michael [Gutachter] Kaliske. « Simulation and monitoring assisted real-time steering with uncertainty in mechanized tunneling / Ba Trung Cao ; Gutachter : Günther Meschke, Michael Kaliske ; Fakultät für Bau- und Umweltingenieurwissenschaften ». Bochum : Ruhr-Universität Bochum, 2019. http://d-nb.info/118517186X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Flöhr, Kilian [Verfasser], Markus [Akademischer Betreuer] Morgenstern et Thomas [Akademischer Betreuer] Schäpers. « Development of an indium arsenide nanowire scanning tunneling microscope tip for time-resolved single-electron detection at the nanometer scale / Kilian Flöhr ; Markus Morgenstern, Thomas Schäpers ». Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1125910798/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lindner, Philipp [Verfasser]. « Thermal properties of atomic-scale skyrmions in PdFe nanoislands on Ir(111) investigated by variable-temperature and time-resolved scanning tunneling microscopy and spectroscopy / Philipp Lindner ». Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1236695054/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chiriboga, Rios Maira Alexandra, et Menacho Bruno Germán Guerra. « Aplicación del PMBOK en la tunelería de minería subterránea ». Bachelor's thesis, Universidad Ricardo Palma, 2015. http://cybertesis.urp.edu.pe/handle/urp/1325.

Texte intégral
Résumé :
La tesis propuesta es una investigación cuantitativa de diseño longitudinal, el objetivo de este estudio es implementar una metodología de Gestión en proyectos en Tunelería Subterránea con similares características a la analizada. (SIMAREG S.R.L), que involucra los procesos de Gestión de Costos y Tiempo, tomando como referencia la Metodología del Project Management Body of Knowledge (PMBOK), para el análisis, se identificaron los factores que afectan el cumplimiento de labores en la operación, como también los métodos de trabajo, y los sistemas de control; a este análisis se acompañan propuestas que mejoran y/o complementan las entradas, herramientas y técnicas y salidas, con la finalidad de poder controlar y demostrar que el proyecto puede realizarse dentro del tiempo requerido así como optimizar una adecuada distribución de recursos y una reducción de los costos generando así una mayor rentabilidad. The thesis proposal is a quantitative research and a longitudinal design, the objective of this study is to implement a project management methodology in Tunnelling Underground with similar characteristics to that analyzed. (SIMAREG SRL), involving processes about Costs and Time Management with reference to the methodology of the Project Management Body of Knowledge (PMBOK), for analyze, the factors affecting the performance of functions in the operation were identified as the working methods and control systems; this analysis proposals that enhance and / or complement the inputs, tools and techniques and outputs,, in order to be able to control and demonstrate that the project can be accomplished within the required time and optimize the appropriate distribution of resources and cost Reduction Generating support profitability.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Tunneling Time"

1

Tunneling : A novel. New York : Shaye Areheart Books, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nimtz, G. Zero time space : How quantum tunneling broke the light speed barrier. Weinheim : Wiley-VCH, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tunneling to the center of the earth : Stories. New York : Harper Perennial, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

ZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi : Shanghai da xue chu ban she, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

(Foreword), Ulrich Walter, dir. Zero Time Space : How Quantum Tunneling Broke the Light Speed Barrier, With a foreword by Ulrich Walter. Wiley-VCH, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yang, Seung Yun. Reaction dynamics, a molecule at a time : Scanning tunneling microscopy (STM) studies of self-assembly and of induced reaction at silicon surfaces. 2005.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Henriksen, Niels Engholm, et Flemming Yssing Hansen. Microscopic Interpretation of Arrhenius Parameters. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0008.

Texte intégral
Résumé :
This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Tunneling Time"

1

Nussenzweig, H. M. « Time Delay and Tunneling ». Dans Modern Challenges in Quantum Optics, 229–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45409-8_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Whitaker, J. F., T. B. Norris, G. Mourou, T. C. L. G. Sollner, W. D. Goodhue, X. J. Song et L. F. Eastman. « Tunneling-Time Measurements of a Resonant Tunneling Diode ». Dans Ultrafast Phenomena VI, 185–88. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_52.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shigekawa, Hidemi. « Time-Resolved Scanning Tunneling Microscopy ». Dans Compendium of Surface and Interface Analysis, 749–53. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yamada, N. « The Tunneling Time Problem Revisited ». Dans Nanoelectrodynamics, 143–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05084-2_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Turok, Neil. « Anatomy of Quantum Tunneling ». Dans Quantum Theory : A Two-Time Success Story, 355–64. Milano : Springer Milan, 2014. http://dx.doi.org/10.1007/978-88-470-5217-8_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Leavens, C. R., et G. C. Aers. « Bohm Trajectories and the Tunneling Time Problem ». Dans Scanning Tunneling Microscopy III, 105–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97470-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Leavens, C. R., et G. C. Aers. « Bohm Trajectories and the Tunneling Time Problem ». Dans Scanning Tunneling Microscopy III, 105–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80118-1_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Leavens, C. Richard. « The “Tunneling-Time Problem” for Electrons ». Dans Bohmian Mechanics and Quantum Theory : An Appraisal, 111–29. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8715-0_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sakaki, H., H. Yoshimura, M. Tsuchiya et T. Matsusue. « Transversal Time and Charge Accumulation in Double-Barrier Resonant Tunneling Structures ». Dans Resonant Tunneling in Semiconductors, 307–18. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3846-2_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Alexander, M. G. W., W. W. Rühle, M. Nido et K. Köhler. « Time-Resolved Resonant Tunneling between GaAs/Al0.35Ga0.65As Quantum Wells : A Coherent Process ? » Dans Resonant Tunneling in Semiconductors, 319–29. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3846-2_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Tunneling Time"

1

Gerber, G., F. Sattler, S. Vogler, J. Y. Grand, P. Leiderer et R. Möller. « Femtosecond Time-Resolution in Scanning Tunneling Microscopy ». Dans International Conference on Ultrafast Phenomena. Washington, D.C. : Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.tud.19.

Texte intégral
Résumé :
Scanning tunneling microscopy (STM) allows to study surfaces with extremely high spatial resolution down to nanometer dimensions. This has changed the field of surface science. However, the time resolution of the STM is limited to the microsecond range due to the tunneling current measurement.
Styles APA, Harvard, Vancouver, ISO, etc.
2

García-Calderón, Gastón, Kurt B. Wolf, Luis Benet, Juan Mauricio Torres et Peter O. Hess. « Diffraction in time in tunneling phenomena ». Dans SYMMETRIES IN NATURE : SYMPOSIUM IN MEMORIAM MARCOS MOSHINSKY. AIP, 2010. http://dx.doi.org/10.1063/1.3537870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hofmann, Cornelia, Alexandra S. Landsman et Ursula Keller. « Attoclock revisited on quantum tunneling time ». Dans 2017 IEEE Photonics Conference (IPC). IEEE, 2017. http://dx.doi.org/10.1109/ipcon.2017.8116178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Aikawa, Kotaro, Michihiko Suhara, Kiyoto Asakawa, Khaled Arzi, Nils Weimann et Werner Prost. « Characterization of the Effective Tunneling Time and Phase Relaxation Time in Triple-Barrier Resonant Tunneling Diodes ». Dans 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Walker, D. B., E. N. Glytsis et T. K. Gaylord. « Time-dependent characteristics of semiconductor resonant structures ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mdd6.

Texte intégral
Résumé :
Double-barrier tunneling structures operate based on quantum mechanical tunneling through two barriers.1 Quantum electron wave structures operate based on traveling-wave propagation above all conduction band edges.2 These are the fundamental structures proposed to achieve ballistic electron transport devices in semiconductors. The time-dependent behavior of resonant tunneling structures has been discussed extensively in the literature, but no such analysis has been performed on quantum wave structures. A numerical solution of the time-dependent effective mass equation is used to calculate the traversal time of a Gaussian packet and the percentage of the packet transmitted for resonant tunneling and quantum wave structures.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Van Hoof, Chris A., Etienne Goovaerts et Gustaaf Borghs. « Bias dependence of the hole tunneling time in AlAs/GaAs resonant tunneling structures ». Dans Physical Concepts of Materials for Novel Optoelectronic Device Applications, sous la direction de Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24547.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jackson, M. K., M. B. Johnson, D. H. Chow, J. Soderstrom, T. C. McGill et C. W. Nieh. « Electron Tunneling Time Measured by Photoluminescence Excitation Correlation Spectroscopy ». Dans Picosecond Electronics and Optoelectronics. Washington, D.C. : Optica Publishing Group, 1989. http://dx.doi.org/10.1364/peo.1989.trt124.

Texte intégral
Résumé :
The tunneling time for electrons to escape from the lowest quasi-bound state in the quantum wells of GaAs/AlAs/GaAs/AlAs/GaAs double-barrier heterostructures with barriers between 16 Å and 62 Å has been measured at 80 K using photoluminescence excitation correlation spectroscopy. The decay time for samples with barrier thicknesses from 16 Å (≈ 12 ps) to 34 Å (≈ 800 ps) depends exponentially on barrier thickness, in good agreement with calculations of electron tunneling time derived from the energy width of the resonance. Electron and heavy-hole carrier densities are observed to decay at the same rate, in contrast to resonance-width calculations that indicate that heavy-hole tunneling times should be much longer than those for electrons. Reasons for this observation are discussed. Similar measurements in biased structures showing negative differential resistance are described.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nunes, Jr., Geoffrey, et Mark R. Freeman. « Ultrafast time resolution in scanning tunneling microscopy ». Dans Photonics West '95, sous la direction de Mehdi Vaez-Iravani. SPIE, 1995. http://dx.doi.org/10.1117/12.205938.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Suzuki, Alfredo Takashi, Jorge Henrique Sales et Daykson N. Possidonio. « Quantum Tunneling Time in the Light Front ». Dans Light Cone 2019 - QCD on the light cone : from hadrons to heavy ions. Trieste, Italy : Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.374.0091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Steinberg, A. M., P. G. Kwiat et R. Y. Chiao. « Measurement of the single-photon tunneling time ». Dans OSA Annual Meeting. Washington, D.C. : Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.mfff.5.

Texte intégral
Résumé :
Using a two-photon interferometer, we have measured the time delay for a photon to tunnel across a barrier consisting of a 1.1-micron thick 1D photonic bandgap material (an 11-layer dielectric mirror).
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Tunneling Time"

1

Pandey, L. N., D. Sahu et Thomas F. George. Dwell Time and Average Local Speed in a Resonant Tunneling Structure. Fort Belvoir, VA : Defense Technical Information Center, juillet 1989. http://dx.doi.org/10.21236/ada210566.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Vainshtein, A., et S. Galtzur. Layer Two Tunneling Protocol version 3 - Setup of Time-Division Multiplexing (TDM) Pseudowires. RFC Editor, août 2009. http://dx.doi.org/10.17487/rfc5611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie