Littérature scientifique sur le sujet « Translocation renal cell carcinoma »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Translocation renal cell carcinoma ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Translocation renal cell carcinoma"
Armah, Henry B., et Anil V. Parwani. « Xp11.2 Translocation Renal Cell Carcinoma ». Archives of Pathology & ; Laboratory Medicine 134, no 1 (1 janvier 2010) : 124–29. http://dx.doi.org/10.5858/2008-0391-rsr.1.
Texte intégralGeller, James I., Pedram Argani, Adebowale Adeniran, Edith Hampton, Angelo De Marzo, Jessica Hicks et Margaret H. Collins. « Translocation renal cell carcinoma ». Cancer 112, no 7 (2008) : 1607–16. http://dx.doi.org/10.1002/cncr.23331.
Texte intégralKothari, KanchanS, PragatiA Sathe, LeenaP Naik et BhuvaneshwariM Kandalkar. « Xp11 translocation renal cell carcinoma ». Indian Journal of Pathology and Microbiology 56, no 4 (2013) : 471. http://dx.doi.org/10.4103/0377-4929.125383.
Texte intégralNeagu, O., A. Petrescu, G. Berdan, L. Mitrache, S. Varban, P. Argani et V. Jinga. « Xp11.2 translocation renal cell carcinoma ». European Urology Supplements 17, no 12 (octobre 2018) : e2694. http://dx.doi.org/10.1016/s1569-9056(18)33533-4.
Texte intégralRoss, Hillary, et Pedram Argani. « Xp11 translocation renal cell carcinoma ». Pathology 42, no 4 (juin 2010) : 369–73. http://dx.doi.org/10.3109/00313021003767348.
Texte intégralRoss, Hillary, Morris Edelman et Pedram Argani. « Xp11 Translocation Renal Cell Carcinoma ». Pathology Case Reviews 15, no 1 (janvier 2010) : 3–6. http://dx.doi.org/10.1097/pcr.0b013e3181d2cfc2.
Texte intégralCaliò, Anna, Diego Segala, Enrico Munari, Matteo Brunelli et Guido Martignoni. « MiT Family Translocation Renal Cell Carcinoma : from the Early Descriptions to the Current Knowledge ». Cancers 11, no 8 (3 août 2019) : 1110. http://dx.doi.org/10.3390/cancers11081110.
Texte intégralde Oliveira, C. V. L., G. R. Bechara, S. R. Zacchi, M. C. L. de Miranda, G. Z. Pinho et M. M. L. de Miranda. « MiT family translocation renal cell carcinoma ». Journal of Pediatric Surgery Case Reports 45 (juin 2019) : 101190. http://dx.doi.org/10.1016/j.epsc.2019.101190.
Texte intégralArgani, Pedram. « MiT family translocation renal cell carcinoma ». Seminars in Diagnostic Pathology 32, no 2 (mars 2015) : 103–13. http://dx.doi.org/10.1053/j.semdp.2015.02.003.
Texte intégralBambury, Richard Martin, Claire Brady, Aoife McCarthy, Stewart Fleming, Nicholas J. Mayer et Derek Gerard Power. « Translocation renal cell carcinomas : An evolving entity. » Journal of Clinical Oncology 30, no 5_suppl (10 février 2012) : 472. http://dx.doi.org/10.1200/jco.2012.30.5_suppl.472.
Texte intégralThèses sur le sujet "Translocation renal cell carcinoma"
Wake, Naomi Catherine. « Identification and functional analysis of a novel renal cell carcinoma (RCC) susceptibility gene from an RCC associated constitutional chromosomal translocation ». Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/3964/.
Texte intégralMalouf, Gabriel. « Décryptage des changements épigénétiques impliqués dans la transition épithélio-mésenchymateuse et le cancer ». Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T037.
Texte intégralThe epithelial-Mesenchymal transition (EMT) is a process of cellular plasticity that exists in embryonic development and which allows the formation of tissues and organs. In carcinogenesis, the process is reactivated by transcription factors whose action probably involves chromatin remodeling. The exact mapping of these epigenetic changes is poorly understood genome-Wide, although there have been some previous studies exploring changes in so few well-Targeted loci. This thesis deals with the epigenetic remodeling mediated by the transcription factor Twist1 in a model of human mammary immortalized cell line. The architecture of this remodeling has been mapped through the use of high-Throughput techniques to analyze DNA methylation (DREAM) and histone modifications (ChIPseq). Our results suggest a major change in the EMT methylome with focal hypermethylation and gene body hypomethylation predominantly within "partially methylated domains"; these areas are already known in development to gain repressive histone marks concomitantly with DNA hypomethylation. We also observed landscape remodeling of repressive histone mark H3K27me3 with a reduction in domains size, and especially the almost doubling of the number of bivalent genes. The coupling of DNA methylation with the profile of microRNA has allowed us to identify miR-203 as single microRNA regulated by DNA methylation during EMT; we have also shown that epigenetic suppression of miR-203 is both required for EMT and acquisition of stem cell properties. Finally, we performed a genetic and/or epigenetic characterization of two rare cancers, named fibrolamellar hepatocellular carcinomas and translocation renal cell carcinomas. In fibrolamellar hepatocellular carcinoma, we described the endocrine nature of this tumor and established a signature based on DNA methylation which can be used to distinguish histological forms called "pure" from "mixed" fibrolamellar hepatocellular carcinomas. Regarding translocation renal cell carcinomas, we established the genetic and epigenetic basis of differences between pediatric and adult forms, characterized by frequent gain of 17q gain chromosomal arm in adults. We also identified recurrent mutations in the chromatin remodeling gene INO80D which belongs to INO80 family. In conclusion, this work explores the impact of analyzing the epigenome to understand reprogramming during physiological processes such as EMT and cancer
Rashidkhani, Bahram. « Diet and renal cell carcinoma / ». Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-163-6/.
Texte intégralFallah, Abdul Karim. « Genomic studies in renal cell carcinoma ». Thesis, Manchester Metropolitan University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528380.
Texte intégralAl-Sharhan, Mouza Abdulla. « Prognostic factors in renal cell carcinoma ». Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285788.
Texte intégralChagnon, Fanny. « A dendritic cell vaccine for murine renal cell carcinoma ». Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19400.
Texte intégralGiraldo-Castillo, Nicolas. « The Immune Microenvironment in Clear Cell Renal Cell Carcinoma : The heterogeneous immune contextures accompanying CD8+ T cell infiltration in clear cell Renal Cell Carcinoma ». Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066321/document.
Texte intégralTo decipher the potential mechanisms linking increased CD8+ T cell infiltration with an adverse clinical outcome in ccRCC, in this study we determined: 1) the prognosis associated with the expression of immune checkpoints and its coordination with dendritic cell (DC) and CD8+ cell infiltration, and 2) the phenotypic traits of CD8+ tumor infiltrating lymphocytes. The prognosis associated with CD8+ and DC infiltrations, in addition to the expression of immune checkpoints were investigated in a cohort of 135 ccRCC by quantitative immunohistochemistry. We found that the densities of CD8+, PD-1+ and LAG-3+ cells were closely correlated, and independently associated with decreased PFS and OS. In addition, patients whose tumors presented both high densities of PD-1+ cells and PD-L1+ and/or L2+ tumor cells, displayed the worst clinical outcome. High densities of immature DC isolated in the tumour stroma were associated with high expression of immune checkpoints and patients’ poor clinical outcome. In contrast, the presence of mature DC within Tertiary Lymphoid Structures identified, among the tumours with high CD8+-TIL densities, those with low expression of immune checkpoints and prolonged survival. We also investigated the phenotype of freshly isolated CD8+TIL in 21 ccRCC by flow cytometry. We found a group tumors (8/21) characterised by the over-expression of inhibitory (PD-1 and TIM-3) and activation markers (CD69 and CD38), the expansion of the effector memory cell subpopulation (CCR7-CD45RA-), and a trend toward more aggressive features. In summary, we demonstrated that the infiltration with CD8+ TIL in ccRCC is accompanied by the enhanced expression of immune checkpoints and a poorly coordinated immune response in a subgroup of aggressive tumors
Ronkainen, H. L. (Hanna-Leena). « Novel prognostic biomarkers for renal cell carcinoma ». Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789514297731.
Texte intégralTiivistelmä Munuaissyöpä on vuosikymmenten ajan jatkuvasti yleistynyt. Vaikka se diagnosoidaan nykyisin useimmiten sattumalöydöksenä vatsan alueen kuvantamistutkimuksissa ja hoitomenetelmät ovat viime vuosikymmenten aikana kehittyneet, munuaissyöpäkuolleisuus ei ole laskenut. Munuaissyövän ennusteen määrittäminen voi olla haasteellista. Perinteiset ennustetekijät, levinneisyys ja erilaistumisaste, eivät riitä selittämään kaikkien potilaiden taudinkulkua, eikä munuaissyövälle vielä ole kliinisessä käytössä ennusteellista merkkiainetta. Munuaissyöpähoitojen kehittyessä taudinkulun ennustaminen on yhä tärkeämpää, jotta potilaiden hoito ja seuranta voidaan yksilöidä. Tämän väitöskirjatyön tarkoituksena oli etsiä uusia ennusteellisia kudosmerkkiaineita munuaissyöpäkasvaimille. Väitöskirjatutkimus perustuu 1990-luvulla Oulun yliopistollisessa sairaalassa leikatun 152 munuaissyöpäpotilaan aineistoon. Lähes puolet aineiston kasvaimista edusti levinneisyysluokkaa I, ja yli puolet munuaissyöpäkasvaimista oli hyvin erilaistuneita (tumagradus I ja II). Tutkimuspotilaista kerättiin kattavat seurantatiedot. Leikkauksessa poistettujen munuaissyöpäkasvainten arkistomateriaalista tutkittiin eri merkkiaineiden ilmenemistä. Tutkitut merkkiaineet käsittivät oksidatiivisen ja neuroendokriinisen järjestelmän merkkiaineita sekä valkuaisaineita, jotka liittyvät keskeisiin syövän ominaisuuksiin, kuten solujen välisiin liitoksiin ja solujen liikkumiseen sekä etäpesäkkeiden syntymiseen. Lisäksi tutkittiin merkkiaineita, jotka liittyvät tulehdusreaktioihin ja immuunipuolustukseen. Väitöskirjatutkimus paljasti useita uusia kudosmerkkiaineita, joiden ilmeneminen munuaissyöpäkasvaimessa on yhteydessä potilaan ennusteeseen. Näistä merkittävimpiä ovat myosiini VI, joka liittyy syöpäkasvainten metastasointiin, sekä immuunipuolustuksessa vaikuttava Tollin kaltainen reseptori 9 (Toll-like receptor 9, TLR9). Molemmat merkkiaineet osoittautuivat itsenäisiksi ennustetekijöiksi munuaissyövässä. Muita ennusteeseen vaikuttavia merkkiaineita ovat tutkimuksen mukaan oksidatiivista stressiä aistiva Keap1 sekä immunologisiin reaktioihin liittyvä syklo-oksigenaasi 2 (COX-2) ja sen ilmenemistä säätelevä HuR
Lawrentschuk, Nathan Leo. « Hypoxia and angiogenesis in renal cell carcinoma ». Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/6790.
Texte intégralInvasive polarographic oxygen sensor measurements have demonstrated hypoxia in solid tumours and it is generally defined to occur at an oxygen tension less than ten mmHg.10 Perhaps of more importance is that hypoxia has been demonstrated to be a prognostic indicator for local control after treatment with radiotherapy in glioma, head and neck and cervical cancers.11-13 It has also been able to predict for survival and the presence of distant metastases in soft tissue sarcomas.14 Finally, the significance of hypoxia in the activation and induction of functional molecules such as hypoxia inducible factors (HIFs) and VEGF, the modulation of gene expression (e.g. carbonic anhydrase IX), increased proto-oncogene levels, activation of nuclear factors and accumulation of other proteins (e.g. TP53) although progressing, is yet to be defined.15,16
Thus, it is of clinical interest to understand the levels of hypoxia and numbers of hypoxic cell populations in tumours, particularly those resistant to radiation and chemotherapy. In doing so clinicians and researchers may formulate more accurate prognostic information and develop treatments targeting hypoxic cells. Renal cell carcinoma (RCC) is a tumour resistant to radiation and chemotherapy that is yet to have its oxygen status investigated.
Although the “gold standard” of oxygen tension measurement is the Polarographic Oxygen Sensor (POS or Eppendorf pO2 histograph), non-invasive means of measuring oxygen status via imaging, immunohistochemistry or serum tumour markers are more practical. As highlighted by Menon and Fraker, it is imperative that reliable, globally usable, and technically simplistic methods be developed to yield a consistent, comprehensive, and reliable profile of tumour oxygenation. Until newer more reliable techniques are developed, existing independent techniques or appropriate combinations of techniques should be optimized and validated using known endpoints in tumour oxygenation status and/or treatment outcomes.17
Hanahan and Weinberg 18 surmised that the field of cancer research has largely been guided by a reductionist focus on cancer cells and the genes within them- a focus that has produced an extraordinary body of knowledge. Looking forward in time, they believe that progress in cancer research would come from regarding tumours as complex tissues in which mutant cancer cells have conscripted and subverted normal cell types (endothelial cells, immune cells, fibroblasts) to serve as active collaborators in their neoplastic agenda. The interactions between the genetically altered malignant cells and these supporting coconspirators will prove critical to understanding cancer pathogenesis and to the development of novel, effective therapies.18
Essentially, the background outlined here not only highlights the core aim of this thesis: to better understand the oxygen status of renal cell carcinoma and the relationship of this to angiogenesis so that better targeted therapies may be pursued in the future; but it also places this research in the context of the future proposed by Hanahan and Weinberg,18 by clearly focusing on collaborators in the neoplastic agenda, rather than just tumour cells themselves, to better understand RCC.
Morrissey, Catherine. « The molecular pathology of renal cell carcinoma ». Thesis, University of Birmingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420407.
Texte intégralLivres sur le sujet "Translocation renal cell carcinoma"
Bukowski, Ronald M., et Andrew Novick. Renal Cell Carcinoma. New Jersey : Humana Press, 2000. http://dx.doi.org/10.1385/1592592295.
Texte intégralCampbell, Steven C., et Brian I. Rini, dir. Renal Cell Carcinoma. Totowa, NJ : Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-062-5.
Texte intégralBukowski, Ronald M., Robert A. Figlin et Robert J. Motzer, dir. Renal Cell Carcinoma. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-1622-1.
Texte intégralBukowski, Ronald M., Robert A. Figlin et Robert J. Motzer, dir. Renal Cell Carcinoma. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-332-5.
Texte intégralOya, Mototsugu, dir. Renal Cell Carcinoma. Tokyo : Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-55531-5.
Texte intégralFiglin, Robert A., W. Kimryn Rathmell et Brian I. Rini, dir. Renal Cell Carcinoma. Boston, MA : Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-2400-0.
Texte intégralRenal cell carcinoma. Shelton, Conn : People's Medical Pub. House, 2009.
Trouver le texte intégralDebruyne, Frans M. J., Ronald M. Bukowski, J. Edson Pontes et Pieter H. M. de Mulder, dir. Immunotherapy of Renal Cell Carcinoma. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75853-9.
Texte intégralBukowski, Ronald M., James H. Finke et Eric A. Klein. Biology of Renal Cell Carcinoma. New York, NY : Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2536-2.
Texte intégralM, Bukowski Ronald, Finke James H. 1944- et Klein Eric A. 1955-, dir. Biology of renal cell carcinoma. New York : Springer-Verlag, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Translocation renal cell carcinoma"
Caliò, Anna, Diego Segala et Guido Martignoni. « MiT Family Translocation Renal Cell Carcinoma ». Dans Encyclopedia of Pathology, 1–4. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-28845-1_4847-1.
Texte intégralCaliò, Anna, Diego Segala et Guido Martignoni. « MiT Family Translocation Renal Cell Carcinoma ». Dans Encyclopedia of Pathology, 205–8. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41894-6_4847.
Texte intégralGeller, James I., Nicholas G. Cost et Mariana M. Cajaiba. « TFE/Translocation Morphology Renal Cell Carcinoma ». Dans Rare Kidney Tumors, 93–104. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96989-3_8.
Texte intégralChahoud, Jad, Gabriel G. Malouf et Nizar M. Tannir. « Translocation Renal Cell Carcinomas ». Dans Rare Genitourinary Tumors, 41–52. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30046-7_3.
Texte intégralRusso, Paul. « Renal Cell Carcinoma ». Dans Renal Cancer, 3–33. Totowa, NJ : Humana Press, 2001. http://dx.doi.org/10.1385/1-59259-144-2:003.
Texte intégralFilippiadis, Dimitrios K., Maria Tsitskari et Thomas D. Atwell. « Renal Cell Carcinoma ». Dans Image-Guided Interventions in Oncology, 197–213. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48767-6_11.
Texte intégralBarker, David W., et Ronald J. Zagoria. « Renal Cell Carcinoma ». Dans Medical Radiology, 103–23. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30003-1_7.
Texte intégralNomiya, Takuma, et Hiroshi Tsuji. « Renal Cell Carcinoma ». Dans Carbon-Ion Radiotherapy, 241–49. Tokyo : Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54457-9_28.
Texte intégralGarcia, Michael A., et Alexander R. Gottschalk. « Renal Cell Carcinoma ». Dans Handbook of Evidence-Based Radiation Oncology, 535–43. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62642-0_24.
Texte intégralMonzon, Federico A. « Renal Cell Carcinoma ». Dans Diagnostic Molecular Pathology in Practice, 201–7. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19677-5_25.
Texte intégralActes de conférences sur le sujet "Translocation renal cell carcinoma"
Melas, Marilena, Kevin J. McDonnell, Christopher K. Edlund, Sarah J. Tash, Duveen Y. Sturgeon, Chenxu Qu, Charalampos Lazaris et al. « Abstract 491 : Elucidatingde novoPATRR-mediated t(3;8) balanced translocation and clear cell renal cell carcinoma ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-491.
Texte intégralKu, Sheng-Yu, Swathi Ramakrishnan, Eric Ciamporcero, Bo Xu, Gissou Azabdaftari, Richard Cheney et Roberto Pili. « Abstract 2546 : HDAC and Hsp90 inhibition as therapeutic strategy for translocation renal cell carcinoma ». Dans Proceedings : AACR 106th Annual Meeting 2015 ; April 18-22, 2015 ; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2546.
Texte intégralDamayanti, Nur P., Sreenivasulu Chintala, Ashley Orillion, Remi Adelaiye-Ogala, May F. Elbanna, Pete Hollenhorst et Roberto Pili. « Abstract 4475 : Delineating translocation renal cell carcinoma oncogenesis in cells harboring TFE3 fusion with spliceosome machinery associated genes ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4475.
Texte intégralBaba, Masaya, Ying Huang, Takanobu Motoshima, Hisashi Hasumi, Yukiko Hasumi, Mitsuko Furuya, Yoji Nagashima et al. « Abstract 3527 : Clarification of the molecular mechanism for cancer development in Xp11.2 translocation renal cell carcinoma ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3527.
Texte intégralHaddad, Philip A., Dalia Hammoud et Kevin Gallagher. « Abstract 3525 : Epidemiology and clinicopathology prognostic factors of TFEB translocation renal cell carcinoma (TBRCC) : Analysis of updated pooled database ». Dans Proceedings : AACR Annual Meeting 2020 ; April 27-28, 2020 and June 22-24, 2020 ; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3525.
Texte intégralMalouf, Gabriel G., Xiaoping Su, Hui Yao, Christopher G. Wood, Yue Lu, Shoudan Liang, Erika J. Thompson et al. « Abstract 2980 : Integrated transcriptome and methylome sequencing of Xp11 translocation renal cell carcinomas reveal uncoupling of DNA methylation and transcriptional profiles. » Dans Proceedings : AACR 104th Annual Meeting 2013 ; Apr 6-10, 2013 ; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-2980.
Texte intégralRamakrishnan, Swathi, Paula Sotomayor, Kristin Lehet et Roberto Pili. « Abstract 5016 : Epigenetics in renal cell carcinoma ». Dans Proceedings : AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012 ; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5016.
Texte intégralSaleem, M. D. « Mediastinal Presentation of Renal Papilalry Cell Carcinoma ». Dans American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6963.
Texte intégralOliveira, Marcos, Jorge Dionísio, Ambrus Szantho et Duro Da Costa. « Hemorrhagic Endobronchial metastasis of renal cell carcinoma ». Dans ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2841.
Texte intégralRyu, Hyewon, Solbi Kim, Nayoung Kim, Jin-Man Kim et Hyo Jin Lee. « Abstract 1549 : LAPTM5 in clear cell renal cell carcinoma ». Dans Proceedings : AACR Annual Meeting 2018 ; April 14-18, 2018 ; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1549.
Texte intégralRapports d'organisations sur le sujet "Translocation renal cell carcinoma"
Ismail, Mohamed, Monish Aron, Joe Philip et Faris Abushamma. Renal cell carcinoma – minimally invasive nephron sparing surgery. BJUI Knowledge, janvier 2022. http://dx.doi.org/10.18591/bjuik.0114.v2.
Texte intégralSchmidt, Laura S., et W. Marston Linehan. Principles and management of hereditary renal cell carcinoma. BJUI Knowledge, mars 2022. http://dx.doi.org/10.18591/bjuik.0095.v2.
Texte intégralDrake, Richard R., et Alexander Parker. Tissue and Metabolomic Biomarkers of Recurrent Renal Cell Carcinoma. Fort Belvoir, VA : Defense Technical Information Center, avril 2013. http://dx.doi.org/10.21236/ada592797.
Texte intégralStroman, Luke, et Tim O'Brien. Management of renal cell carcinoma with inferior vena cava (IVC) involvement. BJUI Knowledge, janvier 2022. http://dx.doi.org/10.18591/bjuik.0738.
Texte intégralStewart, B. J. Mass Spectrometry Data Set for Renal Cell Carcinoma and Polycystic Kidney Disease Cell Models. Office of Scientific and Technical Information (OSTI), janvier 2017. http://dx.doi.org/10.2172/1342001.
Texte intégralZhou, Xiao, et Guangcheng Luo. A meta-analysis of platelet-lymphocyte ratio : a merit attention prognostic factor in renal cell carcinoma. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, septembre 2021. http://dx.doi.org/10.37766/inplasy2021.9.0064.
Texte intégralShen, Li. A Novel Tumor Antigen and Foxp3 Dual-Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma. Fort Belvoir, VA : Defense Technical Information Center, octobre 2014. http://dx.doi.org/10.21236/ada615157.
Texte intégralZhou, Xiao, et Guangcheng Luo. Whether the consistency of tumor thrombus has prognostic significance in patients with renal cell carcinoma—a meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, février 2022. http://dx.doi.org/10.37766/inplasy2022.2.0015.
Texte intégralJin, Hongyu, et Man Zhang. Adjuvant targeted therapy combined with surgery for advanced and metastatic renal cell carcinoma : Protocol for a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, novembre 2020. http://dx.doi.org/10.37766/inplasy2020.11.0093.
Texte intégralMonti, Martina, Susanna Lunardini, Igino Andrea Magli, Riccardo Campi, Giulia Primiceri, Francesco Berardinelli, Daniele Amparore et al. Micro-RNA predict response to systemic treatments in meta-static renal cell carcinoma patients : results from a systematic review of the literature. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, avril 2022. http://dx.doi.org/10.37766/inplasy2022.4.0086.
Texte intégral