Littérature scientifique sur le sujet « Tungsten enzymes »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tungsten enzymes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Tungsten enzymes"

1

Sevcenco, Ana-Maria, Loes E. Bevers, Martijn W. H. Pinkse, Gerard C. Krijger, Hubert T. Wolterbeek, Peter D. E. M. Verhaert, Wilfred R. Hagen et Peter-Leon Hagedoorn. « Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus ». Journal of Bacteriology 192, no 16 (18 juin 2010) : 4143–52. http://dx.doi.org/10.1128/jb.00270-10.

Texte intégral
Résumé :
ABSTRACT The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope 99Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Boll, Matthias, Bernhard Schink, Albrecht Messerschmidt et Peter M. H. Kroneck. « Novel bacterial molybdenum and tungsten enzymes : three-dimensional structure, spectroscopy, and reaction mechanism ». Biological Chemistry 386, no 10 (1 octobre 2005) : 999–1006. http://dx.doi.org/10.1515/bc.2005.116.

Texte intégral
Résumé :
Abstract The molybdenum enzymes 4-hydroxybenzoyl-CoA reductase and pyrogallol-phloroglucinol transhydroxylase and the tungsten enzyme acetylene hydratase catalyze reductive dehydroxylation reactions, i.e., transhydroxylation between phenolic residues and the addition of water to a triple bond. Such activities are unusual for this class of enzymes, which carry either a mononuclear Mo or W center. Crystallization and subsequent structural analysis by high-resolution X-ray crystallography has helped to resolve the reaction centers of these enzymes to a degree that allows us to understand the interaction of the enzyme and the respective substrate(s) in detail, and to develop a concept for the respective reaction mechanism, at least in two cases.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Seelmann, Carola S., Max Willistein, Johann Heider et Matthias Boll. « Tungstoenzymes : Occurrence, Catalytic Diversity and Cofactor Synthesis ». Inorganics 8, no 8 (31 juillet 2020) : 44. http://dx.doi.org/10.3390/inorganics8080044.

Texte intégral
Résumé :
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Davies, E. Stephen, Georgina M. Aston, Roy L. Beddoes, David Collison, Andrew Dinsmore, Arefa Docrat, John A. Joule, Clare R. Wilson et C. David Garner. « Oxo–tungsten bis-dithiolene complexes relevant to tungsten centres in enzymes ». Journal of the Chemical Society, Dalton Transactions, no 21 (1998) : 3647–56. http://dx.doi.org/10.1039/a805688i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pushie, M. Jake, et Graham N. George. « Spectroscopic studies of molybdenum and tungsten enzymes ». Coordination Chemistry Reviews 255, no 9-10 (mai 2011) : 1055–84. http://dx.doi.org/10.1016/j.ccr.2011.01.056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

George, G. N., Y. Gea, R. C. Prince, S. Mukund et M. W. W. Adams. « Tungsten oxo-thiolate enzymes from hyperthermophilic bacteria. » Journal of Inorganic Biochemistry 43, no 2-3 (août 1991) : 241. http://dx.doi.org/10.1016/0162-0134(91)84231-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Scott, Israel M., Gabe M. Rubinstein, Gina L. Lipscomb, Mirko Basen, Gerrit J. Schut, Amanda M. Rhaesa, W. Andrew Lancaster, Farris L. Poole, Robert M. Kelly et Michael W. W. Adams. « A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria ». Applied and Environmental Microbiology 81, no 20 (14 août 2015) : 7339–47. http://dx.doi.org/10.1128/aem.01634-15.

Texte intégral
Résumé :
ABSTRACTCaldicellulosiruptor besciigrows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment.C. besciiferments both C5and C6sugars primarily to hydrogen gas, lactate, acetate, and CO2and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of theC. besciigenome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism ofC. besciihas a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway inC. besciiwas demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeonPyrococcus furiosus. Furthermore,C. besciialso contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, inC. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yang, Jing, John H. Enemark et Martin L. Kirk. « Metal–Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity ». Inorganics 8, no 3 (5 mars 2020) : 19. http://dx.doi.org/10.3390/inorganics8030019.

Texte intégral
Résumé :
Here we highlight past work on metal–dithiolene interactions and how the unique electronic structure of the metal–dithiolene unit contributes to both the oxidative and reductive half reactions in pyranopterin molybdenum and tungsten enzymes. The metallodithiolene electronic structures detailed here were interrogated using multiple ground and excited state spectroscopic probes on the enzymes and their small molecule analogs. The spectroscopic results have been interpreted in the context of bonding and spectroscopic calculations, and the pseudo-Jahn–Teller effect. The dithiolene is a unique ligand with respect to its redox active nature, electronic synergy with the pyranopterin component of the molybdenum cofactor, and the ability to undergo chelate ring distortions that control covalency, reduction potential, and reactivity in pyranopterin molybdenum and tungsten enzymes.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Leimkühler, Silke. « Metal-Containing Formate Dehydrogenases, a Personal View ». Molecules 28, no 14 (11 juillet 2023) : 5338. http://dx.doi.org/10.3390/molecules28145338.

Texte intégral
Résumé :
Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brondino, Carlos D., Maria João Romão, Isabel Moura et José JG Moura. « Molybdenum and tungsten enzymes : the xanthine oxidase family ». Current Opinion in Chemical Biology 10, no 2 (avril 2006) : 109–14. http://dx.doi.org/10.1016/j.cbpa.2006.01.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Tungsten enzymes"

1

Stewart, Lisa Joanne. « Tungsten-substituted DMSO reductase ». Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Abt, Dietmar. « Tungsten-acetylene hydratase from Pelobacter acetylenicus and molybdenum-transhydroxylase from Pelobacter acidigallici two novel molybdopterin and iron-sulfur containing enzymes / ». [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9683814.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Joshi, Hemant K. « Synthetic, structural, spectroscopic and computational studies of metal-dithiolates as models for pyranopterindithiolate molybdenum and tungsten enzymes : Dithiolate folding effect ». Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280480.

Texte intégral
Résumé :
Coordination by an axial oxo and an equatorial ene-dithiolate group is a salient feature of the active sites of the mononuclear pyranopterin Mo/W enzymes. Discrete mononuclear model complexes encompassing these features are important in understanding the metal-ligand interactions in these active sites. The compounds (Tp*)ME(S-S) (M = Mo, W; E = O, NO) and Cp₂M(S-S) (M = Ti, Mo, W) (where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, Cp is η⁵-cyclopentadienyl, S-S represents a generic ene-1,2-dithiolate ligand for example 1,2-benzenedithiolate and 3,6-dichloro-1,2-benzenedithiolate) provide access to three different electronic configurations of the metal, formally d¹, d² and d⁰, respectively. These compounds also allow the study of two metal, two axial ligand and two equatorial ene-dithiolate perturbations. X-ray crystallography, density functional theory and photoelectron spectroscopy are utilized to understand the metal-sulfur interaction in the above complexes. Subtle differences in the geometry of these compounds are observed, including the metal-dithiolate fold angle which is sensitive to the electronic occupation of the metal in-plane orbital. This orbital is presumably the "host" orbital to the electrons during catalysis. The work in this area has resulted in the development of a dithiolate-folding-effect. This effect relates to the experimental verification of the Lauher and Hoffmann bonding model for the metal-dithiolate interaction in these complexes. This "dithiolate-folding-effect" is proposed to account for the electronic buffering at the metal center. This effect may provide a regulatory mechanism for the metal-sulfur interactions and could be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes. The structure and properties of these compounds are correlated with those of the enzyme active sites.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liao, Rongzhen. « Quantum Chemical Cluster Modeling of Enzymatic Reactions ». Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-43026.

Texte intégral
Résumé :
The Quantum chemical cluster approach has been shown to be quite powerful and efficient in the modeling of enzyme active sites and reaction mechanisms. In this thesis, the reaction mechanisms of several enzymes have been investigated using the hybrid density functional B3LYP. The enzymes studied include four dinuclear zinc enzymes, namely dihydroorotase, N-acyl-homoserine lactone hydrolase, RNase Z, and human renal dipeptidase, two trinuclear zinc enzymes, namely phospholipase C and nuclease P1, two tungstoenzymes, namely formaldehyde ferredoxin oxidoreductase and acetylene hydratase, aspartate α-decarboxylase, and mycolic acid cyclopropane synthase. The potential energy profiles for various mechanistic scenarios have been calculated and analyzed. The role of the metal ions as well as important active site residues has been discussed.   In the cluster approach, the effects of the parts of the enzyme that are not explicitly included in the model are taken into account using implicit solvation methods.   For all six zinc-dependent enzymes studied, the di-zinc bridging hydroxide has been shown to be capable of performing nucleophilic attack on the substrate. In addition, one, two, or even all three zinc ions participate in the stabilization of the negative charge in the transition states and intermediates, thereby lowering the barriers.   For the two tungstoenzymes, several different mechanistic scenarios have been considered to identify the energetically most feasible one. For both enzymes, new mechanisms are proposed.   Finally, the mechanism of mycolic acid cyclopropane synthase has been shown to be a direct methyl transfer to the substrate double bond, followed by proton transfer to the bicarbonate.   From the studies of these enzymes, we demonstrate that density functional calculations are able to solve mechanistic problems related to enzymatic reactions, and a wealth of new insight can be obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Achi, Sabah Samira. « Nouvelle voie d'acces aux acides alpha -amines, par catalyse homogene a l'aide de complexes de metaux de transition, synthese de nouveaux complexes phosphores chiraux du tungstene pentacarbonyle ». Paris 6, 1987. http://www.theses.fr/1987PA066227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Roy, Roopali. « Tungsten-containing aldehyde oxidoreductases : a novel family of enzymes from hyperthermophilic archaea ». 2001. http://purl.galileo.usg.edu/uga%5Fetd/roy%5Froopali%5F200112%5Fphd.

Texte intégral
Résumé :
Thesis (Ph. D.)--University of Georgia, 2001.
Includes articles published in Methods in enzymology, and Journal of becteriology, and articles submitted to Journal of bacteriology, and Journal of biological chemistry. Directed by M.W.W. Adams. Includes bibliographical references (leaves 232-234).
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cardoso, Ana Rita Castro Otrelo. « Structural studies on molybdenum-dependent enzymes : from transporters to enzymes ». Doctoral thesis, 2017. http://hdl.handle.net/10362/27898.

Texte intégral
Résumé :
Molybdenum (Mo) and tungsten (W) are heavy metals that can be found in the active site of several enzymes important for the metabolism of carbon, sulfur and nitrogen compounds. This Thesis describes the structural studies of two proteins that are involved in Mo and W uptake (TupA and ModA), of a Mo-containing aldehyde oxidoreductase (PaoABC) and of its chaperone PaoD. The main techniques used for the structural characterization of these proteins are X-ray crystallography and Small-Angle X-ray Scattering (SAXS), which are presented in Chapter 1, including a brief introduction about the importance of Mo and W in biological systems. Mo or W cofactor biosynthesis requires the presence of molybdate and tungstate inside the cells, which is achieved by specific ABC transport systems. Chapter 2 presents a small introduction about these transport systems, followed by the structural characterization and analysis of ModA and TupA from Desulfovibrio alaskensis G20. The tridimensional structures were determined by X-ray crystallography and SAXS, and the implication in the molybdate/tungstate uptake and discrimination between ligands discussed. The results show that TupA has a high selectivity for tungstate, while ModA is not able to distinguish between the two oxyanions. An important residue for TupA selectivity was identified, R118, paving the way for future biotechnological applications. Chapter 3 focuses on Mo-containing enzymes and cofactor maturation. The tridimensional structure of the Escherichia coli periplasmic aldehyde oxidoreductase PaoABC was solved at 1.7 Å resolution, revealing the presence of an unexpected [4Fe-4S] cluster that was not previously reported. The PaoABC structure has unique features, being the first example of an heterotrimer (αβγ) from the xanthine oxidase family. The activation of PaoABC is dependent on its interaction with the chaperone PaoD, which was also studied. The stabilization of E. coli PaoD is extremely challenging but the results here presented show that the presence of ionic liquids during thawing avoids protein aggregation. This allowed the identification of two promising crystallization conditions using polyethylene glycol and ammonium sulfate as precipitant agents. Chapter 4 describes the use of SAXS for the characterization of a multi-component biosensor to detect chronic myeloid leukemia, demonstrating the versatility of this technique to determine the envelope of biological molecules as oligonucleotides. The main conclusions derived from the work here described, as well as future perspectives, are drawn in Chapter 5.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Abt, Dietmar Josef [Verfasser]. « Tungsten-acetylene hydratase from Pelobacter acetylenicus and molybdenum-transhydroxylase from Pelobacter acidigallici : two novel molybdopterin and iron-sulfur containing enzymes / by Dietmar Josef Abt ». 2002. http://d-nb.info/981087876/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Starke, Kerstin. « Synthese und DFT-Studien von Modellkomplexen molybdopterinhaltiger Enzyme ». Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-ACA1-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brink, Felix ten [Verfasser]. « Acetylene hydratase from Pelobacter acetylenicus : functional studies on a gas-processing tungsten, iron-sulfur enzyme by site directed mutagenesis and crystallography / vorgelegt von Felix ten Brink ». 2010. http://d-nb.info/1002072816/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Tungsten enzymes"

1

Hille, Russ, Carola Schulzke et Martin L. Kirk, dir. Molybdenum and Tungsten Enzymes. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hille, Russ, Carola Schulzke et Martin L. Kirk, dir. Molybdenum and Tungsten Enzymes. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782628828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hille, Russ, Carola Schulzke et Martin L. Kirk, dir. Molybdenum and Tungsten Enzymes. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782628842.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schulzke, Carola. Molybdenum and tungsten cofactor model chemistry. Hauppauge, N.Y : Nova Science Publishers, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Astrid, Sigel, et Sigel Helmut, dir. Molybdenum and tungsten : Their roles in biological processes. New York : Marcel Dekker, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Molybdenum and Tungsten Enzymes : Biochemistry. Royal Society of Chemistry, The, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schulzke, Carola, Russ Hille et Martin L. Kirk. Molybdenum and Tungsten Enzymes : Complete Set. Royal Society of Chemistry, The, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schulzke, Carola, Russ Hille et Martin L. Kirk. Molybdenum and Tungsten Enzymes : Bioinorganic Chemistry. Royal Society of Chemistry, The, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Molybdenum and Tungsten Enzymes : Spectroscopic and Theoretical Investigations. Royal Society of Chemistry, The, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Molybdenum and Tungsten Enzymes : Spectroscopic and Theoretical Investigations. Royal Society of Chemistry, The, 2016.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Tungsten enzymes"

1

Maia, Luisa B., Isabel Moura et José J. G. Moura. « CHAPTER 1. Molybdenum and Tungsten-Containing Enzymes : An Overview ». Dans Molybdenum and Tungsten Enzymes, 1–80. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gladyshev, Vadim N., et Yan Zhang. « CHAPTER 2. Abundance, Ubiquity and Evolution of Molybdoenzymes ». Dans Molybdenum and Tungsten Enzymes, 81–99. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Leimkühler, Silke, et Ralf R. Mendel. « CHAPTER 3. Molybdenum Cofactor Biosynthesis ». Dans Molybdenum and Tungsten Enzymes, 100–116. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Leimkühler, Silke, Olivier N. Lemaire et Chantal Iobbi-Nivol. « CHAPTER 4. Bacterial Molybdoenzymes : Chaperones, Assembly and Insertion ». Dans Molybdenum and Tungsten Enzymes, 117–42. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Magalon, Axel, Pierre Ceccaldi et Barbara Schoepp-Cothenet. « CHAPTER 5. The Prokaryotic Mo/W-bisPGD Enzymes Family ». Dans Molybdenum and Tungsten Enzymes, 143–91. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nishino, Takeshi, Ken Okamoto et Silke Leimkühler. « CHAPTER 6. Enzymes of the Xanthine Oxidase Family ». Dans Molybdenum and Tungsten Enzymes, 192–239. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00192.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kappler, Ulrike, et Guenter Schwarz. « CHAPTER 7. The Sulfite Oxidase Family of Molybdenum Enzymes ». Dans Molybdenum and Tungsten Enzymes, 240–73. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Seefeldt, Lance C., Dennis R. Dean et Brian M. Hoffman. « CHAPTER 8. Nitrogenase Mechanism : Electron and Proton Accumulation and N2 Reduction ». Dans Molybdenum and Tungsten Enzymes, 274–96. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wiig, J. A., C. C. Lee, J. G. Rebelein, N. S. Sickerman, K. Tanifuji, M. T. Stiebritz, Y. Hu et M. W. Ribbe. « CHAPTER 9. Biosynthesis of the M-Cluster of Mo-Nitrogenase ». Dans Molybdenum and Tungsten Enzymes, 297–312. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hagen, Wilfred R. « CHAPTER 10. Tungsten-Containing Enzymes ». Dans Molybdenum and Tungsten Enzymes, 313–42. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782623915-00313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Tungsten enzymes"

1

« Influence of molybdenum and tungsten on the enzymatic activity of molybdenum enzymes ». Dans Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Wei-Shun, Jung-Chuan Chou, Po-Hui Yang, Chih-Hsien Lai, Po-Yu Kuo, Yu-Hsun Nien, Ying-Sheng Zhang et al. « Study on CuO Thin Film Dopamine Biosensor Modified by Tungsten Trioxide Nanoparticles by Non-enzyme Potentiometric Method ». Dans 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). IEEE, 2023. http://dx.doi.org/10.1109/icce-taiwan58799.2023.10226854.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Tungsten enzymes"

1

Hille, Charles. Support for the 2022 Molybdenum and Tungsten Enzymes Conference (MoTEC 2022). Office of Scientific and Technical Information (OSTI), mai 2024. http://dx.doi.org/10.2172/2346138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie