Littérature scientifique sur le sujet « Transition Metal Oxides (TMOs) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Transition Metal Oxides (TMOs) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Transition Metal Oxides (TMOs)"

1

Mitchell, James B., Matthew Chagnot et Veronica Augustyn. « Hydrous Transition Metal Oxides for Electrochemical Energy and Environmental Applications ». Annual Review of Materials Research 53, no 1 (3 juillet 2023) : 1–23. http://dx.doi.org/10.1146/annurev-matsci-080819-124955.

Texte intégral
Résumé :
Hydrous transition metal oxides (TMOs) are redox-active materials that confine structural water within their bulk, organized in 1D, 2D, or 3D networks. In an electrochemical cell, hydrous TMOs can interact with electrolyte species not only via their outer surface but also via their hydrous inner surface, which can transport electrolyte species to the interior of the material. Many TMOs operating in an aqueous electrochemical environment transform to hydrous TMOs, which then serve as the electrochemically active phase. This review summarizes the physicochemical properties of hydrous TMOs and recent mechanistic insights into their behavior in electrochemical reactions of interest for energy storage, conversion, and environmental applications. Particular focus is placed on first-principles calculations and operando characterization to obtain an atomistic view of their electrochemical mechanisms. Hydrous TMOs represent an important class of energy and environmental materials in aqueous and nonaqueous environments. Further understanding of their interaction with electrolyte species is likely to yield advancements in electrochemical reactivity and kinetics for energy and environmental applications.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Da, Quan Ming Li et Wang Gao. « Role of van der Waals forces in the metal–insulator transition of transition metal oxides ». Physical Chemistry Chemical Physics 24, no 9 (2022) : 5455–61. http://dx.doi.org/10.1039/d2cp00282e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bishop, Alan R. « A Lattice Litany for Transition Metal Oxides ». Condensed Matter 5, no 3 (13 juillet 2020) : 46. http://dx.doi.org/10.3390/condmat5030046.

Texte intégral
Résumé :
In this tribute to K Alex Müller, I describe how his early insights have influenced future decades of research on perovskite ferroelectrics and more broadly transition metal oxides (TMOs) and related quantum materials. I use his influence on my own research journey to discuss impacts in three areas: structural phase transitions, precursor structure, and quantum paraelectricity. I emphasize materials functionality in ground, metastable, and excited states arising from competitions among lattice, charge, and spin degrees of freedom, which results in highly tunable landscapes and complex networks of multiscale configurations controlling macroscopic functions. I discuss competitions between short- and long-range forces as particularly important in TMOs (and related materials classes) because of their localized and directional metal orbitals and the polarizable oxygen ions. I emphasize crucial consequences of elasticity and metal–oxygen charge transfer.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Prajapati, Aditya, Brianna A. Collins, Jason D. Goodpaster et Meenesh R. Singh. « Fundamental insight into electrochemical oxidation of methane towards methanol on transition metal oxides ». Proceedings of the National Academy of Sciences 118, no 8 (17 février 2021) : e2023233118. http://dx.doi.org/10.1073/pnas.2023233118.

Texte intégral
Résumé :
Electrochemical oxidation of CH4 is known to be inefficient in aqueous electrolytes. The lower activity of methane oxidation reaction (MOR) is primarily attributed to the dominant oxygen evolution reaction (OER) and the higher barrier for CH4 activation on transition metal oxides (TMOs). However, a satisfactory explanation for the origins of such lower activity of MOR on TMOs, along with the enabling strategies to partially oxidize CH4 to CH3OH, have not been developed yet. We report here the activation of CH4 is governed by a previously unrecognized consequence of electrostatic (or Madelung) potential of metal atom in TMOs. The measured binding energies of CH4 on 12 different TMOs scale linearly with the Madelung potentials of the metal in the TMOs. The MOR active TMOs are the ones with higher CH4 binding energy and lower Madelung potential. Out of 12 TMOs studied here, only TiO2, IrO2, PbO2, and PtO2 are active for MOR, where the stable active site is the O on top of the metal in TMOs. The reaction pathway for MOR proceeds primarily through *CHx intermediates at lower potentials and through *CH3OH intermediates at higher potentials. The key MOR intermediate *CH3OH is identified on TiO2 under operando conditions at higher potential using transient open-circuit potential measurement. To minimize the overoxidation of *CH3OH, a bimetallic Cu2O3 on TiO2 catalysts is developed, in which Cu reduces the barrier for the reaction of *CH3 and *OH and facilitates the desorption of *CH3OH. The highest faradaic efficiency of 6% is obtained using Cu-Ti bimetallic TMO.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Wei, Qun Xu et Yannan Zhou. « CO2-assisted fabrication of two-dimensional amorphous transition metal oxides ». Dalton Transactions 49, no 7 (2020) : 2048–52. http://dx.doi.org/10.1039/c9dt04651h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Zhuo-Dong, De-Jian Chen, Long Li et Li-Na Wang. « A universal electrochemical lithiation–delithiation method to prepare low-crystalline metal oxides for high-performance hybrid supercapacitors ». RSC Advances 11, no 48 (2021) : 30407–14. http://dx.doi.org/10.1039/d1ra05814b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rong, Kai, Jiale Wei, Liang Huang, Youxing Fang et Shaojun Dong. « Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis ». Nanoscale 12, no 40 (2020) : 20719–25. http://dx.doi.org/10.1039/d0nr04378h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wu, Jian, Wen-Jin Yin, Wei-Wei Liu, Pan Guo, Guobiao Liu, Xicuan Liu, Dongsheng Geng, Woon-Ming Lau, Hao Liu et Li-Min Liu. « High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries ». Journal of Materials Chemistry A 4, no 28 (2016) : 10940–47. http://dx.doi.org/10.1039/c6ta03137d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhou, Chuan, Haiyang Yuan, P. Hu et Haifeng Wang. « A general doping rule : rational design of Ir-doped catalysts for the oxygen evolution reaction ». Chemical Communications 56, no 96 (2020) : 15201–4. http://dx.doi.org/10.1039/d0cc06282k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhao, Zijian, Guiying Tian, Angelina Sarapulova, Lihua Zhu et Sonia Dsoke. « Influence of phase variation of ZnMn2O4/carbon electrodes on cycling performances of Li-ion batteries ». Inorganic Chemistry Frontiers 7, no 19 (2020) : 3657–66. http://dx.doi.org/10.1039/d0qi00610f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Transition Metal Oxides (TMOs)"

1

Mete, Ersen. « Electronic Properties Of Transition Metal Oxides ». Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1069699/index.pdf.

Texte intégral
Résumé :
Transition metal oxides constitute a large class of materials with variety of very interesting properties and important technological utility. A subset with perovskite structure has been the subject matter of the current theoretical investigation with an emphasis on their electronic and structural behavior. An analytical and a computational method are used to calculate physical entities like lattice parameters, bulk moduli, band structures, density of electronic states and charge density distributions for various topologies. Results are discussed and compared with the available experimental findings.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bogdanov, Nikolay. « Anisotropic interactions in transition metal oxides ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234886.

Texte intégral
Résumé :
This thesis covers different problems that arise due to crystal and pseudospin anisotropy present in 3d and 5d transition metal oxides. We demonstrate that the methods of computational quantum chemistry can be fruitfully used for quantitative studies of such problems. In Chapter 2, Chapter 3, and Chapter 7 we show that it is possible to reliably calculate local multiplet splittings fully ab initio, and therefore help to assign peaks in experimental spectra to corresponding electronic states. In a situation of large number of peaks due to low local symmetry such assignment using semi-empirical methods can be very tedious and non-unique. Moreover, in Chapter 4 we present a computational scheme for calculating intensities as observed in the resonant inelastic X-ray scattering and X-ray absorption experiments. In our scheme highly-excited core-hole states are calculated explicitly taking into account corresponding orbital relaxation and electron polarization. Computed Cu L-edge spectra for the Li2CuO2 compound reproduce all features present in experiment. Unbiased ab initio calculations allow us to unravel a delicate interplay between the distortion of the local ligand cage around the transition metal ions and the anisotropic electrostatic interactions due to second and farther coordination shells. As shown in Chapter 5 and Chapter 6 this interplay can lead to the counter intuitive multiplet structure, single-ion anisotropy, and magnetic g factors. The effect is quite general and may occur in compounds with large difference between charges of metal ions that form anisotropic environment around the transition metal, like Ir 4+ in plane versus Sr 2+ out of plane in the case of Sr2IrO4. An important aspect of the presented study is the mapping of the quantum chemistry results onto simpler physical models, namely extended Heisenberg model, providing an ab initio parametrization. In Chapter 5 we employ the effective Hamiltonian technique for extracting parameters of the anisotropic Heisenberg model with single-ion anisotropy in the case of quenched orbital moment and second-order spin-orbit coupling. Calculated strong easy-axis anisotropy of the same order of magnitude as the symmetric exchange is consistent with experimentally-observer all-in/all-out magnetic order. In Chapter 6 we introduce new flavour of the mapping procedure applicable to systems with first-order spin-orbit coupling, such as 5d 5 iridates based on analysis of the wavefunction and interaction with magnetic field. In Chapter 6 and Chapter 7 we use this new procedure to obtain parameters of the pseudospin anisotropic Heisenberg model. We find large antisymmetric exchange leading to the canted antiferromagnetic state in Sr2IrO4 and nearly ideal one-dimensional Heisenberg behaviour of the CaIrO3, both agree very well with experimental findings.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sadoc, Aymeric Gaël Jocelyn. « Charge disproportionation in transition metal oxides ». [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lau, Bayo. « Modeling polarons in transition-metal oxides ». Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33463.

Texte intégral
Résumé :
This work is a series of reports on progress in the description of electron-electron and electron-lattice interactions in transition-metal oxides, with an emphasis to the class of high-Tc superconducting cuprates. Combinations of numerical and analytical approaches were devised and developed to study large-scale models, which distinguish cation and anion sites of the realistic lattice structure. The many results range from incremental deviation to significant difference compared to those of the widely-accepted simple models without such distinction. A previously proposed numerical scheme and a perturbation approach were adapted to study the one-dimensional breathing-mode model, which describes a charge carrier interacting with vibrating anions. The effort yielded the first accurate benchmark result for all parameters values of the model. Based on a physical insight about the spin-1/2 Heisenberg antiferromagnet on a two-dimensional square lattice, an octapartite approach was devised to model the low-energy states. The efficiency of the resulting numerical approach was showcased with the explicit solution to a record-breaking 64-spin torus. A spin-polaron model was derived to model holes injected into cuprate's quasi two-dimensional copper-oxygen layer. Total-spin-resolved exact diagonalization was performed for a single fermionic hole in a record-breaking cluster with 32 copper and 64 oxygen sites. The solutions revealed important physics missed by previous studies. The octapartite approach was then developed to solve the spin-polaron model with two extra holes in the same cluster. The accuracy and efficiency of the method were established. Enhanced singlet correlation between two holes was observed. The preliminary results justify the need for an in-depth study.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Field, Marianne Alice Louise. « Transition metal oxides and oxide-halides ». Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Guo, Yuzheng. « Electronic structures of transition metal oxides ». Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gibbs, Alexandra S. « Emergent states in transition metal oxides ». Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3557.

Texte intégral
Résumé :
Transition metal oxides adopt a wide variety of crystal structures and display a diverse range of physical phenomena from Mott insulating states to electron-nematics to unconventional superconductivity. Detailed understanding of these states and how they may be manipulated by structural modifications requires both precise structural knowledge and in-depth physical property measurements using as many techniques over as wide a range of phase space as possible. In the work described in this thesis a range of transition metal oxides were studied using high-resolution powder neutron diffraction and detailed low-temperature physical property measurements. The quaternary barium orthotellurates Ba₂NiTeO₆, Ba₂CuTeO₆ and Ba₂ZnTeO₆ belong to an almost unstudied family of materials. The development of procedures for synthesizing large single crystals has facilitated the investigation of interesting new anisotropic magnetic states in the Cu and Ni systems and the existence of a possible structural phase transition in the Zn-based compound. YMnO₃ is a multiferroic with improper ferrielectricity. The study of the high-temperature structural phases described in this thesis has led to the identification both of the transition path to the ferrielectric state and the identification of an isostructural phase transition within the ferrielectric phase. BiFe₀.₇Mn₀.₃O₃ is also a multiferroic material but with proper ferroelectricity. The investigation of the structural phases of this compound have provided confirmation of the high-temperature phases with the reassignment of the symmetry of the highest-temperature phase which is intriguingly different to that of the unsubstituted material. Finally, an investigation of the electronic structures of the high conductivity delafossites PdCoO₂ and PdCrO₂ using micro-cantilever torque magnetometry measurements of quantum oscillations is described. This has resolved the warping of the Fermi surface of PdCoO₂ and given insights into the complicated Fermi surface of the itinerant antiferromagnet PdCrO₂.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vale, J. G. « The nature of the metal-insulator transition in 5d transition metal oxides ». Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1538695/.

Texte intégral
Résumé :
A number of 5d transition metal oxides (TMOs) either undergo, or lie proximate to, a metal-insulator transition (MIT). However these MITs frequently depart from a Mott-Hubbard picture, in which the interactions are dominated by the interplay between the on-site Coulomb repulsion and electronic bandwidth. In 5d TMOs the sizeable intrinsic spin-orbit coupling plays an important role, and gives rise to electronic and magnetic ground states -- at both sides of the MIT -- that cannot be adequately described within a purely L-S coupling scenario. In this thesis the aim is to understand the role of spin-orbit coupling in determining the electronic and magnetic properties of 5d TMOs. There has been a large amount of recent interest within this field (both experimentally and theoretically), however thus far has mostly been limited to the 5d5, j =1/2 limit. The perovskite iridates Sr2IrO4 and Sr3Ir2O7 lie within this limit. Theoretical predictions suggest a significant easy-plane anisotropy is present for the single layer Sr2IrO4. I show that this anisotropy can be observed and quantified, using magnetic critical scattering and previously published resonant inelastic X-ray scattering (RIXS) data. This differs from previous results that suggest purely 2D Heisenberg behaviour. Meanwhile the critical fluctuations in bilayer Sr3Ir2O7 have a three-dimensional nature, which can be directly related to the intra-bilayer coupling and significant anisotropy previously probed by RIXS. I also demonstrate that resonant X-ray scattering techniques can be successfully applied to other 5d systems, especially the d3 osmates. Both NaOsO3 and Cd2Os2O7 undergo MITs directly linked to the onset of antiferromagnetic order (Slater or Lifshitz mechanisms). The first ever high-resolution RIXS measurements at the Os L3 absorption edge reveal that there is a correlated evolution of the electronic and magnetic excitations through the respective MITs. The behaviour is consistent with a scenario in which the effect of spin-orbit coupling and electron correlations are reduced with respect to the iridates, yet still manifests through a strong spin wave anisotropy. Finally I show that the study of 5d TMOs can be extended into the time domain. Through the development of new instrumentation, the transient dynamics of photo-doped Sr2IrO4 were probed by time-resolved resonant (in)elastic X-ray scattering. The relevant time scales can be directly compared to the interaction strengths and anisotropies in the undoped state. Moreover, there seems to be an effective mapping of the transient behaviour in the photo-doped state to an equivalent level of bulk electron doping in (Sr_{1-x}La_x)2IrO4.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mann, Peter David Alexander. « Electronic structure of layered transition metal oxides ». Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

McAllister, Judith Ann. « Lattice effects in layered transition metal oxides ». Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Transition Metal Oxides (TMOs)"

1

1940-, Raveau B., dir. Transition metal oxides. New York : VCH, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rao, C. N. R. Transition metal oxides. New York : VCH, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Maekawa, Sadamichi, Takami Tohyama, Stewart E. Barnes, Sumio Ishihara, Wataru Koshibae et Giniyat Khaliullin. Physics of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09298-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maekawa, Sadamichi. Physics of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

1946-, Maekawa S., dir. Physics of transition metal oxides. Berlin : Springer, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rao, C. N. R. Transition metal oxides : Structure, properties, and synthesis of ceramic oxides. 2e éd. New York : Wiley-VCH, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fukuyama, Hidetoshi, et Naoto Nagaosa, dir. Physics and Chemistry of Transition Metal Oxides. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60041-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Transition metal oxides : Surface chemistry and catalysis. Amsterdam, The Netherlands : Elsevier, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

1927-, Müller K. A., et Kool Tom W, dir. Properties of perovskites and other oxides. New Jersey : World Scientific, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Müller, K. A. Properties of perovskites and other oxides. New Jersey : World Scientific, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Transition Metal Oxides (TMOs)"

1

Pang, Huan, Guangxun Zhang, Xiao Xiao et Huaiguo Xue. « One-Dimensional/One-Dimensional Analogue TMOs for Advanced Batteries ». Dans One-dimensional Transition Metal Oxides and Their Analogues for Batteries, 53–70. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5066-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fitzpatrick, Brian J. « Transition Metal Oxides ». Dans Inorganic Reactions and Methods, 236–37. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Guzman, G. « Thermochromic Transition-Metal Oxides ». Dans Sol-Gel Technologies for Glass Producers and Users, 271–76. Boston, MA : Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_35.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Inoue, Isao H., et Akihito Sawa. « Resistive Switchings in Transition-Metal Oxides ». Dans Functional Metal Oxides, 443–63. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mandal, Tapas Kumar, et Martha Greenblatt. « Transition Metal Oxides : Magnetoresistance and Half-Metallicity ». Dans Functional Oxides, 257–93. Chichester, UK : John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686072.ch5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tyagi, Alekha, Soma Banerjee, Jayesh Cherusseri et Kamal K. Kar. « Characteristics of Transition Metal Oxides ». Dans Handbook of Nanocomposite Supercapacitor Materials I, 91–123. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schlenker, Claire. « Bipolarons in Transition Metal Oxides ». Dans Physics of Disordered Materials, 369–89. Boston, MA : Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2513-0_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

HABER, JERZY. « Catalysis by Transition Metal Oxides ». Dans Solid State Chemistry in Catalysis, 3–21. Washington, D.C. : American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1985-0279.ch001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chandra Sekhar, S., Bhimanaboina Ramulu et Jae Su Yu. « Transition Metal Oxides for Supercapacitors ». Dans Nanostructured Materials for Supercapacitors, 267–92. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ruzmetov, Dmitry, et Shriram Ramanathan. « Metal-Insulator Transition in Thin Film Vanadium Dioxide ». Dans Thin Film Metal-Oxides, 51–94. Boston, MA : Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0664-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Transition Metal Oxides (TMOs)"

1

Alvarez, Gonzalo, Adriana Moreo et Elbio Dagotto. « Complexity in transition metal oxides ». Dans Optics & Photonics 2005, sous la direction de Ivan Bozovic et Davor Pavuna. SPIE, 2005. http://dx.doi.org/10.1117/12.624870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ming-Hsiu Lee, K. C. Hsu, F. M. Lee, Y. Y. Lin, E. K. Lai, J. Y. Wu, D. Y. Lee et K. Y. Hsieh. « Resistance control of transition metal oxide resistive memory (TMO ReRAM) ». Dans 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2016. http://dx.doi.org/10.1109/icsict.2016.7998873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schuller, Ivan K., Ali C. Basaran, Jose de la Venta, Juan Gabriel Ramirez, Thomas Saerbeck, Ilya Valmianski et Siming Wang. « Simple transition metal oxides (Conference Presentation) ». Dans Spintronics IX, sous la direction de Henri-Jean Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2239919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Moreo, Adriana. « Phase Competition in Transition Metal Oxides ». Dans EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hoch, Michael J. R., H. B. Senin et N. H. Idris. « The Intriguing Properties of Transition Metal Oxides ». Dans SOLID STATE SCIENCE AND TECHNOLOGY : The 2nd International Conference on Solid State Science and Technology 2006. AIP, 2011. http://dx.doi.org/10.1063/1.2739818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Terasaki, I. « Thermoelectric materials in layered transition-metal oxides ». Dans ICT 2005. 24th International Conference on Thermoelectrics, 2005. IEEE, 2005. http://dx.doi.org/10.1109/ict.2005.1519946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Merchan-Merchan, W., A. V. Saveliev et Aaron Taylor. « Flame Synthesis of Nanostructured Transition Metal Oxides ». Dans ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68987.

Texte intégral
Résumé :
Various transition metal oxide nanostructures are synthesized using a novel probe-flame interaction method. An opposed flow flame of methane and oxygen enriched air provides a high-temperature reacting environment forming various metal oxide structures directly on the surface of pure metal probes. The unique thermal profile and chemical composition of the generated flame tends to convert almost pure bulk (99.9%) metallic materials into 1-D and 3-D structures of different chemical compositions and unique morphologies. The synthesized molybdenum, tungsten, and iron oxide structures exhibit unique morphological characteristics. The application of Mo probes results in the formation of micron size hollow and non-hollow Mo-oxide channels and elongated structures with cylindrical shapes. The use of W probes results in the synthesis of 1-D carbon-oxide nanowires, 3-D structures with rectangular shapes, and thin oxide plates with large surface areas. The formation of elongated iron-oxide nanorods is observed on iron probes. The iron nanorods’ diameters range from ten nanometers to one hundred nanometers with lengths of a few micrometers. Flame position, probe diameter, and flame exposure time tend to play an important role for material shape and selectivity.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fu, Shelton, et Takeshi Egami. « MOS and MOSFET with transition metal oxides ». Dans Photonics West '96, sous la direction de Ivan Bozovic et Davor Pavuna. SPIE, 1996. http://dx.doi.org/10.1117/12.250262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wan, Jun, et Jun Zhou. « Microwave Combustion for Modification of Transition Metal Oxides ». Dans Asia Communications and Photonics Conference. Washington, D.C. : OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.af2a.76.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Grinberg, Ilya. « Accurate construction of transition metal pseudopotentials for oxides ». Dans The 11th williamsburg workshop on fundamental physics of ferroelectrics. AIP, 2001. http://dx.doi.org/10.1063/1.1399706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Transition Metal Oxides (TMOs)"

1

Asenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes et Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), septembre 2021. http://dx.doi.org/10.21079/11681/42131.

Texte intégral
Résumé :
Iron oxide (α-Fe₂O₃, hematite) colloids were synthesized under hydrothermal conditions and investigated as catalysts for the photodegradation of an organic dye under broad-spectrum illumination. To enhance photocatalytic performance, Fe₂O₃ was combined with other transition-metal oxide (TMO) colloids (e.g., CuO and ZnO), which are sensitive to different regions of the solar spectrum (far visible and ultraviolet, respectively), using a ternary blending approach for compositional mixtures. For a variety of ZnO/Fe₂O₃/CuO mole ratios, the pseudo-first-order rate constant for methyl orange degradation was at least double the sum of the individual Fe₂O₃ and CuO rate constants, indicating there is an underlying synergy governing the photocatalysis reaction with these combinations of TMOs. A full compositional study was carried out to map the interactions between the three TMOs. Additional experiments probed the identity and role of reactive oxygen species and elucidated the mechanism by which CuO enhanced Fe₂O₃ photodegradation while ZnO did not. The increased photocatalytic performance of Fe2O3 in the presence of CuO was associated with hydroxyl radical ROS, consistent with heterogeneous photo-Fenton mechanisms, which are not accessible by ZnO. These results imply that low-cost photocatalytic materials can be engineered for high performance under solar illumination by selective pairing of TMOs with compatible ROS.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bishop, Alan. A Lattice Litany for Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), mars 2021. http://dx.doi.org/10.2172/1772375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dr. Henry Bass et Dr. J. R. Gladden. Resonant Ultrasound Studies of Complex Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), août 2008. http://dx.doi.org/10.2172/936503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Suib, Steven. CATALYTIC SELECTIVE OXIDATIONS WITH POROUS TRANSITION METAL OXIDES. Office of Scientific and Technical Information (OSTI), décembre 2022. http://dx.doi.org/10.2172/1907074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Teng, Xiaowei. Transition Metal Oxides Nanomaterials for Aqueous Electrochemical Energy Storage. Office of Scientific and Technical Information (OSTI), août 2019. http://dx.doi.org/10.2172/1546597.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Author, Not Given. Metal alkoxides : Models for metal oxides : Alkoxide ligands in early transition metal organometallic chemistry. Office of Scientific and Technical Information (OSTI), janvier 1990. http://dx.doi.org/10.2172/7151593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Armentrout, Peter. THERMOCHEMISTRY AND REACTIVITY OF TRANSITION METAL CLUSTERS AND THEIR OXIDES. Office of Scientific and Technical Information (OSTI), juin 2014. http://dx.doi.org/10.2172/1135682.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Neumeier, J. J., M. F. Hundley, A. L. Cornelius et K. Andres. Volume-based considerations for the metal-insulator transition of CMR oxides. Office of Scientific and Technical Information (OSTI), mars 1998. http://dx.doi.org/10.2172/658143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kellar, S. A. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation. Office of Scientific and Technical Information (OSTI), mai 1997. http://dx.doi.org/10.2172/335184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dai, Pengcheng. Study Magnetic Excitations in Doped Transition Metal Oxides Using Inelastic Neutron Scattering. Office of Scientific and Technical Information (OSTI), février 2014. http://dx.doi.org/10.2172/1120539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie