Articles de revues sur le sujet « Transition metal mixed chalcogenides »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Transition metal mixed chalcogenides.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Transition metal mixed chalcogenides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Vante, N. Alonso, W. Jaegermann, H. Tributsch, W. Hoenle et K. Yvon. « Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters ». Journal of the American Chemical Society 109, no 11 (mai 1987) : 3251–57. http://dx.doi.org/10.1021/ja00245a013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Singh, Harish, Manashi Nath et McKenzie Marley Hines. « Development of High-Performance Electrode Materials for Supercapacitor Application through Combinatorial Electrodeposition ». ECS Meeting Abstracts MA2022-01, no 3 (7 juillet 2022) : 492. http://dx.doi.org/10.1149/ma2022-013492mtgabs.

Texte intégral
Résumé :
Electrochemical capacitors (ECs) are promising energy storage devices that have received great attention because of their excellent electrochemical performance with high output power, short discharging time, and long-term cycle stability. Metal chalcogenides (especially selenides and tellurides) are considered to be a new class of battery-like electrode materials and have contributed to ameliorate the electrochemical performance with better electronic conductivity and chemical stability. In the current investigation, a series of mixed transition metal-based chalcogenides have been grown directly on nickel foam by electrodeposition without the addition of a binder to the electrode composite. It was observed that the supercapacitor activity was dependent on the quantity of Cu and Co in the Cu-Co-Se ternary selenide electrocatalysts. Surprisingly, Cu–Co ternary selenides exhibit superior specific capacitance in comparison to their pure parent compounds, CoSe and Cu3Se2. Among the series of Cu–Co ternary selenides, the specific capacitance achieved for Cu0.6Co0.4Se2 showed the best specific capacitance value of 2063 F/g at a current density of 1 A/g and also maintained a cyclic stability of more than 90 % at a higher current density of 10 A/g after 1000 charge-discharge cycles. Moreover, doping effects at the transition metal site are also illustrated in this work and had a positive influence on the supercapacitor activity because, it led to lattice distortion, electronic structure modification, as well as helping to tune the surface redox behavior. The observed results clearly demonstrate that the binder free metal chalcogenide-based catalysts may be used as a potential electrode material for future energy storage devices. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bokova, Maria, Steven Dumortier, Christophe Poupin, Renaud Cousin, Mohammad Kassem et Eugene Bychkov. « Potentiometric Chemical Sensors Based on Metal Halide Doped Chalcogenide Glasses for Sodium Detection ». Sensors 22, no 24 (18 décembre 2022) : 9986. http://dx.doi.org/10.3390/s22249986.

Texte intégral
Résumé :
Chalcogenide glasses are widely used as sensitive membranes in the chemical sensors for heavy metal ions detection. The lack of research work on sodium ion-selective electrodes (Na+-ISEs) based on chalcogenide glasses is due to the high hygroscopicity of alkali dopes chalcogenides. However, sodium halide doped Ga2S3-GeS2 glasses are more chemically stable in water and could be used as Na+-sensitive membranes for the ISEs. In this work we have studied the physico-chemical properties of mixed cation (AgI)x(NaI)30-x(Ga2S3)26(GeS2)44 chalcogenide glasses (where x = 0, 7.5, 15, 22.5 and 30 mol.% AgI) using density, DSC, and conductivity measurements. The mixed cation effect with shallow conductivity and glass transition temperature minimum was found for silver fraction r = Ag/(Na + Ag) ≈ 0.5. Silver addition decreases the moisture resistance of the glasses. Only (AgI)22.5(NaI)7.5(Ga2S3)26(GeS2)44 composition was suitable for chemical sensors application, contrary to the single cation sodium halide doped Ga2S3-GeS2 glasses, where 15 mol.% sodium-halide-containing vitreous alloys are stable in water solutions. The analytical parameters of (NaCl)15(Ga2S3)23(GeS2)62; (NaI)15(Ga2S3)23(GeS2)62 and (AgI)22.5(NaI)7.5(Ga2S3)26(GeS2)44 glass compositions as active membranes in Na+-ISEs were investigated, including detection limit, sensitivity, linearity, ionic selectivity (in the presence of K+, Mg2+, Ca2+, Ba2+, and Zn2+ interfering cations), reproducibility and optimal pH-range.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Antonov, V. N., L. V. Bekenov et A. N. Yaresko. « Electronic Structure of Strongly Correlated Systems ». Advances in Condensed Matter Physics 2011 (2011) : 1–107. http://dx.doi.org/10.1155/2011/298928.

Texte intégral
Résumé :
The article reviews the rich phenomena of metal-insulator transitions, anomalous metalicity, taking as examples iron and titanium oxides. The diverse phenomena include strong spin and orbital fluctuations, incoherence of charge dynamics, and phase transitions under control of key parameters such as band filling, bandwidth, and dimensionality. Another important phenomena presented in the article is a valence fluctuation which occur often in rare-earth compounds. We consider some Ce, Sm, Eu, Tm, and Yb compounds such as Ce, Sm and Tm monochalcogenides, Sm and Yb borides, mixed-valent and charge-ordered Sm, Eu and Yb pnictides and chalcogenides R4X3and R3X4(R = Sm, Eu, Yb; X = As, Sb, Bi), intermediate-valence YbInCu4and heavy-fermion compounds YbMCu4(M = Cu, Ag, Au, Pd). Issues addressed include the nature of the electronic ground states, the metal-insulator transition, the electronic and magnetic structures. The discussion includes key experiments, such as optical and magneto-optical spectroscopic measurements, x-ray photoemission and x-ray absorption, bremsstrahlung isochromat spectroscopy measurements as well as x-ray magnetic circular dichroism.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Boubeche, Mebrouka, Ningning Wang, Jianping Sun, Pengtao Yang, Lingyong Zeng, Shaojuan Luo, Yiyi He et al. « Superconducting dome associated with the suppression and re-emergence of charge density wave states upon sulfur substitution in CuIr2Te4 chalcogenides ». Journal of Physics : Condensed Matter 34, no 20 (24 mars 2022) : 205602. http://dx.doi.org/10.1088/1361-648x/ac594c.

Texte intégral
Résumé :
Abstract We report the path from the charge density wave (CDW)-bearing superconductor CuIr2Te4 to the metal insulator transition (MIT)-bearing compound CuIr2S4 by chemical alloying with the gradual substitution of S for Te. The evolution of structural and physical properties of the CuIr2Te4−x S x (0 ⩽ x ⩽ 4) polycrystalline system is systemically examined. The x-ray diffraction (XRD) results imply CuIr2Te4−x S x (0 ⩽ x ⩽ 0.5) crystallizes in a NiAs defected trigonal structure, whereas it adapts to the cubic spinel structure for 3.6 ⩽ x ⩽ 4 and it is a mixed phase in the doping range of 0.5 < x < 3.6. Unexpectedly, the resistivity and magnetization measurements reveal that small-concentration S substitution for Te can suppress the CDW transition, but it reappears around x = 0.2, and the CDW transition temperature enhances clearly as x augments for 0.2 ⩽ x ⩽ 0.5. Besides, the superconducting critical temperature (T c) first increases with S doping content and then decreases after reaching a maximum T c = 2.82 K for CuIr2Te3.85S0.15. MIT order has been observed in the spinel region (3.6 ⩽ x ⩽ 4) associated with T MI increasing with x increasing. Finally, the rich electronic phase diagram of temperature versus x for this CuIr2Te4−x S x system is assembled, where the superconducting dome is associated with the suppression and re-emergence of CDW as well as MIT states at the end upon sulfur substitution in the CuIr2Te4−x S x chalcogenides.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sedhain, Ram Prasad, et Gopi Chandra Kaphle. « STRUCTURAL AND ELECTRONIC PROPERTIES OF TRANSITION METAL DI-CHALCOGENIDES (MX2) M=(Mo, W) AND X=(S, Se) IN BULK STATE : A FIRST-PRINCIPLES STUDY ». Journal of Institute of Science and Technology 22, no 1 (18 juillet 2017) : 41–50. http://dx.doi.org/10.3126/jist.v22i1.17738.

Texte intégral
Résumé :
Transition metal di-chalcogenides (MX2) M=(Mo, W) and X=(S, Se) in bulk state are of great interest due to their diverse applications in the field of modern technology as well as to understand the fundamental aspect of Physics. We performed structural and electronic properties of selected systems using density functional theory implemented in Tight Binding Linear Muffin- tin Orbital (TBLMTO) approach with subsequent refinement. The structural optimization is performed through energy minimization process and lattice parameters of optimized structures for MoS2, MoSe2, WS2 and WSe2 are found to be 3.20Å, 3.34Å, 3.27Å and 3.34Å respectively, which are within the error bar less than 5% with experimental values. The band gaps for all TMDCs are found to be of indirect types with semiconducting behaviours. The values of band gap of MoS2, MoSe2, WS2 and WSe2 in bulk state are found to be 1.16eV, 108eV, 1.50eV and 1.29eV respectively which are comparable with experimental and previously calculated data. Due to the symmetric nature of up spin and down spin channels of Density of States (DOS) all the systems selected are found to be non magnetic. However it fully supports the results obtained from band structure calculations. The potential and charge distributions plots support the results. The charge density plots reveals the covalent nature of bond in (100) plane. However (110) plane shows mixed types of bonding.Journal of Institute of Science and TechnologyVolume 22, Issue 1, July 2017, page: 41-50
Styles APA, Harvard, Vancouver, ISO, etc.
7

Patil, S. M., S. R. Mane, R. M. Mane, S. S. Mali, P. S. Patil et P. N. Bhosale. « Synthesis and X-ray photoelectron spectroscopy (XPS) and thermoelectric studies of ternary Bi2(Te0.5Se0.5)3 mixed-metal chalcogenide thin films by the arrested precipitation technique ». Canadian Journal of Chemistry 89, no 11 (novembre 2011) : 1375–81. http://dx.doi.org/10.1139/v11-107.

Texte intégral
Résumé :
Arrested precipitation technique (APT) has been successfully employed for the deposition of Bi2(Te0.5Se0.5)3 thin films. Analytical grade bismuth nitrate complexes with triethanolamine (TEA), sodium tellurosulfite, and sodium selenosulfite were used as precursor materials. The film was obtained at 55 ± 0.5 °C in an aqueous alkaline medium (pH = 10.5 ± 0.2). As-deposited film was characterized by chemical compositional, optical, and electrical analyses. The optical absorption spectrum for the sample was recorded in the wavelength region 400–900 nm. It shows a high coefficient of absorption (α = 105 cm–1) with an allowed direct type of transition. X-ray diffraction (XRD) study of the film shows a nanocrystalline and rhombohedral structure. From scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray analysis (EDAX) studies, the deposited film shows uniform morphology and good stoichiometry. X-ray photoelectron spectroscopy (XPS) was used to study the binding energy and surface oxidation of the material. Electrical conduction study shows that material is an n-type semiconductor and shows good thermoelectric figure of merit.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mitchell, Kwasi, et James A. Ibers. « Rare-Earth Transition-Metal Chalcogenides ». Chemical Reviews 102, no 6 (juin 2002) : 1929–52. http://dx.doi.org/10.1021/cr010319h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Varadwaj, Pradeep, Helder Marques, Arpita Varadwaj et Koichi Yamashita. « Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides ». Inorganics 10, no 1 (12 janvier 2022) : 11. http://dx.doi.org/10.3390/inorganics10010011.

Texte intégral
Résumé :
An attempt was made, using computational methods, to understand whether the intermolecular interactions in the dimers of molybdenum dichalcogenides MoCh2 (Ch = chalcogen, element of group 16, especially S, Se and Te) and similar mixed-chalcogenide derivatives resemble the room temperature experimentally observed interactions in the interfacial regions of molybdenites and their other mixed-chalcogen derivatives. To this end, MP2(Full)/def2-TVZPPD level electronic structure calculations on nine dimer systems, including (MoCh2)2 and (MoChCh′2)2 (Ch, Ch′ = S, Se and Te), were carried out not only to demonstrate the energetic stability of these systems in the gas phase, but also to reproduce the intermolecular geometrical properties that resemble the interfacial geometries of 2D layered MoCh2 systems reported in the crystalline phase. Among the six DFT functionals (single and double hybrids) benchmarked against MP2(full), it was found that the double hybrid functional B2PLYPD3 has some ability to reproduce the intermolecular geometries and binding energies. The intermolecular geometries and binding energies of all nine dimers are discussed, together with the charge density topological aspects of the chemical bonding interactions that emerge from the application of the quantum theory of atoms in molecules (QTAIM), the isosurface topology of the reduced density gradient noncovalent index, interaction region indicator and independent gradient model (IGM) approaches. While the electrostatic surface potential model fails to explain the origin of the S···S interaction in the (MoS2)2 dimer, we show that the intermolecular bonding interactions in all nine dimers examined are a result of hyperconjugative charge transfer delocalizations between the lone-pair on (Ch/Ch′) and/or the π-orbitals of a Mo–Ch/Ch′ bond of one monomer and the dπ* anti-bonding orbitals of the same Mo–Ch/Ch′ bond in the second monomer during dimer formation, and vice versa. The HOMO–LUMO gaps calculated with the MN12-L functional were 0.9, 1.0, and 1.1 eV for MoTe2, MoSe2 and MoS2, respectively, which match very well with the solid-state theoretical (SCAN-rVV10)/experimental band gaps of 0.75/0.88, 0.90/1.09 and 0.93/1.23 eV of the corresponding systems, respectively. We observed that the gas phase dimers examined are perhaps prototypical for a basic understanding of the interfacial/inter-layer interactions in molybdenum-based dichalcogenides and their derivatives.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huang, Yu Li, Wei Chen et Andrew T. S. Wee. « Two‐dimensional magnetic transition metal chalcogenides ». SmartMat 2, no 2 (4 mai 2021) : 139–53. http://dx.doi.org/10.1002/smm2.1031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jung, Yeonwoong, Yu Zhou et Judy J. Cha. « Intercalation in two-dimensional transition metal chalcogenides ». Inorganic Chemistry Frontiers 3, no 4 (2016) : 452–63. http://dx.doi.org/10.1039/c5qi00242g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Baranov, N. V., N. V. Selezneva et V. A. Kazantsev. « Magnetism and Superconductivity of Transition Metal Chalcogenides ». Physics of Metals and Metallography 119, no 13 (décembre 2018) : 1301–4. http://dx.doi.org/10.1134/s0031918x18130215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

JAEGERMANN, W., et H. TRIBUTSCH. « Interfacial properties of semiconducting transition metal chalcogenides ». Progress in Surface Science 29, no 1-2 (1988) : 1–167. http://dx.doi.org/10.1016/0079-6816(88)90015-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mitchell, Kwasi, et James A. Ibers. « ChemInform Abstract : Rare-Earth Transition-Metal Chalcogenides ». ChemInform 33, no 34 (20 mai 2010) : no. http://dx.doi.org/10.1002/chin.200234267.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Singh, Harish, McKenzie Marley Hines, Shatadru Chakravarty et Manashi Nath. « Multi-Walled Carbon Nanotube Supported Manganese Selenide As Highly Active Bifunctional OER and ORR Electrocatalyst ». ECS Meeting Abstracts MA2022-01, no 34 (7 juillet 2022) : 1376. http://dx.doi.org/10.1149/ma2022-01341376mtgabs.

Texte intégral
Résumé :
Transition metal selenides have attracted intensive interest as cost-effective electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) because of the continuous thrust in sustainable energy conversion. In this article a Mn-based bifunctional electrocatalyst, MnSe has been identified which shows efficient OER and ORR activity in alkaline medium. The catalytic activity could be further enhanced by using multiwalled carbon nanotubes (MWCNT) asadditives which increases the charge transfer and electronic conductivity of the catalyst composite. This MnSe@MWCNT catalyst composite exhibits a very low overpotential of 210 mV at 50 mA cm-2 when deposited on Ni foam, which outperforms state-of-the-art RuO2 as well as other oxide and Mn-based electrocatalysts. Furthermore, the composite’s facile OER kinetics was evidenced by its small Tafel slope of 54.76 mV dec–1 and low charge transfer resistance, indicating quick transport of the reactant species. The MnSe@MWCNT also exhibited efficient electrocatalytic activity for ORR with a Eonset of 0.94 V, which is among the best reported till date for chalcogenide based ORR electrocatalysts. More importantly, this MnSe-based ORR electrocatalyst exhibits high degree of methanol tolerance, showing no degradation of catalyst performance in presence of copious quantities of methanol, thereby out-performing state-of-the-art Pt electrocatalyst. The catalyst compositie also exhibited exceptional functional and compositional stability for OER and ORR after prolonged period of continuous operation in alkaline medium. The surface Raman analysis after OER revealed the retention of manganese selenide surface with evidence of Mn-oxo coordination confirming the formation of mixed anionic (oxy)selenide as the active surface for OER. Such efficient bifunctional OER and ORR activity makes this MnSe based catalyst attractive for overall electrolysis in regenerative as well as direct methanol fuel cells.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zhang, Yingxi, Liao Zhang, Tu'an Lv, Paul K. Chu et Kaifu Huo. « Two‐Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage ». ChemSusChem 13, no 6 (9 mars 2020) : 1114–54. http://dx.doi.org/10.1002/cssc.201903245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Guo, Yan-Dong, Hong-Bo Zhang, Hong-Li Zeng, Hai-Xia Da, Xiao-Hong Yan, Wen-Yue Liu et Xin-Yi Mou. « A progressive metal–semiconductor transition in two-faced Janus monolayer transition-metal chalcogenides ». Physical Chemistry Chemical Physics 20, no 32 (2018) : 21113–18. http://dx.doi.org/10.1039/c8cp02929f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Zhou, Xiuquan, et Efrain E. Rodriguez. « Tetrahedral Transition Metal Chalcogenides as Functional Inorganic Materials ». Chemistry of Materials 29, no 14 (5 juillet 2017) : 5737–52. http://dx.doi.org/10.1021/acs.chemmater.7b01561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

SALVADOR, P. A., T. O. MASON, M. E. HAGERMAN et K. R. POEPPELMEIER. « ChemInform Abstract : Layered Transition Metal Oxides and Chalcogenides ». ChemInform 29, no 17 (23 juin 2010) : no. http://dx.doi.org/10.1002/chin.199817275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lin, Yang-Jie, Bin-Wen Liu, Run Ye, Xiao-Ming Jiang, Long-Qi Yang, Hui-Yi Zeng et Guo-Cong Guo. « SrCdSnQ4 (Q = S and Se) : infrared nonlinear optical chalcogenides with mixed NLO-active and synergetic distorted motifs ». Journal of Materials Chemistry C 7, no 15 (2019) : 4459–65. http://dx.doi.org/10.1039/c9tc00029a.

Texte intégral
Résumé :
Two new infrared (IR) nonlinear optical (NLO) chalcogenides, SrCdSnQ4 (Q = S and Se) (1 and 2), were obtained by mixing NLO-active metal chalcogenides and d10 metal tetrahedral motifs in an alkali metal-containing system.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Mazánek, Vlastimil, Hindia Nahdi, Jan Luxa, Zdeněk Sofer et Martin Pumera. « Electrochemistry of layered metal diborides ». Nanoscale 10, no 24 (2018) : 11544–52. http://dx.doi.org/10.1039/c8nr02142b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bronger, W., P. Müller et D. Welz. « Magnetism of ternary alkali metal–transition metal chalcogenides with binuclear units ». Physica B : Condensed Matter 276-278 (mars 2000) : 710–11. http://dx.doi.org/10.1016/s0921-4526(99)01814-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Dai, Meng, et Rui Wang. « Synthesis and Applications of Nanostructured Hollow Transition Metal Chalcogenides ». Small 17, no 29 (20 mai 2021) : 2006813. http://dx.doi.org/10.1002/smll.202006813.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Su, Jianwei, Guiheng Liu, Lixin Liu, Jiazhen Chen, Xiaozong Hu, Yuan Li, Huiqiao Li et Tianyou Zhai. « Recent Advances in 2D Group VB Transition Metal Chalcogenides ». Small 17, no 14 (10 mars 2021) : 2005411. http://dx.doi.org/10.1002/smll.202005411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kuznetsov, Vitalii, Andrej Fedorov, Mihail Naberukhin, Aleksandr Berdinsky, Pavel Poltarak et Vladimir Fedorov. « Transition metal chalcogenides as sensitive elements for gas sensors ». Transaction of Scientific Papers of the Novosibirsk State Technical University, no 3-4 (10 avril 2019) : 136–46. http://dx.doi.org/10.17212/2307-6879-2018-3-4-136-146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Chen, Zhijie, Wei Wei et Bing-Jie Ni. « Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis ». Current Opinion in Electrochemistry 31 (février 2022) : 100888. http://dx.doi.org/10.1016/j.coelec.2021.100888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Peijian, Deren Yang et Xiaodong Pi. « Toward Wafer‐Scale Production of 2D Transition Metal Chalcogenides ». Advanced Electronic Materials 7, no 8 (13 mai 2021) : 2100278. http://dx.doi.org/10.1002/aelm.202100278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yoo, Dongwon, Minkyoung Kim, Sohee Jeong, Jeonghee Han et Jinwoo Cheon. « Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides ». Journal of the American Chemical Society 136, no 42 (14 octobre 2014) : 14670–73. http://dx.doi.org/10.1021/ja5079943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bennett, J. C., et F. W. Boswell. « Charge-density wave modulations in the transition metal chalcogenides ». Proceedings, annual meeting, Electron Microscopy Society of America 54 (11 août 1996) : 706–7. http://dx.doi.org/10.1017/s0424820100165999.

Texte intégral
Résumé :
The transition metal chalcogenides, due to the typically large covalency of the metal-chalcogenide bonds, often adopt low-dimensional structures and exhibit charge-density wave (CDW) modulations. Incommensurate (IC) or commensurate (C) modulations structures are observed as well as a rich variety of phase transitions driven by the temperature dependence of the CDW amplitude and phase. Defects of the CDW modulation, including antiphase boundaries (APB) and discommensurations (DC), are of determinate importance for the mediation of these phase transitions. The microstructural phenomena occurring in the quasi-one-dimensional chalcogenides will be surveyed with emphasis on two representative systems: the Nb1-xTaxTe4 solid solution and the MxNb3Te4 (M = In or TI) intercalation compound.The NbxTa1-xTe4 compounds are based on a tetragonal subcell with axes (a x a x c) and consist of an extended chain of metal atoms centered within an antiprismatic cage of Te atoms.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Burdett, Jeremy K., et John F. Mitchell. « Electronic origin of nonstoichiometry in early-transition-metal chalcogenides ». Chemistry of Materials 5, no 10 (octobre 1993) : 1465–73. http://dx.doi.org/10.1021/cm00034a016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Jaegermann, W., et D. Schmeisser. « Reactivity of layer type transition metal chalcogenides towards oxidation ». Surface Science Letters 165, no 1 (janvier 1986) : A3. http://dx.doi.org/10.1016/0167-2584(86)91160-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Jaegermann, W., et D. Schmeisser. « Reactivity of layer type transition metal chalcogenides towards oxidation ». Surface Science 165, no 1 (janvier 1986) : 143–60. http://dx.doi.org/10.1016/0039-6028(86)90666-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Tremel, Wolfgang, Holger Kleinke, Volkmar Derstroff et Christian Reisner. « Transition metal chalcogenides : new views on an old topic ». Journal of Alloys and Compounds 219, no 1-2 (mars 1995) : 73–82. http://dx.doi.org/10.1016/0925-8388(94)05064-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Qin, Na, Xian Du, Yangyang Lv, Lu Kang, Zhongxu Yin, Jingsong Zhou, Xu Gu et al. « Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX 2 (X = Se, Te) ». Chinese Physics B 31, no 3 (1 mars 2022) : 037101. http://dx.doi.org/10.1088/1674-1056/ac3ecd.

Texte intégral
Résumé :
Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu2TlX 2 (X = Se, Te), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu2TlSe2 to a semimetal in Cu2TlTe2, suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin–orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin–orbit coupling.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wang, Lin-Hui, Long-Long Ren et Yu-Feng Qin. « The Review of Hybridization of Transition Metal-Based Chalcogenides for Lithium-Ion Battery Anodes ». Materials 16, no 12 (18 juin 2023) : 4448. http://dx.doi.org/10.3390/ma16124448.

Texte intégral
Résumé :
Transition metal chalcogenides as potential anodes for lithium-ion batteries have been widely investigated. For practical application, the drawbacks of low conductivity and volume expansion should be further overcome. Besides the two conventional methods of nanostructure design and the doping of carbon-based materials, the component hybridization of transition metal-based chalcogenides can effectively enhance the electrochemical performance owing to the synergetic effect. Hybridization could promote the advantages of each chalcogenide and suppress the disadvantages of each chalcogenide to some extent. In this review, we focus on the four different types of component hybridization and the excellent electrochemical performance that originated from hybridization. The exciting problems of hybridization and the possibility of studying structural hybridization were also discussed. The binary and ternary transition metal-based chalcogenides are more promising to be used as future anodes of lithium-ion batteries for their excellent electrochemical performance originating from the synergetic effect.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Song, Ruru, Deyu Li, Yafeng Xu, Junfeng Gao, Lu Wang et Youyong Li. « Interface engineering of heterogeneous transition metal chalcogenides for electrocatalytic hydrogen evolution ». Nanoscale Advances 4, no 3 (2022) : 865–70. http://dx.doi.org/10.1039/d1na00768h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhao, Yang, Shizhong Wei, Kunming Pan, Zhili Dong, Bin Zhang, Hong-Hui Wu, Qiaobao Zhang, Junpin Lin et Huan Pang. « Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting ». Chemical Engineering Journal 421 (octobre 2021) : 129645. http://dx.doi.org/10.1016/j.cej.2021.129645.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Matthews, Peter D., Paul D. McNaughter, David J. Lewis et Paul O'Brien. « Shining a light on transition metal chalcogenides for sustainable photovoltaics ». Chemical Science 8, no 6 (2017) : 4177–87. http://dx.doi.org/10.1039/c7sc00642j.

Texte intégral
Résumé :
Transition metal chalcogenides are an important family of materials that have received significant interest in recent years as they have the potential for diverse applications ranging from use in electronics to industrial lubricants.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Krishnamoorthy, Aravind, Minh A. Dinh et Bilge Yildiz. « Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe1+xS ». Journal of Materials Chemistry A 5, no 10 (2017) : 5030–35. http://dx.doi.org/10.1039/c6ta10538f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Li, Guang-mao, Qiong Liu, Kui Wu, Zhi-hua Yang et Shi-lie Pan. « Na2CdGe2Q6(Q = S, Se) : two metal-mixed chalcogenides with phase-matching abilities and large second-harmonic generation responses ». Dalton Transactions 46, no 9 (2017) : 2778–84. http://dx.doi.org/10.1039/c7dt00087a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Li, Song-Lin, Kazuhito Tsukagoshi, Emanuele Orgiu et Paolo Samorì. « Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors ». Chemical Society Reviews 45, no 1 (2016) : 118–51. http://dx.doi.org/10.1039/c5cs00517e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

SEKINE, Tomoyuki. « Lattice dynamics and Raman scattering in intercalated transition-metal chalcogenides. » Journal of the Spectroscopical Society of Japan 40, no 1 (1991) : 3–14. http://dx.doi.org/10.5111/bunkou.40.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Rouxel, Jean. « New 1D-Materials In The Field Of Transition Metal Chalcogenides ». Molecular Crystals and Liquid Crystals 121, no 1-4 (mars 1985) : 1–13. http://dx.doi.org/10.1080/00268948508074823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Monceau, P., M. Renard, J. Richard, M. C. Saint-lager et Z. Z. Wang. « Non-Linear Response of Transition Metal Tri-and Tetra-Chalcogenides ». Molecular Crystals and Liquid Crystals 121, no 1-4 (mars 1985) : 39–47. http://dx.doi.org/10.1080/00268948508074828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

SUGIMOTO, Jun, et Kazuhito SHINTANI. « 10113 Analysis of the electronic properties of transition metal chalcogenides ». Proceedings of Conference of Kanto Branch 2015.21 (2015) : _10113–1_—_10113–2_. http://dx.doi.org/10.1299/jsmekanto.2015.21._10113-1_.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Powell, A. V. « Chapter 7. Intercalation compounds of low-dimensional transition metal chalcogenides ». Annual Reports Section "C" (Physical Chemistry) 90 (1993) : 177. http://dx.doi.org/10.1039/pc9939000177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Heine, Thomas. « Transition Metal Chalcogenides : Ultrathin Inorganic Materials with Tunable Electronic Properties ». Accounts of Chemical Research 48, no 1 (9 décembre 2014) : 65–72. http://dx.doi.org/10.1021/ar500277z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Yin, Wenlong, Wendong Wang, Lei Kang, Zheshuai Lin, Kai Feng, Youguo Shi, Wenyu Hao, Jiyong Yao et Yicheng Wu. « Ln3FeGaQ7 : A new series of transition-metal rare-earth chalcogenides ». Journal of Solid State Chemistry 202 (juin 2013) : 269–75. http://dx.doi.org/10.1016/j.jssc.2013.03.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Sarma, Saurav Chandra, et Sebastian C. Peter. « Structurally ordered transition metal-based chalcogenides for oxygen reduction reaction ». Acta Crystallographica Section A Foundations and Advances 73, a2 (1 décembre 2017) : C1271. http://dx.doi.org/10.1107/s2053273317083036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Brec, R. « Host structure modification upon lithium intercalation in transition metal chalcogenides ». Materials Science and Engineering : B 3, no 1-2 (juillet 1989) : 73–79. http://dx.doi.org/10.1016/0921-5107(89)90181-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie