Littérature scientifique sur le sujet « Transformation de phase austénite-Ferrite »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Transformation de phase austénite-Ferrite ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Transformation de phase austénite-Ferrite"
Kanter, Daniel, Yves Bolender, Christophe Rapin et Marie-Pierryle Filleul. « L’effet mémoire de forme est-il une réalité clinique pour le 35° Copper Ni-Ti® ? Étude par calorimétrie différentielle à balayage ». L'Orthodontie Française 84, no 3 (septembre 2013) : 259–69. http://dx.doi.org/10.1051/orthodfr/2013057.
Texte intégralPadilha, Angelo Fernando, D. J. M. Aguiar et R. L. Plaut. « Duplex Stainless Steels : A Dozen of Significant Phase Transformations ». Defect and Diffusion Forum 322 (mars 2012) : 163–74. http://dx.doi.org/10.4028/www.scientific.net/ddf.322.163.
Texte intégralLi, Li Zhang, He Wei, Lin Lin Liao, Yin Li Chen, Hai Feng Yan, Guang Hua Liu et Zhi Wei Sun. « Continuous Cooling Phase Transformation Rule of 20CrMnTi Low-Carbon Alloy Steel ». Materials Science Forum 944 (janvier 2019) : 303–12. http://dx.doi.org/10.4028/www.scientific.net/msf.944.303.
Texte intégralCheng, Wei Chun, Kun Hsien Lee, Shu Mao Lin et Shao Yu Chien. « The Observation of Austenite to Ferrite Martensitic Transformation in an Fe-Mn-Al Austenitic Steel after Cooling from High Temperature ». Materials Science Forum 879 (novembre 2016) : 335–38. http://dx.doi.org/10.4028/www.scientific.net/msf.879.335.
Texte intégralSpiridonova, K. V., I. Yu Litovchenko, N. A. Polekhina, V. V. Linnik, T. A. Borisenko, V. M. Chernov et M. V. Leont’eva-Smirnova. « Structural-phase transformations of 12% chromium ferritic-martensitic steel EP-823 ». Izvestiya. Ferrous Metallurgy 66, no 6 (29 décembre 2023) : 725–32. http://dx.doi.org/10.17073/0368-0797-2023-6-725-732.
Texte intégralXia, Pei Pei, Liu Qing Yang, Xiao Jiang Guo et Ye Zheng Li. « Continuous Cooling Phase Transformation Rules of High Nb X80 Pipeline Steel ». Materials Science Forum 850 (mars 2016) : 916–21. http://dx.doi.org/10.4028/www.scientific.net/msf.850.916.
Texte intégralWang, Qihui, Kun Chen, Kejia Liu, Lianbo Wang, Yu Chu et Bichen Xie. « Study on Characterization of Phase Transition in Continuous Cooling of Carbon Steel Using In Situ Thermovoltage Measurement ». Coatings 14, no 8 (3 août 2024) : 980. http://dx.doi.org/10.3390/coatings14080980.
Texte intégralVillalobos Vera, Doris Ivette, et Ivan Mendoza Bravo. « Effect of annealing temperature on the microstructure of hyperduplex stainless steels ». Ingeniería Investigación y Tecnología 20, no 2 (1 mars 2019) : 1–6. http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.024.
Texte intégralBilovol, V., et R. Martínez-García. « Phase transformation of strontium hexagonal ferrite ». Journal of Physics and Chemistry of Solids 86 (novembre 2015) : 131–37. http://dx.doi.org/10.1016/j.jpcs.2015.07.006.
Texte intégralHug-Amalric, Aurélie, Xavier Kleber, Jacques Merlin, Hélène Petitgand et Philip Meilland. « Characterization of Metallurgical Transformations in Multi-Phase High Strength Steels by Barkhausen Noise Measurement ». Materials Science Forum 539-543 (mars 2007) : 4283–88. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4283.
Texte intégralThèses sur le sujet "Transformation de phase austénite-Ferrite"
Borges, Gomes Lima Yuri. « Μοdélisatiοn atοmistique de la transfοrmatiοn de phase austénite-ferrite dans les aciers ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR086.
Texte intégralThis thesis applies the Quasiparticle Approach (QA) to investigate the atomic scale mechanisms driving the phase transformation from FCC to BCC structures in iron. Initially, the study focuses on pure iron, providing detailed results into the nature and role of dislocations, at the FCC-BCC interface. It was shown that the FCC-BCC interface is semi-coherent and stepped, with two sets of transformations dislocations at the interface. The QA framework reveals how each orientation relationship (OR) influences the interface characteristics. Although the ORs displayed different interface structures, all were ultimately found to follow the same atomic transformation path, driven by the glide of transformation dislocations at the interface. It was concluded that the complete FCC to BCC phase transformation involves the action of the Kurdjumov-Sachs (KS) transformation mechanism in two variants along the two sets of dislocations, with the Kurdjumov-Sachs-Nishiyama (KSN) mechanism emerging as the average of the two KS mechanisms. This detailed description served as a basis for the study of Fe-C systems, where carbon segregation at the interface was observed. Moreover, it was shown that the carbon concentration profiles were consistent with local equilibrium conditions at the interface
Perevoshchikova, Nataliya. « Modeling of austenite to ferrite transformation in steels ». Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0342/document.
Texte intégralTransformation in steels focusing on the thermodynamic and kinetics conditions at the alpha/gamma interfaces during the ferrite growth. The first chapter deals with the determination of thermodynamic equilibria between alpha and gamma with CalPhad thermodynamic description. We have developed a new hybrid algorithm combining the construction of a convex hull to the more classical Newton-Raphson method to compute two phase equilibria in multicomponent alloys with two sublattices. Its capabilities are demonstrated on ternary Fe-C-Cr and quaternary Fe-C-Cr-Mo steels. In the second chapter, we present a thick interface model aiming to predict the whole spectrum of conditions at an alpha/gamma interface during ferrite growth, from full equilibrium to paraequilibrium with intermediate cases as the most interesting feature. The model, despite its numerous simplifying assumptions to facilitate its numerical implementation, allows to predict some peculiar kinetics in Fe-C-X systems with a minimum of fitting parameters, mainly the ratio between the diffusivities of the substitutional element inside the thick interface and in bulk austenite. The third chapter deals with the phase field model of austenite to ferrite transformation in steels. A thorough analysis on the conditions at the interface has been performed using the technique of matched asymptotic expansions. Special attention is given to clarify the role of the interface mobility on the growth regimes both in simple Fe-C alloys and in more complex Fe-C-Mn alloys
Thuillier, Olivier. « Transformation austénite-ferrite dans un alliage modèle Fe-C-Mn : modélisation et étude expérimentale à l'échelle nanométrique ». Rouen, 2007. http://www.theses.fr/2007ROUES082.
Texte intégralLiebaut, Christophe. « Rhéologie de la déformation plastique d'un acier Fe-C durant sa transformation de phase "austenite-->ferrite + perlite" ». Vandoeuvre-les-Nancy, INPL, 1988. http://www.theses.fr/1988NAN10451.
Texte intégralSchmidt, Marek Wojciech, et Marek Schmidt@rl ac uk. « Phase formation and structural transformation of strontium ferrite SrFeOx ». The Australian National University. Research School of Physical Sciences and Engineering, 2001. http://thesis.anu.edu.au./public/adt-ANU20020708.190055.
Texte intégralPariser, Gerhard Carolus. « Modeling the austenite to ferrite phase transformation for steel development / ». Aachen : Shaker, 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014913109&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Texte intégralGuiheux, Romain. « Comportement d’aciers à transformation de phase austénite-martensite pour la simulation du grenaillage de précontrainte ». Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0055/document.
Texte intégralShot-peening is commonly used in mechanical industries to increase life duration of mechanical and structural parts: residual compressive stresses are developed at the sub-surface of the material by plastic stretching of the surface. In the case of TRIP-effect steels (TRansformation Induced Plasticity), the metastable austenite can transform into martensite during shot-peening. The final distribution of stress is then more complex than for “standard steels” as it results from the mechanical strain imposed by the process and the martensitic transformation leading to a stress redistribution between austenite, martensite and the other phases. This work aims to characterize experimentally the mechanical state, at phase scale, of different TRIP steels (AISI 301LN, TRIP 780 and 23MnCrMo5) as well as the fraction of each phase after shot-peening and to propose a numerical model by finite elements which could be used in the future by engineering offices. An elastoplastic model with phase transformation was developed in this thesis which permits to predict the evolution of mechanical variables, macroscopically and at the phase scale, as well as the evolution of austenite volume fraction
Pariser, Gerhard C. [Verfasser]. « Modeling the Austenite to Ferrite Phase Transformation for Steel Development / Gerhard C Pariser ». Aachen : Shaker, 2006. http://d-nb.info/1170529216/34.
Texte intégralRampelberg, Cécile. « Characterization and modeling of Carbide-Free Bainite transformations along isothermal and anisothermal heat treatments ». Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0202.
Texte intégralCarbide-Free Bainites are multiphase microstructures obtained from austenite decomposition at low temperatures (typically between 450 °C and 200 °C) in alloyed steels. These microstructures are very attractive owing to their high mechanical properties and good toughness especially for forged parts dedicated to the automotive market. They are made of a fine ferritic matrix without carbide thanks to a judicious chemical composition, retained austenite stabilized by carbon partitioning during the transformation and martensite. The high fraction of retained austenite may transform in martensite during further mechanical solicitations at room temperature (strain induced transformation). These microstructures have been studied since many years, but their formation mechanisms are still a subject that continues to divide the metallurgy community, between diffuse and diffusionless approaches. The incomplete transformation phenomenon encountered in this process is one of the bones of contention. One of the great novelties of this work was to elucidate the mechanisms of formation of these microstructures in continuous cooling conditions.In this work, we have investigated the evolution of microstructures along different thermal treatments (isothermal holdings, multistep and continuous cooling treatments) by in situ High Energy X-Ray Diffraction (HEXRD) on synchrotron beamlines. Such experiments make possible the simultaneous measurement of phase transformation kinetics, of the lattice parameters of the different phases and the detection of possible carbide precipitation processes. On this basis, very precise carbon mass balances between the constituting phases have been established for the first time leading to the conclusions that the ferritic bainite is even more supersaturated in carbon that expected. The multistep and continuous cooling experiments have also proved that the bainitic transformation doesn’t respect the additivity rule of purely diffusive transformations and is highly sensitive to the transformation sequences. The microstructures after thermal treatments have been systematically studied post mortem by Scanning Electron microscopy (SEM) coupled with Electron Back Scattered Diffraction (EBSD). It has served to explain the observed microstructures after continuous cooling which show large distributions of size, morphology and microtexture as they are formed progressively at different temperatures.A phase transformation model based on the diffusionless-type approach of Van Bohemen (2019) was finally developed and calibrated on available experimental data. This model is not only able to simulate bainite kinetics along isothermal holding and continuous cooling but also the respective compositions of the phases. The capabilities and limits of the new approach are analyzed and discussed
Liebaut, Christophe. « Rhéologie de la déformation plastique d'un acier Fe-C durant sa transformation de phase "austénite-ferrite + perlite" ». Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376152470.
Texte intégralChapitres de livres sur le sujet "Transformation de phase austénite-Ferrite"
An, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer et Mingfang Zhu. « Modeling of Ferrite-Austenite Phase Transformation ». Dans TMS2015 Supplemental Proceedings, 791–98. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093466.ch96.
Texte intégralAn, Dong, Shiyan Pan, Qing Yu, Chen Lin, Ting Dai, Bruce Krakauer et Mingfang Zhu. « Modeling of Ferrite-Austenite Phase Transformation ». Dans TMS 2015 144th Annual Meeting & ; Exhibition, 791–98. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_96.
Texte intégralLópez-Baltazar, Alejandro, Armando Salinas-Rodríguez et Enrique Nava-Vázquez. « Austenite-Ferrite Transformation in Hot Rolled Mn-Cr-Mo Dual Phase Steels ». Dans Advanced Structural Materials III, 79–84. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-446-4.79.
Texte intégralGamsjäger, Ernst. « Kinetics of the Austenite-to-Ferrite Phase Transformation - From the Intrinsic to an Effective Interface Mobility ». Dans THERMEC 2006, 2570–75. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2570.
Texte intégralNeidel, A., B. Fischer, S. Riesenbeck, E. Cagliyan et E. Engert. « Transformation of Delta Ferrite Into Sigma Phase in Metastable Austenitic Stainless Steels After Long-Term High-Temperature Service Exposure ». Dans Schadensfallanalysen metallischer Bauteile, 267–89. München, Germany : Carl Hanser Verlag GmbH & Co. KG, 2015. http://dx.doi.org/10.1007/978-3-446-44609-0_21.
Texte intégralNeidel, A., B. Fischer, S. Riesenbeck, E. Cagliyan et E. Engert. « Transformation of Delta Ferrite Into Sigma Phase in Metastable Austenitic Stainless Steels After Long-Term High-Temperature Service ExposureUmwandlung von Deltaferrit in Sigma-Phase in metastabilen rostfreien austenitischen Stählen nach Langzeitbeanspruchung durch Hochtemperaturen ». Dans Schadensfallanalysen metallischer Bauteile, 267–89. München : Carl Hanser Verlag GmbH & Co. KG, 2015. http://dx.doi.org/10.3139/9783446446090.021.
Texte intégralJaber, Hassanen, et Tunde Kovacs. « Dissimilar Resistance Spot Welding of Ferrite-Martensite Dual Phase Steel/Low Carbon Steel : Phase Transformations and Mechanical Properties ». Dans Lecture Notes in Mechanical Engineering, 709–18. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75677-6_60.
Texte intégralChoi, Sangwoo, Il-Heon Son, Joong-Ki Hwang, Young Soo Chun, Nam-Suk Lim Lim, Hyun-Ho Kim et Jang-Yong Yoo. « A New Method to Compute the Behavior of Phase Transformations and Depth of the Decarburized Ferrite Layer, Scale Thickness of Steel from Measured Temperatures ». Dans HSLA Steels 2015, Microalloying 2015 & ; Offshore Engineering Steels 2015, 427–32. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119223399.ch49.
Texte intégralChoi, Sangwoo, Il-Heon Son, Joong-Ki Hwang, Young Soo Chun, Nam-Suk Lim, Hyun-Ho Kim et Jang-Yong Yoo. « A New Method to Compute the Behavior of Phase Transformations and Depth of the Decarburized Ferrite Layer, Scale Thickness of Steel from Measured Temperatures ». Dans HSLA Steels 2015, Microalloying 2015 & ; Offshore Engineering Steels 2015, 427–32. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48767-0_49.
Texte intégralRÉGLÉ, Hélène, et Brigitte BACROIX. « Anisotropie et propriétés mécaniques ». Dans Le développement des aciers à très haute résistance, 53–78. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9122.ch2.
Texte intégralActes de conférences sur le sujet "Transformation de phase austénite-Ferrite"
Hatakeyama, Tomotaka, Kota Sawada, Masaru Suzuki et Makoto Watanabe. « Microstructure of Modified 9Cr-1Mo Steel Manufactured via Laser Powder Bed Fusion ». Dans AM-EPRI 2024, 365–72. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0365.
Texte intégralLi, Zhichao (Charlie), B. Lynn Ferguson, Edward Lee, Stefan Habean et Jason Meyer. « Sources of Heat Treatment Distortion and Approaches for Distortion Reduction during Quench Hardening Process ». Dans IFHTSE 2024, 132–38. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0132.
Texte intégralP., Sumangala T., Mahender C., Venkataramani N. et Shiva Prasad. « Temperature dependent phase transformation in nano sized magnesium ferrite ». Dans NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917771.
Texte intégralMochizuki, Masahito, et Yoshiki Mikami. « Heterogeneous Microstructure Effect on Residual Stress and Fatigue Crack Resistance in Dual-Phase Materials ». Dans ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77446.
Texte intégralStritch, Kyle, et Boian T. Alexandrov. « Microstructural Evolution and Mechanical Properties in Simulated Heat Affected Zone Regions of Grade 91 Welds ». Dans AM-EPRI 2016, sous la direction de J. Parker, J. Shingledecker et J. Siefert. ASM International, 2016. http://dx.doi.org/10.31399/asm.cp.am-epri-2016p1160.
Texte intégralCabo Rios, Alberto, Eduard Hryha, Eugene Olevsky et Mats Persson. « Modelling Of Delta-ferrite Transformation Effect On The Sintering Behavior Of 316L Binder Jetting Components ». Dans World Powder Metallurgy 2022 Congress & Exhibition. EPMA, 2022. http://dx.doi.org/10.59499/wp225371818.
Texte intégralToloui, Morteza, et Matthias Militzer. « Phase Field Modelling of Microstructure Evolution in the HAZ of X80 Linepipe Steel ». Dans 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90378.
Texte intégralYuan, Zhetao, Satoru Kobayashi et Masao Takeyama. « Microstructure Control Using the Formation of Laves Phase through Interphase Precipitation in Ferritic Heat Resistant Steels ». Dans AM-EPRI 2019, sous la direction de J. Shingledecker et M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0090.
Texte intégralLiu, Dehao, Gang Wang, Zhenguo Nie et Yiming (Kevin) Rong. « Numerical Simulation of the Austenitizing Process in Hypoeutectoid Fe-C Steels ». Dans ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3948.
Texte intégralSilva, Edgard, ANA SILVA SOUZA ANDRADE, Francildo de Oliveira, Michelline Nery Azevedo Lima, Josinaldo Leite, João Leite et Mickael Messias Rodrigues da Silva. « Detection of ferrite phase transformation by induced magnetic field on a duplex stainless steel ». Dans 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-1035.
Texte intégral