Thèses sur le sujet « Tumor diagnosis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Tumor diagnosis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Lyshchik, Andrej. « Thyroid gland tumor diagnosis at US elastography ». Kyoto University, 2007. http://hdl.handle.net/2433/135684.
Texte intégralLanger, Michael. « Peptides as carrier for tumor diagnosis and treatment / ». [S.l.] : [s.n.], 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13986.
Texte intégralEaton, Michael Campbell. « Assessment of CD44 and K19 as markers for circulating breast cancer cells using immunobead RT-PCR / ». Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09MD/09mde14.pdf.
Texte intégralRoller, Benjamin Thomas. « A nanoencapsulated visible dye for intraoperative delineation of brain tumor margins ». Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42805.
Texte intégralGrifantini, Renata Maria <1962>. « Identification and characterization of novel tumor-associated proteins as potential tumor markers for diagnosis and therapy ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6479/1/Tesi_PhD_Grifantini.pdf.
Texte intégralGrifantini, Renata Maria <1962>. « Identification and characterization of novel tumor-associated proteins as potential tumor markers for diagnosis and therapy ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6479/.
Texte intégralRichards, Homa Lisa Ann. « Perceptions of Caregivers Following Diagnosis of Primary Benign Brain Tumor ». ScholarWorks, 2019. https://scholarworks.waldenu.edu/dissertations/7422.
Texte intégralSabharwal, Yashvinder Singh 1970. « Remote-access slit-scanning confocal microscope for in vivo tumor diagnosis ». Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/284035.
Texte intégralCOLOMBO, MIRIAM. « Synthesis and biofunctionalization of nanoparticles for breast cancer diagnosis and treatment ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28928.
Texte intégralTong, Amanda Kai-Lai. « Brilliant Baby Brainiacs (BBB) - Pediatric Brain Tumors : Assessing Healthcare Provider Knowledge ». Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/593599.
Texte intégralGulyás, Miklós. « Mesothelial differentiation, mesothelioma and tumor markers in serous cavities / ». Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-566-2/.
Texte intégralRöhss, Josefine. « A Statistical Framework for Classification of Tumor Type from microRNA Data ». Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191990.
Texte intégralHepatocellulär cancer (HCC) är en typ av levercancer med mycket låg överlevnadsgrad, inte minst på grund av svårigheten att diagnosticera i ett tidigt skede. Syftet med det här projektet är att bygga en klassificeringsmodell med random forest, baserad på uttrycksprofiler av mikroRNA (och budbärar-RNA) från patienter med HCC. Målet är att kunna skilja mellan tumörprover och normala prover genom att mäta uttrycket av mikroRNA. Om detta mål uppnås kan metoden användas för att upptäcka HCC i ett tidigare skede och för att utveckla nya läkemedel. De mikroRNA och budbärar-RNA som har en signifikant skillnad i uttryck mellan prover från tumörvävnad och intilliggande normal vävnad väljs ut för att bygga klassificaringsmodeller med random forest. Dessa modeller testas sedan på parade prover av tumörvävnad och intilliggande vävnad från patienter med HCC. Resultaten visar att modeller som byggs med denna metod kan klassificera tumörprover och normala prover med hög noggrannhet. Det finns således stor potential för att använda uttrycksprofiler från mikroRNA och budbärar-RNA för att diagnosticera HCC.
Leung, Pui-ling Pauline. « The role of p16 tumor suppressor gene in the diagnosis of thyroid disease / ». View the Table of Contents & ; Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36433810.
Texte intégralLeung, Pui-ling Pauline, et 梁培玲. « The role of p16 tumor suppressor gene in the diagnosis of thyroid disease ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B45010833.
Texte intégralBellassai, Noemi. « Surface Plasmon Resonance Imaging Biosensors for Cancer Diagnosis : Detection of Circulating Tumor DNA ». Doctoral thesis, Università di Catania, 2018. http://hdl.handle.net/10761/4165.
Texte intégralMackay, Bruce. « Observations on the ultrastructure of human tumors, with particular reference to the role of transmission electron microscopy in tumor diagnosis ». Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/24868.
Texte intégralSchackert, Hans K., Waltraud Friedl, Elke Holinski-Feder, Bernhard Irrgang, Gabriela Möslein, Steffen Pistorius, Josef Rüschoff et Hans Detlev Saeger. « Molekularbiologie in der Viszeralchirurgie – prädiktive Diagnostik hereditärer Tumoren ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-134163.
Texte intégralZhou, Mu. « Knowledge Discovery and Predictive Modeling from Brain Tumor MRIs ». Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5809.
Texte intégralBRAMBILLA, TANIA de P. « Desenvolvimento de metodos para marcacao de DMSA pentavalente com sup(99m)Tc e sup(188)Re ». reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11516.
Texte intégralMade available in DSpace on 2014-10-09T14:02:48Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Yang, Zhugen. « 3D-Microstructured Protein Chip for Cancer Diagnosis ». Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00780192.
Texte intégralLi, Tak-kin, et 李德健. « A study of Twist and DJ-1 expressions and their clinical significance in renal cell carcinoma of clear cell type ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45153863.
Texte intégralSchefer, Quirino [Verfasser]. « Generation of new GPCR-antibodies for target validation in tumor diagnosis and therapy / Quirino Schefer ». Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1026992249/34.
Texte intégralBeig, Niha Ghouse. « PERI-TUMORAL RADIOGENOMIC APPROACHES TO CAPTURE TUMOR ENVIRONMENT FOR DISEASE DIAGNOSIS AND PREDICTING PATIENT SURVIVAL ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1596539894404172.
Texte intégralAubreville, Marc [Verfasser], Robert [Akademischer Betreuer] Klopfleisch et Andreas [Gutachter] Maier. « Computer-Aided Tumor Diagnosis of Microscopy Images / Marc Aubreville ; Gutachter : Andreas Maier ; Betreuer : Robert Klopfleisch ». Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1211557502/34.
Texte intégralSchlamann, Annika, Bueren André von, Christian Hagel, Isabella Zwiener, Clemens Seidel, Rolf-Dieter Kortmann et Klaus Müller. « An individual patient data meta-analysis on characteristics and outcome of patients with papillary glioneuronal tumor, rosette glioneuronal tumor with neuropil-like islands and rosette forming glioneuronal tumor of the fourth ventricle ». Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-148338.
Texte intégralPrasanna, Prateek. « NOVEL RADIOMICS FOR SPATIALLY INTERROGATING TUMOR HABITAT : APPLICATIONS IN PREDICTING TREATMENT RESPONSE AND SURVIVAL IN BRAIN TUMORS ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case149624929700524.
Texte intégralSchackert, Hans K., Waltraud Friedl, Elke Holinski-Feder, Bernhard Irrgang, Gabriela Möslein, Steffen Pistorius, Josef Rüschoff et Hans Detlev Saeger. « Molekularbiologie in der Viszeralchirurgie – prädiktive Diagnostik hereditärer Tumoren ». Karger, 1999. https://tud.qucosa.de/id/qucosa%3A27565.
Texte intégralHavaei, Seyed Mohammad. « Machine learning methods for brain tumor segmentation ». Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10260.
Texte intégralRésumé: Les tumeurs malignes au cerveau sont la deuxième cause principale de décès chez les enfants de moins de 20 ans. Il y a près de 700 000 personnes aux États-Unis vivant avec une tumeur au cerveau, et 17 000 personnes sont chaque année à risque de perdre leur vie suite à une tumeur maligne primaire dans le système nerveu central. Pour identifier de façon non-invasive si un patient est atteint d'une tumeur au cerveau, une image IRM du cerveau est acquise et analysée à la main par un expert pour trouver des lésions (c.-à-d. un groupement de cellules qui diffère du tissu sain). Une tumeur et ses régions doivent être détectées à l'aide d'une segmentation pour aider son traitement. La segmentation de tumeur cérébrale et principalement faite à la main, c'est une procédure qui demande beaucoup de temps et les variations intra et inter expert pour un même cas varient beaucoup. Pour répondre à ces problèmes, il existe beaucoup de méthodes automatique et semi-automatique qui ont été proposés ces dernières années pour aider les praticiens à prendre des décisions. Les méthodes basées sur l'apprentissage automatique ont suscité un fort intérêt dans le domaine de la segmentation des tumeurs cérébrales. L'avènement des méthodes de Deep Learning et leurs succès dans maintes applications tels que la classification d'images a contribué à mettre de l'avant le Deep Learning dans l'analyse d'images médicales. Dans cette thèse, nous explorons diverses méthodes d'apprentissage automatique et de Deep Learning appliquées à la segmentation des tumeurs cérébrales.
Zhu, Li, et 朱麗. « Determination of predictive markers related to micro-metastasis in breast cancer patients ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30330919.
Texte intégralNordemar, Sushma. « Methods for early diagnosis of head and neck cancer / ». Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-872-6/.
Texte intégralHe, Lian. « NONCONTACT DIFFUSE CORRELATION TOMOGRAPHY OF BREAST TUMOR ». UKnowledge, 2015. http://uknowledge.uky.edu/cbme_etds/33.
Texte intégralVeronezi, Rafaela Julia Batista 1978. « Analise tardia do grau de paralisia facial em pacientes operados de Schwannoma vestibular ». [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/309756.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-07T09:00:06Z (GMT). No. of bitstreams: 1 Veronezi_RafaelaJuliaBatista_M.pdf: 828778 bytes, checksum: f19e0be2857b2f9708daf21b30253f26 (MD5) Previous issue date: 2006
Resumo: Introdução: A avaliação do grau de paralisia facial é parte importante do acompanhamento dos pacientes operados de schwannoma vestibular (SV), em virtude da morbidade física e social que acarreta. Sua reversibilidade é um questionamento persistente por parte do paciente e do neurocirurgião. Objetivos: Este estudo objetiva analisar o grau de paralisia facial em pacientes operados de SV e correlacionar o tamanho do tumor com a função facial na avaliação a longo prazo destes pacientes. Método: Estudo transversal com análise seriada de 20 pacientes com SV operados no HC/UNICAMP entre Janeiro de 1999 e Outubro de 2002, pela via retrosigmóide-transmeatal. A função do nervo facial foi avaliada através da Escala de House-Brackmann no pré-operatório, pós-operatório imediato e pós-operatório tardio (mínimo de 18 meses). Os tumores foram classificados como pequenos (_.O em), médio (2.1-4.0 em) ou grande (_4.0 em). O teste t de Student foi aplicado para análise estatística. Resultados: A média de idade dos pacientes do estudo foi de 51 anos (variação de 17 a 77 anos), sendo 75% do sexo feminino. A média do tamanho do tumor foi de 3.38 em. O maior tempo de avaliação a longo prazo foi de 5 anos e 10 meses e o menor tempo foi de 1 ano e 7 meses (média de 3 anos e 10 meses). No pós-operatório imediato, 65% dos pacientes apresentaram graus variados de paralisia facial, sendo que 53% destes obtiveram melhora de pelo menos um grau de House-Brackmann na avaliação tardia. Os pacientes com melhora insatisfatória na avaliação final já apresentavam algum grau desta paralisia no período pré-operatório. Houve diferença significativa no resultado da função facial no pós-operatório tardio quando o tamanho do tumor foi considerado (p<0.05). Conclusões: A cirurgia do SV tem como uma das morbidades a paralisia facial, que pode ser definitiva ou temporária. A maioria dos pacientes (65%) apresentou melhora desta disfunção em um tempo médio de 3 anos e 10 meses. A análise do grau de paralisia facial em pacientes operados de SV permitiu o acompanhamento da evolução a longo prazo destes pacientes e a identificação do tamanho do tumor como fator associado ao prognóstico desfavorável no pós-operatório tardio
Abstract: Introduction: The evaluation of facial palsy is an important issue after vestibular schwannoma (VS) surgery due to its physical and social morbidity. Its reversibility is a . persistent questioning on the part of the patient and the neurosurgeon. Objetives: This study aimed to evaluate facial palsy in patients undergoing VS resection and to correia te tumor size and facial function in a long-term follow-up. Method: Transversal study of 20 patients with VS operated in HCIUNICAMP between January 1999 and October 2002 by the retrosigmoid approach. Facial function was evaluated by House-Brackmann Scale before, immediate and 18 months or longer after surgery. Tumors were classified as small (::2.0 cm), medium (2.1-4.0 cm) or large (>4.0 cm). The Student t test was applied for statistic analysis. ResuIts: The mean age ofpatients was 51 years (range 17 to 77 years) and 75% of the cases were females. Mean tumor size was 3.3 8 cm. The longest time of postoperative evaluation was 3 years and 10 months and the shorter one was 1 Year and 7 months (mean time of3 years and 10 months). In the immediate postoperative evaluation, 65% ofpatients presented facial palsy of different grades. Improvement of facial nerve function (at least of one grade) occurred in 53% in the long-term follow-up. Patients with unsatisfactory improvement in the final evaluation had alreagy had some degree of this palsy preoperatively. There was a statistically significant difference in facial nerve outcome in the long-term follow-up when tumor size was considered (p<0,05). Conclusions: VS surgery has as morbidity the facial palsy that can be definitive or temporary. The majority of patients had improvement this disfunction in a mean time of3 years and 10 months after VS surgery (65%). Analysis ofthe grade offacial palsy allowed the accompaniment ofthe evolution of these patients and the identification of tumor size as factor associated with the postoperative unfavorable prognostic in the long-term follow-u
Mestrado
Ciencias Biomedicas
Mestre em Ciências Médicas
Yang, Xuesong, et 楊雪松. « Identification of epigenetic biomarkers for diagnosis of nasopharyngeal carcinoma and determination of WIF1 functional relevance ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/209492.
Texte intégralpublished_or_final_version
Clinical Oncology
Doctoral
Doctor of Philosophy
COZZI, MARZIA. « FLOW CYTOMETRY FOR THE DIAGNOSIS AND THE CHARACTERIZATION OF CANINE LYMPHOPROLIPHERATIVE TUMORS ». Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/580991.
Texte intégralHuyn, Steven Taro. « The development of a tumor specific gene therapy vector for the treatment and diagnosis of metastatic breast cancer ». Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872148741&sid=8&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texte intégralDearling, Jason L. J. « Hypoxia targeting copper complexes ». Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297352.
Texte intégralKhemis, Kamila. « Imagerie de fluorescence en cancérologie : spectroscopie, traitement du signal et gestion automatisée pour l'optimisation du diagnostic des tumeurs précoces ». Vandoeuvre-les-Nancy, INPL, 1998. http://docnum.univ-lorraine.fr/public/INPL_T_1998_KHEMIS_K.pdf.
Texte intégralEkberg, Tomas. « Diagnosis and Radioimmunotherapy of Head and Neck Squamous Cell Carcinomas ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8395.
Texte intégralBuder, Thomas, Andreas Deutsch, Barbara Klink et Anja Voss-Böhme. « Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma ». Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-203463.
Texte intégralBuder, Thomas, Andreas Deutsch, Barbara Klink et Anja Voss-Böhme. « Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma ». PloS, 2015. https://tud.qucosa.de/id/qucosa%3A29530.
Texte intégralZaccaro, Cristina <1987>. « Evaluation of Tumor M2 Pyruvate Kinase and Endocannabinoid System Expression in Colorectal Preneoplastic and Neoplastic Lesions : Possible Use for non Invasive Diagnosis ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7357/4/Zaccaro_Cristina_tesi..pdf.
Texte intégralKuo, Jen-Wei, et 郭任瑋. « Tumor Diagnosis of Dynamic Breast Elastography ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/00717864429359990969.
Texte intégral國立臺灣大學
資訊工程學研究所
98
The breast cancer is always the main causes of death for women. In recent years, the sonoelastography has been used to measure the tumor strain. In the sonoelastography, the physicians need to lightly compress a tumor to obtain a dynamic elastographic image sequence. According to the displacement of the tumor, the tumor strain will be obtained on sonoelastography video. Finally, the physicians will choose the representative slice from the dynamic elastographic image sequence to diagnose the tumor. The purpose of this study is to use image quantification method to automatically choose a representative slice, and automatically segment the tumor contour to evaluate the features to diagnose the tumor. First, according to the uniformity inside the tumor (the signal to noise ratio, SNRe) or the contrast of the tumor and the surrounding normal tissue (contrast to noise ratio, CNRe), the two kinds of quality quantification methods will be used to select the representative slice. Then, the level set method is used to segment the tumor contour. Finally, the B-mode and elastography features by the tumor contour are extracted for diagnosis. Furthermore, the two kinds of features are combined to diagnose the tumors to improve the performance. In this study, 151 biopsy-proved sonoelastography composed of 89 benign and 62 malignant masses are used to evaluate the performance of the quantification methods and the representative slices selected by the proposed methods will be compared to the physician-selected slice. In the experiment result, as using elastography features, the diagnosis performance of accuracy is 82.12% (124/151) on representative slice of CNRe, 82.12% (124/151) on representative slice of SNRe, 82.78% (125/151) on the physician-selected slice; as using B-mode features, the diagnosis performance of accuracy is 80.79% (122/151) on representative slice of CNRe, 87.42% (132/151) on representative slice of SNRe, 84.11% (127/151) on the physician-selected slice; as combining the B-mode and elastography features, the diagnosis performance of accuracy is 86.09% (130/151) on representative slice of CNRe, 90.07% (136/151) on representative slice of SNRe, 89.40% (135/151) on the physician-selected slice. Therefore, the representative slice selected by SNRe and CNRe colud replace the physician-selected slice to reduce the physician’s load, and combining the B-mode and elastography features will increase the diagnosis performance.
Chiang, Li-Ren, et 江立人. « Automated Whole Breast Ultrasound Tumor Diagnosis ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/50877754286860886730.
Texte intégral國立臺灣大學
資訊工程學研究所
98
In the past, breast cancer is the major cause of death for women among all kinds of cancer. But the curability of breast cancer can be greatly improved if a proper treatment is adopted after an early detection. In recent years, the computer-aided diagnosis systems have been developed rapidly and they can not only detect the tumors but also differentiate malignant tumors from benign ones. Hence the demand of the breast biopsy of the detected tumors might be further reduced. Recently, the new automated whole breast ultrasound (ABUS) machines have also been developed in order to provide a fast screening tool as the routine clinical used mammography. In this paper, the ABUS images are used for the diagnosis of tumors. At first, the three-dimensional (3-D) tumor contour is segmented by using the automated level-set segmentation method. Then, the features including the texture information based on co-occurrence matrix, shape information, and ellipsoid fitting information are extracted based on the segmented 3-D tumor contour to classify the benign and malignant tumors. In the experiment, there are 147 pathologyproven cases, including 76 benign tumors and 71 malignant ones, are used to test the diagnosis performance of the logistic regression model with a leave-one-out cross validation based on the proposed features. From the experiment results, it is found that ellipsoid fitting features combined with traditional shape features can achieve a better performance with accuracy 85.03% (125/147), the sensitivity 84.51% (60/71), specificity 85.53% (65/76), and the area under the ROC curve Az 0.9466. Hence, the ABUS images could be used not only for screening the breast cancers but also diagnosing the detected tumors.
Lin, Yi-Ting, et 林怡婷. « Tumor Diagnosis of Shear Wave Breast Elastography ». Thesis, 2012. http://ndltd.ncl.edu.tw/handle/36247809050752853242.
Texte intégral國立臺灣大學
資訊網路與多媒體研究所
100
The breast cancer is always one of the ten leading death causes for women around the world. The strain of the tumor has been confirmed to be the main feature of distinguishing benign and malignant tumors. In the past years, the physician has used the sonoelastography with manual compression to obtain the tumor strain. Different from the conventional sonoelastography, this study adopts the new shear wave elastography which uses the acoustic radiation to generate the tumor strain. In the conventional sonoelastography, the tumor diagnosis is based on the elasticity information inside the tumor. However, in the new shear wave elastography, the important diagnostic information is outside the tumor rather than inside the tumor. The purposes of this paper are automatically segmenting the tumor contour for the image and extracting the features to diagnose benign and malignant tumors. First, we use the level set segmentation method to automatically cut out the tumor contour. Comparing with the manually circled tumor, our scheme can maintain the consistency of the segmentation results. Then, the tumor contour and image information are applied to extract the B-mode and elastographic features. Finally, in addition to use either B-mode or elastographic features to diagnose benign and malignant tumors, a combination of both feature set is also utilized for diagnosis. In this study, we use 112 biopsy-proved breast tumors composed of 58 benign and 54 malignant cases. The experimental results illustrate that the accuracy in distinguishing tumors using B-mode features is 84.82%, whereas 91.07% using elastography features, and 94.64% combining B-mode and elastographic features. Based on statistical analyses of experimental results, the accuracy of classifying tumors using the combined feature set is significantly improved.
Yu, Chien-Huan, et 余鑑桓. « Computer-aided Tumor Diagnosis of Breast Tomosynthesis ». Thesis, 2018. http://ndltd.ncl.edu.tw/handle/y9hj9v.
Texte intégral國立臺灣大學
資訊工程學研究所
106
Among female throughout the world, breast cancer has become one of the most common carcinomas and the leading cause of cancer-related death. Early detection can provide a better treatment and significantly reduce mortality. Currently, the most effective tool to diagnose breast cancer is mammography screening. Tomosynthesis as a three dimensional (3-D) tomographic technique can overcome the overlapping problem from superimposed tissues of two dimensional (2-D) mammography. Therefore, we proposed a computer-aided diagnosis (CADx) system implemented in tomosynthesis and also in mammography to compare their performance. The CADx system was built by binary logistic regression classifier. Texture features, including gray-level co-occurrence matrix (GLCM), ranklet, and Gabor, were extracted from user-specified regions of interest (ROIs) in mammograms or volumes of interest (VOIs) in tomosynthesis images. The performance of different combinations of features were evaluated. The CADx system was tested with a dataset of 42 benign and 82 malignant tumors. The best performance was achieved by applying Gabor feature in tomosynthesis with an accuracy of 85.48% (106/124), a sensitivity of 86.59% (71/82), a specificity of 83.33% (35/42), and an Az value of 0.8712. To summarize, tomosynthesis is more effective in classification of breast tumor with Gabor feature than mammography.
Ding, Zhao Tai, et 丁肇泰. « The application of immunohistochemistry on animal tumor diagnosis ». Thesis, 1995. http://ndltd.ncl.edu.tw/handle/09211283558336554791.
Texte intégralLu, Yeh-Ta, et 盧業達. « Computer-Aided Tumor Diagnosis for Automated Breast Ultrasound ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/11815108051177873246.
Texte intégral國立臺灣大學
資訊網路與多媒體研究所
104
In women aged 20-59 years, breast cancer is the highest mortality. Early treatment can effectively reduce the mortality of breast cancer. In recently, breast ultrasound image is often used to diagnose between benign and malignant tumors. For increasing the accuracy, most researches segment the tumor before classification, and the segmented results directly affect the classification between benign and malignant tumors. Therefore, the purpose of this study is to refine segmented tumors using the image matting method for computer-aided diagnosis. First, the volume-of-interest (VOI) of tumor was extracted from the ultrasound image and pre-segmented by a conventional segmentation method. The tri-map including the background, foreground, and unknown region was created with the pre-segmented tumor, and then the image matting method was applied for refining the segmentation according to the unknown region of tri-map. Texture and morphology features were extracted from refined segmentation result and then the support vector machine was applied with extracted features to classify tumor into benign or malignant tumor. This study was validated with 80 cases including 40 benign and 40 malignant breast lesions. According to the experiment results, applying the image matting method had better performance than not applying the image matting method, and the combination of GLCM, ranklet, and ellipsoid fitting feature set had significant (resolution??. The accuracy, sensitivity, specificity, and the area under ROC achieved 85.0% (68/80), 87.5% (35/40), 82.5% (33/40), and 0.8829, respectively. From the experiment results, the image matting method could actually refine tumor segmentation, and more precise classification between benign and malignant tumor results were obtained.
Hong, Hsiang-ann, et 洪祥恩. « Breast Tumor Diagnosis Using Artificial Neural Network Techniques ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/04696597400609301961.
Texte intégral國立中央大學
生物醫學工程研究所
98
This thesis presents an artificial neural network (ANN) technique for breast tumor diagnosis expected to shorten measurement time and discriminate tumor categories. The method is design with four inputs (AD, AW1, AW2, α) passing through the artificial neural network (ANN) to obtain the tumor categories (contrast, radius, distance, radiation angle). The inputs represent the characteristics from the difference between the measured intensities of the inhomogeneous and the homogeneous phantom, and then the ANN is training by simulation data, which is simulated by finite element forward method. Finally testing our method by simulation and experiment data, then we have three concluded points: (1) Tumor location and radius can be estimated more precisely than tumor contrast. Though tumor contrast is estimated false, using tumor location and radius to diagnosis breast tumor is enough. Because of above we can promise our ANN diagnosis method, and then the method also can be expected to be the initial guess for the inverse solution in the numerical simulation. (2) Contrast and radius have similar relation for AD and AW1, and the relation is possible to cause cross-talk for contrast and radius. This remains under investigation. (3) Changing source intensity can not cause diagnosis error, but changing optical properties of background and adding mammary gland model can cause error. Therefore, how to reduce diagnosis error for above factors is an important problem.
« Circulating tumor markers in extranodal lymphomas ». 2002. http://library.cuhk.edu.hk/record=b6073511.
Texte intégral"April 2002."
Thesis (M.D.)--Chinese University of Hong Kong, 2002.
Includes bibliographical references (p. 89-118).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Mode of access: World Wide Web.
Huang, Hsin-Lin, et 黃信霖. « Tumor Diagnosis for 3-D Power Doppler Breast Ultrasound ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/79694800298366897517.
Texte intégral國立臺灣大學
資訊工程學研究所
98
Since the Doppler ultrasound (US) is successfully applied for detecting the blood flow, the studies of tumor vascularity have played important roles to diagnose diseases of breast recently. The tumor vascularity is critical for growth, invasion, and metastasis. In general, malignant tumors need more complex blood vessels to obtain sufficient nutrients for growing. In the past, researches about vascularity just count the number of vascular pixel or voxel to analyze the malignancy of tumor. However, the morphology characteristic can be employed to provide more important diagnosis information. In this paper, we demonstrate a computer-aided diagnostic (CAD) system for three-dimensional (3-D) power Doppler breast US image that can quantify vascular morphology in a region within the fixed distance inside and outside the tumor. At first, the tumor is segmented by a 3-D level set method and the 3-D distance map could be computed based on the segmented tumor contour. After the skeleton of blood vessels is extracted by using a 3-D thinning algorithm, the morphological features can be calculated for the vessels in the band at the fixed distance to the tumor contour based on the 3-D distance map. Finally, the extracted vascular features are used for the binary logistic regression model to classify the malignancy of the tumor. In our experiments, 119 lesions containing 66 benign tumors and 53 malignant tumors, are used to test the accuracy of our proposed computer-aided system. From the experimental results, we could find that the proposed method has better performance than the conventional method. Moreover, the proposed method could achieve a high performance with the accuracy, sensitivity, specificity and Az value being 84.03% (100/119), 84.91% (45/53), and 83.33% (55/66), 0.9104 respectively.