Articles de revues sur le sujet « Tritium transport »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Tritium transport.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Tritium transport ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Skelton, R., C. Nowak, X. W. Zhou et R. A. Karnesky. « Tritium segregation to vacancy-type basal dislocation loops in α-Zr from molecular dynamics simulations ». Journal of Applied Physics 131, no 12 (28 mars 2022) : 125103. http://dx.doi.org/10.1063/5.0078048.

Texte intégral
Résumé :
Tritium interactions with irradiation-induced defects in α-Zr are important for understanding getter performance in tritium-producing burnable absorbed rods. Vacancy-type basal loops are prominent in α-Zr irradiated at high dose rates. As they generate substantial tensile strain fields, such loops can trap tritium atoms. For this reason, vacancy-type basal dislocation loops are potentially important for tritium transport, tritium solubility, and tritide precipitation. We perform molecular dynamics simulations of tritium distributions around vacancy-type basal dislocation loops of different sizes, across a temperature range of 700–1200 K. Tritium preferentially segregates to the dislocation core and, to a lesser extent, the stacking fault. Segregation energies are estimated by inverting the tritium concentration distributions by assuming that the Boltzmann distribution adequately describes partitioning between the bulk and core environments. Agreement between molecular dynamics calculated segregation energies and predictions from elasticity theory using the stress field obtained by spatially averaging the atomic virial stresses suggests that elastic interactions dominate the interaction between tritium and basal loops. We also find an attractive tritium–tritium interaction. This attractive interaction can increase the stability of tritium in the dislocation core, resulting in a higher relative tritium concentration as the overall tritium concentration of the system increases. This suggests that vacancy-type basal dislocation loops can increase tritium solubility in irradiated α-Zr and may serve as preferential sites for tritide precipitation.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zastrow), JET Team (prepared by K. D. « Trace tritium transport in JET ». Nuclear Fusion 39, no 11Y (novembre 1999) : 1891–96. http://dx.doi.org/10.1088/0029-5515/39/11y/331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Freund, Jana, Frederik Arbeiter, Ali Abou-Sena, Fabrizio Franza et Keitaro Kondo. « Tritium transport calculations for the IFMIF Tritium Release Test Module ». Fusion Engineering and Design 89, no 7-8 (octobre 2014) : 1600–1604. http://dx.doi.org/10.1016/j.fusengdes.2014.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gusyev, M. A., M. Toews, U. Morgenstern, M. Stewart, P. White, C. Daughney et J. Hadfield. « Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand ». Hydrology and Earth System Sciences 17, no 3 (19 mars 2013) : 1217–27. http://dx.doi.org/10.5194/hess-17-1217-2013.

Texte intégral
Résumé :
Abstract. Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall) passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age) and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs) in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages at five model cross-sections to better understand MRTs simulated with tritium-calibrated MT3DMS and lumped parameter models.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gusyev, M. A., M. Toews, U. Morgenstern, M. Stewart, C. Daughney et J. Hadfield. « Calibration of a transient transport model to tritium measurements in rivers and streams in the Western Lake Taupo catchment, New Zealand ». Hydrology and Earth System Sciences Discussions 9, no 8 (24 août 2012) : 9743–65. http://dx.doi.org/10.5194/hessd-9-9743-2012.

Texte intégral
Résumé :
Abstract. Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the Western Lake Taupo catchment, New Zealand. Tritium is a time-dependent tracer with radioactive half-life of 12.32 yr. In the transport model, the tritium input (measured in rain) passes through the groundwater system, and the modelled tritium concentrations are compared to the measured tritium concentrations in the river outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori river catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model. In order to incorporate all surface flows from rivers to small streams, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream flow observations. Then, the transport model was calibrated to the measured tritium concentrations in the river waters. The MT3DMS model results show good agreement with the measured tritium values in all five river catchments. Finally, the calibrated MT3DMS model is applied to simulate groundwater ages that are used to construct groundwater age distributions for the river catchments.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zeng, Qin, Wei Shi, Xiande Wang et Hongli Chen. « Tritium transport analysis for tokamak exhaust processing system of tritium plant ». Fusion Engineering and Design 159 (octobre 2020) : 111955. http://dx.doi.org/10.1016/j.fusengdes.2020.111955.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Murphy Jr. (INVITED), C. E. « Modelling Tritium Transport in the Environment ». Radiation Protection Dosimetry 16, no 1-2 (1 septembre 1986) : 51–58. http://dx.doi.org/10.1093/oxfordjournals.rpd.a079713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Heung, L. K. « Tritium Transport Vessel Using Depleted Uranium ». Fusion Technology 28, no 3P2 (octobre 1995) : 1385–90. http://dx.doi.org/10.13182/fst95-a30605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tam, S. W., J. P. Kopasz et C. E. Johnson. « Tritium transport and retention in SiC ». Journal of Nuclear Materials 219 (mars 1995) : 87–92. http://dx.doi.org/10.1016/0022-3115(94)00392-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ritter, P. D., T. J. Dolan et G. R. Longhurst. « Tritium environmental transport studies at TFTR ». Journal of Fusion Energy 12, no 1-2 (juin 1993) : 145–48. http://dx.doi.org/10.1007/bf01059370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Moriyama, H., K. Iwasaki et Y. Ito. « Transport of tritium in liquid lithium ». Journal of Nuclear Materials 191-194 (septembre 1992) : 190–93. http://dx.doi.org/10.1016/s0022-3115(09)80031-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Killough, G. G., et D. C. Kocher. « Global environmental transport models for tritium ». International Journal of Applied Radiation and Isotopes 36, no 7 (juillet 1985) : 600. http://dx.doi.org/10.1016/0020-708x(85)90200-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Killough, G. G., et D. C. Kocher. « Global Environmental Transport Models for Tritium ». Fusion Technology 8, no 2P2 (septembre 1985) : 2569–74. http://dx.doi.org/10.13182/fst85-a24666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Lee, Sanghoon, Min-Soo Lee, Ju-Chan Lee, Woo-Seok Choi, Ki-Young Kim, Je-Eon Jeon, Ki-Seog Seo, Wataru Shu et Glugla Manfred. « Development of ITER tritium transport package ». Fusion Engineering and Design 88, no 3 (mars 2013) : 136–44. http://dx.doi.org/10.1016/j.fusengdes.2013.01.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

MORIYAMA, H. « Transport of tritium in liquid lithium ». Journal of Nuclear Materials 191-194 (septembre 1992) : 190–93. http://dx.doi.org/10.1016/0022-3115(92)90751-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Stauffer, Philip H., Brent D. Newman, Kay H. Birdsell, Marvin O. Gard, Jeffrey M. Heikoop, Emily C. Kluk et Terry A. Miller. « Vadose Zone Transport of Tritium and Nitrate under Ponded Water Conditions ». Geosciences 12, no 8 (28 juillet 2022) : 294. http://dx.doi.org/10.3390/geosciences12080294.

Texte intégral
Résumé :
Vadose zone transport of tritium and nitrate can be important considerations at radioactive waste sites, landfills, or areas with industrial impacts. These contaminants are of particular concern because they typically have a relatively higher mobility in the subsurface compared to other compounds. Here, we describe a semiarid site with tritium and nitrate contamination involving a manmade ponded water source above a thick unsaturated zone at Los Alamos National Laboratory in New Mexico, USA. This study demonstrates the value of vadose zone flow and transport modeling for the development of field investigation plans (i.e., identifying optimal borehole locations and depths for contaminant characterization), and how a combination of modeling with isotope and geochemical measurements can provide insight into how tritium and nitrate transport in the vadose zone in semiarid environments. Modeling results suggest that at this location, tritium transport is well predicted by classical multiphase theory. Our work expands the demonstrated usefulness of a standard tritium conceptual model to sites with ponded surface conditions and agrees with previous results where a standard model was able to explain the evolution of a tritium plume at an arid waste disposal site. In addition, depth-based analyses of δ18O and δ2H of pore waters helped confirm the extent of pond infiltration into the vadose zone, and the δ15N of nitrate showed that the contaminant release history of the site was different than originally assumed.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Castrovinci, F. M., G. Bongiovì, P. Chiovaro, P. A. Di Maio, F. Franza, A. Quartararo, G. A. Spagnuolo et E. Vallone. « On the modelling of tritium transport phenomena at fluid-structure interfaces ». Journal of Physics : Conference Series 2177, no 1 (1 avril 2022) : 012002. http://dx.doi.org/10.1088/1742-6596/2177/1/012002.

Texte intégral
Résumé :
Abstract One of the main functions of the DEMO Breeding Blanket (BB) system is to ensure the tritium breeding inside the reactor. Tritium is a beta emitter radioactive isotope, subjected to several processes that determine its permeation across materials and its leakage towards the environment, posing potential safety issues in terms of radiological hazard. Thus, the evaluation of tritium inventories inside components and tritium losses towards the environment plays a key role in the fulfilment of the pertinent BB safety requirements. In this regard, a research activity has been carried out, in close cooperation between the University of Palermo and the Karlsruhe Institute of Technology, focussing on the development of a multiphysical model that might realistically simulate 3D tritium transport phenomena across complex fluid-structure interfaces. Models, source terms and boundary conditions assumed for the analyses are herewith reported and critically discussed, together with the main results obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Murphy, Charles E. « Tritium Transport and Cycling in the Environment ». Health Physics 65, no 6 (décembre 1993) : 683–97. http://dx.doi.org/10.1097/00004032-199312000-00007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Seungwoo Paek, Min Soo Lee, Kwang-Rag Kim, Do-Hee Ahn, Kyu-Min Song et Soon-Hwan Sohn. « Development of 100-kCi Tritium Transport Vessel ». IEEE Transactions on Plasma Science 38, no 3 (mars 2010) : 278–83. http://dx.doi.org/10.1109/tps.2009.2037227.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhao, Pinghui, Wanli Yang, Yuanjie Li, Zhihao Ge, Xingchen Nie et Zhongping Gao. « Tritium transport analysis for CFETR WCSB blanket ». Fusion Engineering and Design 114 (janvier 2017) : 26–32. http://dx.doi.org/10.1016/j.fusengdes.2016.11.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Zastrow, K.-D., J. M. Adams, Yu Baranov, P. Belo, L. Bertalot, J. H. Brzozowski, C. D. Challis et al. « Tritium transport experiments on the JET tokamak ». Plasma Physics and Controlled Fusion 46, no 12B (19 novembre 2004) : B255—B265. http://dx.doi.org/10.1088/0741-3335/46/12b/022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tam, S. W., et V. Ambrose. « Tritium transport in lithium ceramics porous media ». Journal of Nuclear Materials 191-194 (septembre 1992) : 253–57. http://dx.doi.org/10.1016/s0022-3115(09)80045-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Cho, S. « Analysis of tritium transport in irradiated beryllium ». Fusion Engineering and Design 28, no 1-2 (2 mars 1995) : 265–70. http://dx.doi.org/10.1016/0920-3796(94)00087-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Cho, Seungyon, et Mohamed A. Abdou. « Analysis of tritium transport in irradiated beryllium ». Fusion Engineering and Design 28 (mars 1995) : 265–70. http://dx.doi.org/10.1016/0920-3796(95)90047-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Pasler, Volker, Frederik Arbeiter, Christine Klein, Dmitry Klimenko, Georg Schlindwein et Axel von der Weth. « Development of a Component-Level Hydrogen Transport Model with OpenFOAM and Application to Tritium Transport Inside a DEMO HCPB Breeder ». Applied Sciences 11, no 8 (13 avril 2021) : 3481. http://dx.doi.org/10.3390/app11083481.

Texte intégral
Résumé :
This work continues the development of a numerical model to simulate transient tritium transport on the breeder zone (BZ) level for the EU helium-cooled pebble bed (HCPB) concept for DEMO. The basis of the model is the open-source field operation and manipulation framework, OpenFOAM. The key output quantities of the model are the tritium concentration in the purge gas and in the coolant and the tritium inventory inside the BZ structure. New model features are briefly summarized. As a first relevant application a simulation of tritium transport for a single pin out of the KIT HCPB design for DEMO is presented. A variety of scenarios investigates the impact of the permeation regime (diffusion-limited vs. surface-limited), of an additional hydrogen content of 300 Pa H2 in the purge gas, of the released species (HT vs. T2), and of the choice of species-specific rate constants (recombination constant of HT set twice as for H2 and T2). The results indicate that the released species plays a minor role for permeation. Both permeation and inventory show a considerable dependence on a possible hydrogen addition in the purge gas. An enhanced HT recombination constant reduces steel T inventories and, in the diffusion-limited case, also permeation significantly. Scenarios with 80 bar vs. 2 bar purge gas pressure indicate that purge gas volumetric flow is decisive for permeation.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Vergari, Lorenzo, Michael Borrello et Raluca O. Scarlat. « Electrochemical Sensors and Techniques for Redox Potential and Tritium Transport in a Neutron-Irradiated Molten Flibe Salt Loop ». ECS Meeting Abstracts MA2022-02, no 12 (9 octobre 2022) : 765. http://dx.doi.org/10.1149/ma2022-0212765mtgabs.

Texte intégral
Résumé :
A consortium of the Massachusetts Institute of Technology, North Carolina State University, the University of California at Berkeley (UCB) and Oak Ridge National Laboratory have initiated a project to build a neutron-irradiated molten-salt forced-circulation loop at the MIT reactor. The loop will use FLiBe (Li2BeF4) salt and will duplicate thermal-hydraulics, chemical, and neutronics conditions in a salt reactor. The SALT Lab at UCB is responsible for the design and application of electrochemical sensors and techniques for redox measurement and tritium transport within the loop. The proposed experiments will investigate redox measurements and control in the loop, tritium retention and diffusion in graphite, and tritium transport in the salt. Redox measurements and control studies will be performed to quantify the corrosive effect of neutron activation reactions and the effect of redox control agents in the loop. Tritium studies are being developed to quantify tritium uptake capacity in graphite, identify tritium desorption mechanisms, and measure tritium solubility, diffusivity, and speciation in the melt. To support these experiments, a variety of electrochemical probes are under development at UCB, including different size, shape, and material of the electrodes. This talk will present the electrochemical probes under development and discuss the experiments that will be tested off-loop in the Be-gloveboxes of the SALT lab and then implemented in the loop.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ye, Ming, Clay Cooper, Jenny Chapman, David Gillespie et Yong Zhang. « A Geologically Based Markov Chain Model for Simulating Tritium Transport With Uncertain Conditions in a Nuclear-Stimulated Natural Gas Reservoir ». SPE Reservoir Evaluation & ; Engineering 12, no 06 (2 septembre 2009) : 974–84. http://dx.doi.org/10.2118/114920-pa.

Texte intégral
Résumé :
Summary Nuclear-stimulation technology, which used subsurface nuclear detonation to increase permeability of tight natural gas reservoirs, was evaluated in the late 1960s and early 1970s. The Rulison site, located in the Piceance basin, Colorado, is one of three sites in the US where the technology was tested. An increase in exploration and production for natural gas in the basin has led to a need to quantify the extent of radionuclide (mainly tritium) migration after the detonation and potential migration under likely production scenarios. To meet this need, a numerical model was developed to simulate gas flow and tritium transport toward a hypothetical production well. A crucial problem in the model development is that limited on-site data are too sparse to quantify uncertainty of subsurface properties. This problem is partly resolved by using indirect data and information, such as parameter measurements from a nearby site and geological information regarding lithofacies geometry. In particular, a geologically based Markov chain model was developed to simulate spatial distribution of the sandstone lithofacies. This paper presents an application of the numerical model for simulating tritium transport from the nuclear chimney toward the production well at a likely location producing at a rate typical for the basin. The results show that under the circumstances considered in this paper, tritium will not reach the production well with a confidence level of 95%. The results also show that the lithofacies structure is more critical in controlling tritium transport than parameters of the sandstone and hydraulically fractured sandstone. The parameters become important only when the connectivity of sandstone lenses exists to support tritium transport from the chimney to the production well. The developed modeling framework can be updated as additional subsurface data are collected. The framework can be used to support establishment of drilling restrictions that protect public health and the environment for different production well scenarios.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Burn, C. R., et F. A. Michel. « Evidence for recent temperature-induced water migration into permafrost from the tritium content of ground ice near Mayo, Yukon Territory, Canada ». Canadian Journal of Earth Sciences 25, no 6 (1 juin 1988) : 909–15. http://dx.doi.org/10.1139/e88-087.

Texte intégral
Résumé :
Determinations of the tritium (3H) content of ground ice collected near Mayo, Yukon Territory, indicate that since the mid-1950s atmospheric water has infiltrated permafrost to depths of up to 50 cm. The rate of tritium infiltration into permafrost at two plots irrigated with tritiated water in 1983 suggests that tritium movement is principally due to temperature-induced mass transport rather than molecular diffusion.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Ruyan, Xiaoyu Wang, Long Zhang et Jun Wang. « Development of tritium dynamic transport analysis tool for tritium breeding blanket system using Modelica ». Fusion Engineering and Design 161 (décembre 2020) : 112023. http://dx.doi.org/10.1016/j.fusengdes.2020.112023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gusyev, M. A., D. Abrams, M. W. Toews, U. Morgenstern et M. K. Stewart. « A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water ». Hydrology and Earth System Sciences 18, no 8 (20 août 2014) : 3109–19. http://dx.doi.org/10.5194/hess-18-3109-2014.

Texte intégral
Résumé :
Abstract. The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo catchment (WLTC) using a MODFLOW-MT3DMS model (Gusyev et al., 2013). The model was calibrated to measured tritium in river water at baseflows of the Waihaha, Whanganui, Whareroa, Kuratau, and Omori river catchments of the WLTC. Following from that work we now utilized the same MODFLOW model for the WLTC to calculate the pathways of groundwater particles (and their corresponding tritium concentrations) using steady-state particle tracking MODPATH model. In order to simulate baseflow tritium concentrations with MODPATH, transit time distributions (TTDs) are necessary to understand the lag time between the entry and discharge points of a tracer and are generated for the river networks of the five WLTC outflows. TTDs are used in the convolution integral with an input tritium concentration time series obtained from the precipitation measurements. The resulting MODPATH tritium concentrations yield a very good match to measured tritium concentrations and are similar to the MT3DMS-simulated tritium concentrations, with the greatest variation occurring around the bomb peak. MODPATH and MT3DMS also yield similar mean transit times (MTTs) of groundwater contribution to river baseflows, but the actual shape of the TTDs is strikingly different. While both distributions provide valuable information, the methodologies used to derive the TTDs are fundamentally different and hence must be interpreted differently. With the current MT3DMS model settings, only the methodology used with MODPATH provides the true TTD for use with the convolution integral.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Naoe, S., Y. Torikai, R. D. Penzhorn, K. Akaishi, K. Watanabe et M. Matsuyama. « Transport of Tritium in SS316 at Moderate Temperatures ». Fusion Science and Technology 54, no 2 (août 2008) : 515–18. http://dx.doi.org/10.13182/fst08-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Bonheure, Georges, Jan Mlynar, A. Murari, C. Giroud, P. Belo, L. Bertalot et S. Popovichev. « A novel method for trace tritium transport studies ». Nuclear Fusion 49, no 8 (22 juillet 2009) : 085025. http://dx.doi.org/10.1088/0029-5515/49/8/085025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Scott, S. D., D. R. Ernst, M. Murakami, H. Adler, M. G. Bell, R. Bell, R. V. Budny et al. « Isotopic scaling of transport in deuterium-tritium plasmas ». Physica Scripta 51, no 3 (1 mars 1995) : 394–401. http://dx.doi.org/10.1088/0031-8949/51/3/021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gormezano, C., Y. F. Baranov, C. D. Challis, I. Coffey, G. A. Cottrell, A. C. Ekedahl, C. M. Greenfield et al. « Internal Transport Barriers in JET Deuterium-Tritium Plasmas ». Physical Review Letters 80, no 25 (22 juin 1998) : 5544–47. http://dx.doi.org/10.1103/physrevlett.80.5544.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Raffray, A. R., Z. R. Gorbis et M. A. Abdou. « Rate-Controlling Tritium Transport Mechanisms in Solid Breeders ». Fusion Technology 19, no 3P2B (mai 1991) : 1525–31. http://dx.doi.org/10.13182/fst91-a29558.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Billone, M. C. « Thermal and tritium transport in Li2O and Li2ZrO3 ». Journal of Nuclear Materials 233-237 (octobre 1996) : 1462–66. http://dx.doi.org/10.1016/s0022-3115(96)00254-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Kopasz, J. P., C. A. Seils et C. E. Johnson. « Spatial tritium transport in single-crystal lithium aluminate ». Journal of Nuclear Materials 212-215 (septembre 1994) : 912–16. http://dx.doi.org/10.1016/0022-3115(94)90968-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wu, Xiao, Shanbin Shi, Sheng Zhang, David Arcilesi, Richard Christensen, Piyush Sabharwall et Xiaodong Sun. « Mass transport analysis for tritium removal in FHRs ». Annals of Nuclear Energy 121 (novembre 2018) : 250–59. http://dx.doi.org/10.1016/j.anucene.2018.07.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Pan, Lei, Hongli Chen et Qin Zeng. « Tritium transport analysis of HCPB blanket for CFETR ». Fusion Engineering and Design 113 (décembre 2016) : 82–86. http://dx.doi.org/10.1016/j.fusengdes.2016.10.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Naoe, S. « Transport of Tritium in SS316 at Moderate Temperatures ». Fusion Science and Technology 54, no 2 (août 2008) : 515–18. http://dx.doi.org/10.13182/fst54-515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Franza, Fabrizio, Lorenzo Virgillio Boccaccini, David Demange, Andrea Ciampichetti et Massimo Zucchetti. « Tritium Transport Issues for Helium-Cooled Breeding Blankets ». IEEE Transactions on Plasma Science 42, no 7 (juillet 2014) : 1951–57. http://dx.doi.org/10.1109/tps.2014.2329573.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Candido, Luigi, Marco Utili, Iuri Nicolotti et Massimo Zucchetti. « Tritium transport in HCLL and WCLL DEMO blankets ». Fusion Engineering and Design 109-111 (novembre 2016) : 248–54. http://dx.doi.org/10.1016/j.fusengdes.2016.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kopasz, J. P., S. W. Tam et C. E. Johnson. « Enhanced tritium transport and release by solids modification ». Journal of Nuclear Materials 179-181 (mars 1991) : 816–19. http://dx.doi.org/10.1016/0022-3115(91)90213-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

TAM, S. « Tritium transport in lithium ceramics porous media*1 ». Journal of Nuclear Materials 191-194 (septembre 1992) : 253–57. http://dx.doi.org/10.1016/0022-3115(92)90765-d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Ying, Alice, Hongjie Zhang, Brad Merrill, Mu-Young Ahn et Seungyon Cho. « Breeding blanket system design implications on tritium transport and permeation with high tritium ion implantation : A MATLAB/Simulink, COMSOL integrated dynamic tritium transport model for HCCR TBS ». Fusion Engineering and Design 136 (novembre 2018) : 1153–60. http://dx.doi.org/10.1016/j.fusengdes.2018.04.093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Li, Jun Heng, Rong Hua Huang et Hao Ran Cao. « Static Neutronics Analyses of Hellium-Cooled Solid Breeder Blanket ». Advanced Materials Research 953-954 (juin 2014) : 631–34. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.631.

Texte intégral
Résumé :
A Monte Carlo N-particle transport code was used to study physics of the helium-cooled solid-breeder tritium breeding blanket in the Chinese Fusion Engineering Thermal Reactor (CFETR)for various volume ratio of the neutron multiplier and tritium breeder and various thickness of the first wall. A sandwich-type of Be and loading model is used to analyze the compact of volume ratio and the thickness of the first wall for the tritium breeding rate. The results of different volume ratio models show that the tritium breeding ratio would reach 1.51 for volume ratio from 2 to 5.And the results of the different first wall thickness show that the upper limit of the thickness should be 33mm to keep the tritium self-sustain.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chaparro, M. Carme, et Maarten W. Saaltink. « Tritium transport in non-saturated concrete under temperature fluctuations ». Journal of Environmental Radioactivity 251-252 (octobre 2022) : 106969. http://dx.doi.org/10.1016/j.jenvrad.2022.106969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Alberghi, Ciro, Luigi Candido, Marco Utili et Massimo Zucchetti. « Development of new analytical tools for tritium transport modelling ». Fusion Engineering and Design 177 (avril 2022) : 113083. http://dx.doi.org/10.1016/j.fusengdes.2022.113083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Longhurst, Glen R., et James Ambrosek. « Verification and Validation of the Tritium Transport Code TMAP7 ». Fusion Science and Technology 48, no 1 (août 2005) : 468–71. http://dx.doi.org/10.13182/fst05-a967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Pattison, M. J., S. Smolentsev, R. Munipalli et M. A. Abdou. « Tritium Transport in Poloidal Flows of a DCLL Blanket ». Fusion Science and Technology 60, no 2 (août 2011) : 809–13. http://dx.doi.org/10.13182/fst10-309.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie