Articles de revues sur le sujet « Transport neuronal »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Transport neuronal.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Transport neuronal ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Sammler, Esther, Stefan Titz et Sheriar Hormuzdi. « Neuronal chloride transport tuning ». Lancet 385 (février 2015) : S85. http://dx.doi.org/10.1016/s0140-6736(15)60400-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

JODAL, M. « Neuronal influence on intestinal transport ». Journal of Internal Medicine 228, S732 (novembre 1990) : 125–32. http://dx.doi.org/10.1111/j.1365-2796.1990.tb01484.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Benaïssa, Ibtissem. « Analogie du transport neuronal au transport électronique en nanotechnologie ». Journal of Renewable Energies 12, no 1 (26 octobre 2023) : 9–28. http://dx.doi.org/10.54966/jreen.v12i1.115.

Texte intégral
Résumé :
Le système nerveux est formé de deux types de cellules: les cellules gliales et les neurones. Les astrocytes, comme la plupart des cellules gliales, ont longtemps été considérés essentiellement pour leur rôle de support et d’entretien du tissu nerveux. Mais, de plus en plus d’évidences plaident en faveur d’une implication beaucoup plus importante des astrocytes dans la communication nerveuse. Les astrocytes sont couplés les uns aux autres par des ‘gap-jonctions’ à travers lesquels peuvent circuler divers métabolites. C’est par ces jonctions que les astrocytes évacuent vers les capillaires, le potassium extracellulaire excédentaire généré par une intense activité neuronale. A travers ce réseau d’actrocytes se propagerait par exemple, des vagues d’ions calcium dont l’effet régulateur pourrait se faire sentir dans un grand nombre de synapses en même temps. Les prolongements astrocytaires qui entourent les synapses pourraient ainsi exercer un contrôle plus global sur la concentration ionique et le volume aqueux dans les fentes synaptiques. Le réseau astrocytaire constituerait donc un système de transmission non-synaptique qui se superposerait au système neuronal pour jouer un rôle majeur de modulation des activités neuronales. A cet effet, et dans l’espoir d’éclairer les neurochirurgiens et les spécialistes qui s’intéressent aux transplantations et à une meilleure maîtrise du transport et fonctionnement de l’influx nerveux. Le présent travail apporte une approche entre le transport et les propriétés électroniques d’une jonction miniature, une ‘microjonction’, dont la nanotechnologie ne saurait se passer, l’usage de jonctions P-N, un semi-conducteur dopé P (ions positifs) et un dopé N (ions négatifs), est très utilisé pour tous les dispositifs de type diode car ne laissant passer le courant que dans un sens, ce genre de jonction fait aussi apparaître des propriétés optiques intéressantes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

MENZIKOV, SERGEY A. « NEURONAL MULTIFUNCTIONAL ATPase ». Biophysical Reviews and Letters 08, no 03n04 (décembre 2013) : 213–27. http://dx.doi.org/10.1142/s1793048013300065.

Texte intégral
Résumé :
Here, we review the properties of a suggested mechanism for a neural ATPase complex based on our recent experimental findings. The mechanism represents a multifunctional ATPase: an enzyme that is a chloride pump and a GABA receptor. This enables new views on the ways Cl - channel transports anions and its regulation by the intra- and extracellular ions and molecules (in particular by glucose, ATP, [Formula: see text]). The hydrolytic activity of this GABA A-coupled ATPase provides the [Formula: see text] transport process the energy and determines a certain direction of ions flux across neuronal membrane. This can help with the research regarding several diseases such as epilepsy. [Formula: see text]Special Issue Comment: This project is about a multifunctional ATPase complex. Experiments involving measuring & solving individual ATPases are related with the Special Issue about FRET experiments,1 about enzymes,2 and about treatments when solving single molecules.3,4 The model suggested here is simply tested with these experimental and mathematical methods.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kaye, D. M., S. D. Wiviott, L. Kobzik, R. A. Kelly et T. W. Smith. « S-nitrosothiols inhibit neuronal norepinephrine transport ». American Journal of Physiology-Heart and Circulatory Physiology 272, no 2 (1 février 1997) : H875—H883. http://dx.doi.org/10.1152/ajpheart.1997.272.2.h875.

Texte intégral
Résumé :
Although it has been recently shown that nitric oxide (NO) and its congeners (NO(x)), including nitrosothiols, may modify catecholamine turnover in the brain, it is not known whether NO(x) affect norepinephrine (NE) uptake by sympathetic neurons. The nitrosothiol NO donor S-nitroso-acetylpenicillamine (SNAP, 100 microM for 1 h) elicited a concentration-dependent reduction in desipramine-sensitive [3H]NE uptake into PC-12 cells (66 +/- 3%; P < 0.01) or cultured rat superior cervical ganglia (74 +/- 5%; P < 0.001), whereas desipramine-insensitive [3H]NE uptake was unaffected, indicating a selective effect on uptake-1-mediated transport. Short-term coculture of PC-12 cells with microvascular endothelial cells expressing the cytokine-inducible NO synthase (NOS2) also exhibited a reduction in [3H]NE uptake (33 +/- 3%, P < 0.001) that could be prevented by the addition of the NOS inhibitor N-monomethyl-L-arginine (L-NMMA, 1 mM). Endogenous production of NO(x) by nerve growth factor-pretreated PC-12 cells also exhibited an L-NMMA-inhibitable reduction in [3H]NE uptake. Whereas SNAP resulted in a 10-fold elevation of PC-12 guanosine 3',5'-cyclic monophosphate (cGMP) content (P < 0.01), its effect on [3H]NE uptake was not mimicked by exposure to 8-bromo-cGMP. However, the inhibitory effect of SNAP on uptake-1-mediated [3H]NE transport could be attenuated by 1 mM cysteine, a sulfhydryl compound that could act as a sink for NO(x)-mediated nitrosation reactions, although cysteine did not affect the increase in intracellular cGMP with SNAP. These data suggest that an endogenous NO(x) source(s) modifies the activity of the uptake-1 catecholamine transporter in postganglionic sympathetic neurons, which, as we demonstrate, express both NOS1 and NOS3 isoforms, possibly by S-nitrosothiol-mediated nitrosation of regulatory sites on the transporter.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Perry, Rotem Ben-Tov, et Mike Fainzilber. « Nuclear transport factors in neuronal function ». Seminars in Cell & ; Developmental Biology 20, no 5 (juillet 2009) : 600–606. http://dx.doi.org/10.1016/j.semcdb.2009.04.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Stiess, Michael, et Frank Bradke. « Neuronal transport : myosins pull the ER ». Nature Cell Biology 13, no 1 (12 décembre 2010) : 10–11. http://dx.doi.org/10.1038/ncb2147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Staff, N. P., E. E. Benarroch et C. J. Klein. « Neuronal intracellular transport and neurodegenerative disease ». Neurology 76, no 11 (14 mars 2011) : 1015–20. http://dx.doi.org/10.1212/wnl.0b013e31821103f7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brenner, S. R., N. P. Staff, E. E. Benarroch et C. J. Klein. « Neuronal intracellular transport and neurodegenerative disease ». Neurology 77, no 21 (21 novembre 2011) : 1932. http://dx.doi.org/10.1212/wnl.0b013e318239bf96.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bakshi, Rachit, Shuchi Mittal, Zhixiang Liao et Clemens R. Scherzer. « A Feed-Forward Circuit of EndogenousPGC-1αandEstrogen Related Receptor αRegulates the Neuronal Electron Transport Chain ». Parkinson's Disease 2016 (2016) : 1–9. http://dx.doi.org/10.1155/2016/2405176.

Texte intégral
Résumé :
Peroxisome proliferator-activated receptor γcoactivator 1α(PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in “energy-guzzling” neurons, but the components and wiring of the transcriptional circuit through whichPGC-1αregulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson’s neuropathology and in aging-dependent brain diseases. Here we delineate a neuronal transcriptional circuit controlled by endogenousPGC-1α. We show that a feed-forward circuit of endogenous neuronalPGC-1αand the orphan nuclear estrogen-related receptorα(ERRα) activates the nuclear-encoded mitochondrial electron transport chain.PGC-1αnot onlytrans-activated expression ofERRα, but also coactivatedERRαtarget genes in complexes I, II, IV, and V of the neuronal electron transport chain via association with evolutionary conservedERRαpromoter binding motifs. Chemical activation of this transcriptional program induced transcription of the neuronal electron transport chain. These data highlight a neuronal transcriptional circuit regulated byPGC-1αthat can be therapeutically targeted for Parkinson’s and other neurodegenerative diseases.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Vossel, Keith A., Jordan C. Xu, Vira Fomenko, Takashi Miyamoto, Elsa Suberbielle, Joseph A. Knox, Kaitlyn Ho, Daniel H. Kim, Gui-Qiu Yu et Lennart Mucke. « Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β ». Journal of Cell Biology 209, no 3 (11 mai 2015) : 419–33. http://dx.doi.org/10.1083/jcb.201407065.

Texte intégral
Résumé :
Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Carmichael, Stephen W., et W. Stephen Brimijoin. « Looking at Slow Axonal Transport ». Microscopy Today 4, no 9 (novembre 1996) : 3–5. http://dx.doi.org/10.1017/s1551929500065299.

Texte intégral
Résumé :
Neurons are about as polarized as cells ever get. Their axonal process can extend a distance that is up to a million times the diameter of the nerve cell body. Axons have none of the ribosomal machinery responsible for protein synthesis, so all neuronal proteins and peptides must be manufactured near the nucleus and carried out to the periphery. This distribution involves at least two distinct mechanisms, fast axonal transport, moving at almost 500 mm per day, and slow axonal transport, moving only 0.1 to 3 mm per day. It turns out that proteins of the neuronal cytoskeleton, along with many soluble cytosolic proteins, are transported exclusively by the slower process.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Horiguchi, Kaori, Toshihiko Hanada, Yasuhisa Fukui et Athar H. Chishti. « Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity ». Journal of Cell Biology 174, no 3 (24 juillet 2006) : 425–36. http://dx.doi.org/10.1083/jcb.200604031.

Texte intégral
Résumé :
Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase, is an important second messenger implicated in signal transduction and membrane transport. In hippocampal neurons, the accumulation of PIP3 at the tip of neurite initiates the axon specification and neuronal polarity formation. We show that guanylate kinase–associated kinesin (GAKIN), a kinesin-like motor protein, directly interacts with a PIP3-interacting protein, PIP3BP, and mediates the transport of PIP3-containing vesicles. Recombinant GAKIN and PIP3BP form a complex on synthetic liposomes containing PIP3 and support the motility of the liposomes along microtubules in vitro. In PC12 cells and cultured hippocampal neurons, transport activity of GAKIN contributes to the accumulation of PIP3 at the tip of neurites. In hippocampal neurons, altered accumulation of PIP3 by overexpression of GAKIN constructs led to the loss of the axonally differentiated neurites. Together, these results suggest that, in neurons, the GAKIN–PIP3BP complex transports PIP3 to the neurite ends and regulates neuronal polarity formation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Yonekawa, Yoshiaki, Akihiro Harada, Yasushi Okada, Takeshi Funakoshi, Yoshimitsu Kanai, Yosuke Takei, Sumio Terada, Tetsuo Noda et Nobutaka Hirokawa. « Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice ». Journal of Cell Biology 141, no 2 (20 avril 1998) : 431–41. http://dx.doi.org/10.1083/jcb.141.2.431.

Texte intégral
Résumé :
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hirano, Minato, Memi Muto, Mizuki Sakai, Hirofumi Kondo, Shintaro Kobayashi, Hiroaki Kariwa et Kentaro Yoshii. « Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease ». Proceedings of the National Academy of Sciences 114, no 37 (28 août 2017) : 9960–65. http://dx.doi.org/10.1073/pnas.1704454114.

Texte intégral
Résumé :
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genusFlavivirus, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5′ untranslated region of TBEV genomic RNA that act as acis-acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tanneti, Nikhila S., Joel D. Federspiel, Ileana M. Cristea et Lynn W. Enquist. « The axonal sorting activity of pseudorabies virus Us9 protein depends on the state of neuronal maturation ». PLOS Pathogens 16, no 12 (28 décembre 2020) : e1008861. http://dx.doi.org/10.1371/journal.ppat.1008861.

Texte intégral
Résumé :
Alpha-herpesviruses establish a life-long infection in the nervous system of the affected host; while this infection is restricted to peripheral neurons in a healthy host, the reactivated virus can spread within the neuronal circuitry, such as to the brain, in compromised individuals and lead to adverse health outcomes. Pseudorabies virus (PRV), an alpha-herpesvirus, requires the viral protein Us9 to sort virus particles into axons and facilitate neuronal spread. Us9 sorts virus particles by mediating the interaction of virus particles with neuronal transport machinery. Here, we report that Us9-mediated regulation of axonal sorting also depends on the state of neuronal maturation. Specifically, the development of dendrites and axons is accompanied with proteomic changes that influence neuronal processes. Immature superior cervical ganglionic neurons (SCGs) have rudimentary neurites that lack markers of mature axons. Immature SCGs can be infected by PRV, but they show markedly reduced Us9-dependent regulation of sorting, and increased Us9-independent transport of particles into neurites. Mature SCGs have relatively higher abundances of proteins characteristic of vesicle-transport machinery. We also identify Us9-associated neuronal proteins that can contribute to axonal sorting and subsequent anterograde spread of virus particles in axons. We show that SMPD4/nsMase3, a sphingomyelinase abundant in lipid-rafts, associates with Us9 and is a negative regulator of PRV sorting into axons and neuronal spread, a potential antiviral function.
Styles APA, Harvard, Vancouver, ISO, etc.
17

DuRaine, Grayson, et David C. Johnson. « Anterograde transport of α-herpesviruses in neuronal axons ». Virology 559 (juillet 2021) : 65–73. http://dx.doi.org/10.1016/j.virol.2021.02.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jones, Sara R., Joshua D. Joseph, Larry S. Barak, Marc G. Caron et R. Mark Wightman. « Dopamine Neuronal Transport Kinetics and Effects of Amphetamine ». Journal of Neurochemistry 73, no 6 (18 janvier 2002) : 2406–14. http://dx.doi.org/10.1046/j.1471-4159.1999.0732406.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Twelvetrees, Alison E. « The lifecycle of the neuronal microtubule transport machinery ». Seminars in Cell & ; Developmental Biology 107 (novembre 2020) : 74–81. http://dx.doi.org/10.1016/j.semcdb.2020.02.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Karten, Barbara, Hideki Hayashi, Robert B. Campenot, Dennis E. Vance et Jean E. Vance. « Neuronal models for studying lipid metabolism and transport ». Methods 36, no 2 (juin 2005) : 117–28. http://dx.doi.org/10.1016/j.ymeth.2004.11.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wu, Chia-wen K., Fanyi Zeng et James Eberwine. « mRNA transport to and translation in neuronal dendrites ». Analytical and Bioanalytical Chemistry 387, no 1 (18 novembre 2006) : 59–62. http://dx.doi.org/10.1007/s00216-006-0916-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Paggi, Paola, et Tamara C. Petrucci. « Neuronal compartments and axonal transport of synapsin I ». Molecular Neurobiology 6, no 2-3 (juin 1992) : 239–51. http://dx.doi.org/10.1007/bf02780556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Hoang, Tuan, Matthew D. Smith et Masoud Jelokhani-Niaraki. « Conformation and Ion Transport of Neuronal Uncoupling Proteins ». Biophysical Journal 100, no 3 (février 2011) : 358a. http://dx.doi.org/10.1016/j.bpj.2010.12.2148.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kelner, Gregory S., MoonHee Lee, Melody E. Clark, Dominique Maciejewski, Doug McGrath, Shahrooz Rabizadeh, Thomas Lyons, Dale Bredesen, Peter Jenner et Richard A. Maki. « The Copper Transport Protein Atox1 Promotes Neuronal Survival ». Journal of Biological Chemistry 275, no 1 (7 janvier 2000) : 580–84. http://dx.doi.org/10.1074/jbc.275.1.580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Muslimov, Ilham A., Margaret Titmus, Edward Koenig et Henri Tiedge. « Transport of Neuronal BC1 RNA in Mauthner Axons ». Journal of Neuroscience 22, no 11 (1 juin 2002) : 4293–301. http://dx.doi.org/10.1523/jneurosci.22-11-04293.2002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Namba, Takashi, Shinichi Nakamuta, Yasuhiro Funahashi et Kozo Kaibuchi. « The role of selective transport in neuronal polarization ». Developmental Neurobiology 71, no 6 (6 mai 2011) : 445–57. http://dx.doi.org/10.1002/dneu.20876.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

MAHER, Fran, Theresa M. DAVIES-HILL et Ian A. SIMPSON. « Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons ». Biochemical Journal 315, no 3 (1 mai 1996) : 827–31. http://dx.doi.org/10.1042/bj3150827.

Texte intégral
Résumé :
This study examines the apparent affinity, catalytic-centre activity (‘turnover number’) and stereospecificity of the neuronal glucose transporter GLUT3 in primary cultured cerebellar granule neurons. Using a novel variation of the 3-O-[14C]methylglucose transport assay, by measuring zero-trans kinetics at 25 °C, GLUT3 was determined to be a high-apparent-affinity, high-activity, glucose transporter with a Km of 2.87±0.23 mM (mean±S.E.M.) for 3-O-methylglucose, a Vmax of 18.7± 0.48 nmol/min per 106 cells, and a corresponding catalytic-centre activity of 853 s-1. Transport of 3-O-methylglucose was competed by glucose, mannose, 2-deoxyglucose and galactose, but not by fructose. This methodology is compared with the more common 2-[3H]deoxyglucose methodology and the [U-14C]glucose transport method. The high affinity and transport activity of the neuronal glucose transporter GLUT3 appears to be an appropriate adaptation to meet the demands of neuronal metabolism at prevailing interstitial brain glucose concentrations (1–2 mM).
Styles APA, Harvard, Vancouver, ISO, etc.
28

Guedes-Dias, Pedro, et Erika L. F. Holzbaur. « Axonal transport : Driving synaptic function ». Science 366, no 6462 (10 octobre 2019) : eaaw9997. http://dx.doi.org/10.1126/science.aaw9997.

Texte intégral
Résumé :
The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of “en passant” synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Gajewska, Katarzyna A., John M. Haynes et David A. Jans. « Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation ». Cells 11, no 12 (12 juin 2022) : 1904. http://dx.doi.org/10.3390/cells11121904.

Texte intégral
Résumé :
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13-/- to wild type ESCs. Although IPO13-/- ESCs differentiated into neural progenitor cells, as indicated by the expression of dorsal forebrain progenitor markers, reduced expression of progenitor markers Pax6 and Nestin compared to IPO13-/- was evident, concomitant with reduced nuclear localisation/transcriptional function of IPO13 import cargo Pax6. Differentiation of IPO13-/- cells into neurons appeared to be strongly impaired, as evidenced by altered morphology, reduced expression of key neuronal markers, and altered response to the neurotransmitter glutamate. Our findings establish that IPO13 has a key role in ESC neuronal differentiation, in part through the nuclear transport of Pax6.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Cai, Qian, Claudia Gerwin et Zu-Hang Sheng. « Syntabulin-mediated anterograde transport of mitochondria along neuronal processes ». Journal of Cell Biology 170, no 6 (12 septembre 2005) : 959–69. http://dx.doi.org/10.1083/jcb.200506042.

Texte intégral
Résumé :
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin–kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Williams, Jeffery R., et John A. Payne. « Cation transport by the neuronal K+-Cl− cotransporter KCC2 : thermodynamics and kinetics of alternate transport modes ». American Journal of Physiology-Cell Physiology 287, no 4 (octobre 2004) : C919—C931. http://dx.doi.org/10.1152/ajpcell.00005.2004.

Texte intégral
Résumé :
Both Cs+ and NH4+ alter neuronal Cl− homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K+-Cl− cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive 86Rb+ influx as a function of external Rb+ concentration at different fixed external cation concentrations (Na+, Li+, K+, Cs+, and NH4+). Neither Na+ nor Li+ affected furosemide-sensitive 86Rb+ influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb+ and K+ as alternate substrates, K+ was a competitive inhibitor of Rb+ transport by KCC2. Like K+, both Cs+ and NH4+ behaved as competitive inhibitors of Rb+ transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb+ and Cs+ influxes, we determined that although KCC2 was capable of transporting Cs+, it did so with a lower apparent affinity and maximal velocity compared with Rb+. To assess NH4+ transport by KCC2, we monitored intracellular pH (pHi) with a pH-sensitive fluorescent dye after an NH4+-induced alkaline load. Cells expressing KCC2 protein recovered pHi much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH4+ uptake. Consistent with KCC2-mediated NH4+ transport, pHi recovery in KCC2-expressing cells could be inhibited by furosemide (200 μM) or removal of external [Cl−]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl− homeostasis in the presence of Cs+ and NH4+.
Styles APA, Harvard, Vancouver, ISO, etc.
32

ZHOU, CHUYING, et MINEKO KENGAKU. « Possible mechanisms of bidirectional nuclear transport during neuronal migration ». BIOCELL 46, no 11 (2022) : 2357–61. http://dx.doi.org/10.32604/biocell.2022.021050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sninkura, K., N. Shiina et M. Tokunaga. « Neuronal mRNA transport complex : its ultrastructure and protein constituents ». Seibutsu Butsuri 43, supplement (2003) : S234. http://dx.doi.org/10.2142/biophys.43.s234_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Shinkura, K., N. Shiina, K. Sakata-Sogawa et M. Tokunaga. « 1P247 Association of neuronal mRNA transport complex and mitochondria ». Seibutsu Butsuri 45, supplement (2005) : S93. http://dx.doi.org/10.2142/biophys.45.s93_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Moen, Marivi Nabong, Roar Fjær, El Hassan Hamdani, Jon K. Laerdahl, Robin Johansen Menchini, Magnus Dehli Vigeland, Ying Sheng et al. « Pathogenic variants inKCTD7perturb neuronal K+fluxes and glutamine transport ». Brain 139, no 12 (14 octobre 2016) : 3109–20. http://dx.doi.org/10.1093/brain/aww244.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Richardt, Gert, Reinhard Blessing, Markus Haass, Roger Kranzhöfer et Albert Schömig. « Cardiac adenosine release during inhibition of neuronal noradrenaline transport ». Japanese Journal of Pharmacology 52 (1990) : 110. http://dx.doi.org/10.1016/s0021-5198(19)32991-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Tas, Roderick P., Anaël Chazeau, Bas M. C. Cloin, Maaike L. A. Lambers, Casper C. Hoogenraad et Lukas C. Kapitein. « Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport ». Neuron 96, no 6 (décembre 2017) : 1264–71. http://dx.doi.org/10.1016/j.neuron.2017.11.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Takeda, Sen, Toru Misawa et Kentaro Yoshimura. « Analysis of the intraciliary transport of neuronal primary cilium ». Neuroscience Research 68 (janvier 2010) : e124. http://dx.doi.org/10.1016/j.neures.2010.07.2120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Tsuboi, Daisuke, et Kozo Kaibuchi. « Disrupted-In-Schizoprenia-1 regulates transport of neuronal mRNA ». Neuroscience Research 68 (janvier 2010) : e21. http://dx.doi.org/10.1016/j.neures.2010.07.330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Plenge, Per, et Erling T. Mellerup. « An Affinity-Modulating Site on Neuronal Monoamine Transport Proteins ». Pharmacology & ; Toxicology 80, no 4 (avril 1997) : 197–201. http://dx.doi.org/10.1111/j.1600-0773.1997.tb00396.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Burack, Michelle A., Michael A. Silverman et Gary Banker. « The Role of Selective Transport in Neuronal Protein Sorting ». Neuron 26, no 2 (mai 2000) : 465–72. http://dx.doi.org/10.1016/s0896-6273(00)81178-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kuznetsov, A. V. « Comparison of active transport in neuronal axons and dendrites ». Mathematical Biosciences 228, no 2 (décembre 2010) : 195–202. http://dx.doi.org/10.1016/j.mbs.2010.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Tomberli, Bruno L., Jarrod Nickel, Mithila Shitut et Mark D. Berry. « Molecular Dynamics of Trace Amine Transport through Neuronal Membranes ». Biophysical Journal 98, no 3 (janvier 2010) : 329a. http://dx.doi.org/10.1016/j.bpj.2009.12.1782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hirokawa, Nobutaka, et Reiko Takemura. « Molecular motors in neuronal development, intracellular transport and diseases ». Current Opinion in Neurobiology 14, no 5 (octobre 2004) : 564–73. http://dx.doi.org/10.1016/j.conb.2004.08.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Rothstein, Jeffrey D., et Boris Tabakoff. « Glial and neuronal glutamate transport following glutamine synthetase inhibition ». Biochemical Pharmacology 34, no 1 (janvier 1985) : 73–79. http://dx.doi.org/10.1016/0006-2952(85)90102-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Hirokawa, Nobutaka. « The neuronal cytoskeleton-morphogenesis, organelle transport, and synaptic transmission ». Neuroscience Research Supplements 15 (janvier 1990) : S5. http://dx.doi.org/10.1016/0921-8696(90)90055-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Hirokawa, Nobutaka. « The neuronal cytoskeleton-morphogenesis, organelle transport, and synaptic transmission ». Neuroscience Research Supplements 11 (janvier 1990) : S5. http://dx.doi.org/10.1016/0921-8696(90)90478-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Schiavo, Giampietro, et Moses V. Chao. « Motors, adaptors, and receptors : Key elements of neuronal transport ». Journal of Neurobiology 58, no 2 (2003) : 161–63. http://dx.doi.org/10.1002/neu.10325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Baas, Peter W., et Daniel W. Buster. « Slow axonal transport and the genesis of neuronal morphology ». Journal of Neurobiology 58, no 1 (2003) : 3–17. http://dx.doi.org/10.1002/neu.10281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Dynes, Joseph L., et Oswald Steward. « Dynamics of bidirectional transport ofArc mRNA in neuronal dendrites ». Journal of Comparative Neurology 500, no 3 (2006) : 433–47. http://dx.doi.org/10.1002/cne.21189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie