Littérature scientifique sur le sujet « Tracers dispersion »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tracers dispersion ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Tracers dispersion"
Istók, Balázs, et Gergely Kristóf. « Dispersion and Travel Time of Dissolved and Floating Tracers in Urban Sewers ». Slovak Journal of Civil Engineering 22, no 1 (1 mars 2014) : 1–8. http://dx.doi.org/10.2478/sjce-2014-0001.
Texte intégralAyuba, Ibrahim, Lateef T. Akanji, Jefferson L. Gomes et Gabriel K. Falade. « Investigation of Drift Phenomena at the Pore Scale during Flow and Transport in Porous Media ». Mathematics 9, no 19 (7 octobre 2021) : 2509. http://dx.doi.org/10.3390/math9192509.
Texte intégralDavis, P. M., T. C. Atkinson et T. M. L. Wigley. « Longitudinal dispersion in natural channels : 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K. » Hydrology and Earth System Sciences 4, no 3 (30 septembre 2000) : 355–71. http://dx.doi.org/10.5194/hess-4-355-2000.
Texte intégralRichards, K. J., Y. Jia et C. F. Rogers. « Dispersion of Tracers by Ocean Gyres ». Journal of Physical Oceanography 25, no 5 (mai 1995) : 873–87. http://dx.doi.org/10.1175/1520-0485(1995)025<0873:dotbog>2.0.co;2.
Texte intégralLee, Mei-Man, A. J. George Nurser, Andrew C. Coward et Beverly A. de Cuevas. « Effective Eddy Diffusivities Inferred from a Point Release Tracer in an Eddy-Resolving Ocean Model ». Journal of Physical Oceanography 39, no 4 (1 avril 2009) : 894–914. http://dx.doi.org/10.1175/2008jpo3902.1.
Texte intégralSmith, Ronald. « Effect of islands upon dispersion in rivers ». Journal of Fluid Mechanics 292 (10 juin 1995) : 249–70. http://dx.doi.org/10.1017/s0022112095001510.
Texte intégralHASZPRA, TÍMEA, PÉTER KISS, TAMÁS TÉL et IMRE M. JÁNOSI. « ADVECTION OF PASSIVE TRACERS IN THE ATMOSPHERE : BATCHELOR SCALING ». International Journal of Bifurcation and Chaos 22, no 10 (octobre 2012) : 1250241. http://dx.doi.org/10.1142/s0218127412502410.
Texte intégralYuan (原), Yuxuan (宇轩), Mark R. Krumholz et Blakesley Burkhart. « Understanding biases in measurements of molecular cloud kinematics using line emission ». Monthly Notices of the Royal Astronomical Society 498, no 2 (18 août 2020) : 2440–55. http://dx.doi.org/10.1093/mnras/staa2432.
Texte intégralGovender, Elaine, Athanasios Kotsiopoulos et Sue T. L. Harrison. « A Study of Permeability and Diffusion at the Agglomerate-Scale in Heap (Bio)Leaching Systems ». Advanced Materials Research 1130 (novembre 2015) : 316–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.316.
Texte intégralFast, Jerome D., K. Jerry Allwine, Russell N. Dietz, Kirk L. Clawson et Joel C. Torcolini. « Dispersion of Perfluorocarbon Tracers within the Salt Lake Valley during VTMX 2000 ». Journal of Applied Meteorology and Climatology 45, no 6 (1 juin 2006) : 793–812. http://dx.doi.org/10.1175/jam2371.1.
Texte intégralThèses sur le sujet "Tracers dispersion"
Fabbroni, Nicoletta <1979>. « Numerical simulations of passive tracers dispersion in the sea ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1733/1/Fabbroni_Nicoletta_Tesi.pdf.
Texte intégralFabbroni, Nicoletta <1979>. « Numerical simulations of passive tracers dispersion in the sea ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1733/.
Texte intégralFerrari, Raffaele. « Dispersion of passive and active tracers in the upper ocean / ». Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p3035412.
Texte intégralOms, Pierre-Emmanuel. « Transferts multi-échelles des apports continentaux dans le golfe de Gascogne ». Thesis, Brest, 2019. http://www.theses.fr/2019BRES0038/document.
Texte intégralDuring chronic or accidental releases of tritium from nuclear facilities to seawater or through river discharges, the dispersion of radionuclides in the marine environment is subject to multiple dispersion processes. These processes depend on the area under consideration and forcings such as tide, wind, heat and freshwater flows.Predicting the dispersion of tritium in the Bay of Biscay requires taking into account all these processes and the various inputs: the North Atlantic surface waters, discharges from nuclear facilities, freshwater inputs and exchanges with the atmosphere. The main objective of this thesis is to improve the knowledge on the hydrodynamics of the Bay of Biscay by coupling in-situ measurements of a water masses tracer: the tritium, with a hydrodynamic dispersion model (MARS 3 D).To achieve this goal, samplings were carried out in the Bay of Biscay and the two main continental contributors of tritium: the Loire and Gironde rivers.The combined use of salinity and tritium as tracers of continental waters makes it possible to differentiate into an innovative way the inputs from these two rivers at the scale of the continental shelf. The measured and simulated stocks of tritium within the shelf provided a first estimate of the residence time of continental water in the Bay of Biscay
Charlaix, Elisabeth. « Dispersion en milieu poreux : mise en evidence de longueurs caracteristiques ». Paris 6, 1987. http://www.theses.fr/1987PA066302.
Texte intégralPelosi, Anna. « Numerical modeling of traces in gravel-bed rivers ». Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1922.
Texte intégralThe erosion, transport and deposition of pebbles in rivers have often been studied by considering the motion of tracer particles. There are reports of bedload tracing programs in field and laboratory since the late 1930s. The theoretical basis for the study of the dispersal of sediment tracer particles was delineated for the first time in 1950 by Einstein, who formulated the problem in terms of a standard 1D random walk in which each particle moves in a series of steps punctuated by waiting times. Subsequent to Einstein’s original work on tracers, the study of random walks has been extended to the case of continuous time random walks (CTRW). CTRW, accompanied by appropriate probability distribution functions (PDFs) for walker step length and waiting time, yields asymptotically the standard advectiondiffusion equation (ADE) for thin-tailed PDFs, and the fractional advection-diffusion equation (fADE) for heavy-tailed PDFs, the latter allowing the possibilities of subdiffusion or superdiffusion of particles, which is often referred as non-local behavior or anomalous diffusion. In latest years, considerable emphasis has been placed on non-locality associated with heavy-tailed PDFs for particle step length. This appears to be in part motivated by the desire to construct fractional advective-diffusive equations for pebble tracer dispersion corresponding to the now-classical fADE model. Regardless of the thin tail of the PDF, the degree of non-locality nevertheless increases with increasing mean step length. In the thesis, we firstly consider the general case of 1D morphodynamics of an erodible bed subject to bedload transport analysing the effects of non-locality mediated by both heavyand thin-tailed PDFs for particle step length on transient aggradational- degradational bed profiles. Then, we focus on tracers. (i) We show that the CTRW Master Equation is inappropriate for river pebbles moving as bed material load and (ii) by using the Parker-Paola-Leclair (PPL) framework for the Exner equation of sediment conservation, which captures the vertical structure of bed elevation variation as particles erode and deposit, we develop a new ME for tracer transport and dispersion for alluvial morphodynamics. The new ME is derived from the Exner equation of sediment continuity and it yields asymptotic forms for ADE and fADE that differ significantly from CTRW. It allows a) vertical dispersion, as well as streamwise advection-diffusion, and b) mean waiting time to vary in the vertical. We also show that vertical dispersion is nonlocal (subdiffuive), but cannot be expressed with fractional derivatives. Vertical dispersion is the likely reason for the slowdown of streamwise advection of tracer pebbles observed in the field, which is the key result of our modeling when co-evolution of vertical and streamwise dispersion are considered. [edited by author]
XII n.s.
WILSON, JR GERALDO. « Etude du transport et de la dispersion des sediments en tant que processus aleatoires ». Paris 6, 1987. http://www.theses.fr/1987PA066670.
Texte intégralLesouëf, Dorothée. « Étude numérique des circulations locales à la Réunion : application à la dispersion de polluants ». Phd thesis, Université de la Réunion, 2010. http://tel.archives-ouvertes.fr/tel-00633096.
Texte intégralMachado, da Silva Luis Carlos. « Transport d'un traceur passif dans l'atmosphère : expériences et simulations numériques (relief complexe : le site de Grenoble) ». Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10008.
Texte intégralRoht, Yanina Lucrecia. « Transport et dispersion d’un traceur dans un écoulement de suspensions oscillant ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS065/document.
Texte intégralWe study the transport and the hydrodynamical dispersion of a passive tracer and/or a suspension of non-Brownian particles in two model fractures with smooth walls or a random distribution of obstacles in the aperture. We use an oscillating flow of a Newtonian fluid in order to study the effects of the reversibility of the displacement on dispersion. We characterize quantitatively the effects of the characteristic parameters of the flow: period T and amplitude A of the oscillations, and characteristic time τ_m of molecular diffusion across the thickness of the cell.In the case of smooth walls, we show that the dispersion regimes are determined by the value of the ratio τ_m/T. For τ_m/T≤2, the Taylor dispersion mechanism is dominant and irreversible at the global scale. For τ_m/T≥20, one has a partly reversible regime in which mixing remains diffusive at the global scale but, locally, the distribution of the particles in the thickness of the cell follows the oscillations v_x (z,t) of the local velocity. In this case, there exists a purely convective and reversible dispersion component.In the case of a cell with rough walls, flow disorder due to the obstacles results in a geometrical dispersion component when τ_m/T≤0,6, for which the dispersivity normalized by the amplitude l_d/A does not depend on the period T. The Taylor dispersion regime is observed in a range 0,8≤τ_m/T≤1 depending on the amplitude of the oscillation. When τ_m/T≥20, one obtains the partly reversible dispersion regime already observed previously for the smooth cell. Comparing these results to those obtained by complementary techniques (echo and transmission) allows us to separate the irreversible component of dispersion from the reversible one associated to macroscopic preferential flow channels due to the fracture geometry.The influence on dispersion of a suspension of 40 µm diameter non Brownian particles in the oscillating flow has then be studied in the cell with smooth walls. The global tracer dispersion measurements have shown the same dispersion regimes than without particles with domains of existence determined, like in this latter case, by the value of the ratio τ_m/T.In order to understand better the origin of these results at the microscopic scale, we tracked the individual trajectories of the particles in an oscillating flow. Their motion and the distribution of their velocities have been measured in several layers at different distances from the walls in the cell thickness. The particles are observed to follow the flow liens; the profile of their velocities in the thickness displays the parabolic shape of a Posieuille profile. Moreover, we compared the distribution of the particles after a certain number of oscillations to those at the initial time and observed, for long periods T, a migration of the particles towards the vicinity of the cell walls. Moreover, the motion of some particles display a kinematic reversibility and follow the same trajectory for both directions of the flow, even when there are interactions with the others.Finally, when the concentration of the particles is increased, one observes a structuration of the suspension into bands perpendicular to the flow. The wavelength λ of this instability has been studied as a function of geometrical (thickness H and width of the cell, particle diameter) and physical parameters (viscosity and density of the fluid, particle density) and of the characteristics of the flow (sine or square wave variation of the flow, amplitude A et period T). The normalized wavelength λ/H increases linearly with the normalized amplitude A/H but is constant with T and H and with the particle diameter. At the local level, the instability corresponds to periodic variations of the particle concentration along the length of the cell which extend across its whole thickness H
Se estudió el transporte y dispersión hidrodinámica de un trazador pasivo y/o de una suspensión de partículas en una fractura de paredes lisas y en otra, con una distribución aleatoria de obstáculos en su espesor. Se utiliza un flujo oscilante de un fluido newtoniano, permitiéndonos observar los efectos de la reversibilidad del desplazamiento sobre el fenómeno. En todos los casos se buscó cuantificar la influencia de los parámetros característicos del flujo: el período T y la amplitud A de las oscilaciones, el tiempo característico de difusión molecular sobre el espesor τ_m, la concentración y el tamaño de las partículas. En el caso de paredes lisas, se puso en evidencia que los regímenes de dispersión están gobernados por la relación τ_m /T. Se encontró que, a bajos τ_m /T ≤ 2, el régimen de dispersión de Taylor es dominante y, a escala global, es irreversible. Para τ_m /T ≥ 20 encontramos un régimen parcialmente reversible donde la mezcla continúa siendo difusiva a escala global; sin embargo, localmente, las simulaciones numéricas de tipo Monte Carlo mostraron que la distribución de partículas de trazador en el espesor sigue las oscilaciones de la velocidad local v_x (z, t). En este caso, el coeficiente de dispersión tiene una componente puramente convectiva, que es reversible. En el caso de una celda rugosa, el desorden introducido por los obstáculos hizo aparecer la dispersión geométrica a τ_m /T ≤ 0,6, donde la dispersividad ldg varía con la amplitud y no depende del período de la oscilación del flujo. El régimen de dispersión de Taylor se detectó en un intervalo de la relación entre los tiempos característicos más estrecho que en el caso de celda lisa, 〖0,8≤τ〗_m/T≤1, este rango depende de la amplitud de la oscilación. También se encontró el régimen de dispersión parcialmente reversible, para τ_m /T ≥ 20, correspondiendo con lo visto previamente en la celda de paredes lisas. Con técnicas complementarias (eco y transmisión), se aisló la componente de la dispersión irreversible de la reversible indicando la existencia de canales de flujo macroscópicos generados por la geometría de la fractura. Luego, se estudió el efecto sobre la dispersión por la presencia de una suspensión de partículas de poliestireno de 40 μm de diámetro, en la celda de Hele-Shaw lisa, con un flujo oscilante. En la medida global de la dispersión, se encontraron básicamente los mismos regímenes que en la celda lisa. Luego, en una escala microscópica, para terminar de comprender lo que sucede en el fenómeno de dispersión, se realizó el seguimiento de las trayectorias individuales de las partículas dentro de la celda sometidas a un flujo oscilante. Se analizó el movimiento en diferentes capas del espesor y se obtuvieron las distribuciones de velocidades. Se pudo observar que, las partículas se mueven siguiendo las diferentes líneas de corriente y su perfil de velocidades mantiene la forma parabólica característica de Poiseuille. Por otro lado, se aislaron las trayectorias que presentan reversibilidad cinemática, comprobando que hay partículas que van y vienen por el mismo camino, aún en presencia de interacciones débiles entre ellas. Por último, se aumentó la concentración de partículas presentes en la suspensión y se observó que, con un flujo oscilante, la suspensión dentro de la celda se estructura formando bandas periódicas transversales al flujo. Se caracterizó la dependencia de la longitud de onda λ de esta inestabilidad en función de parámetros geométricos (apertura y ancho de la celda, diámetro de partículas); físicos (viscosidad del fluido, densidad de las partículas) y geometría de flujo (sinusoidal, onda cuadrada, T y A). Se encontró que: para cada espesor de la celda, diferente diámetro y densidad de las partículas, viscosidades del fluido, λ resulta constante con T y aumenta linealmente con A. Localmente, se observó que la inestabilidad corresponde a variaciones de la concentración de las partículas en el espesor de la celda
Livres sur le sujet "Tracers dispersion"
Iller, Edward. Dyspersyjny model transportu mediów w radioznacznikowych badaniach pracy wybranych instalacji przemysłowych. Warszawa : Instytut Chemii i Techniki Ja̜drowej, 1999.
Trouver le texte intégralSundermeyer, Miles Aaron. Studies of lateral dispersion in the ocean. Woods Hole, Mass : Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Trouver le texte intégralDraxler, Roland R. Metropolitan Tracer Experiment (METREX). Silver Spring, Md : National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1985.
Trouver le texte intégralCowperthwaite, N. A. Scale model wind tunnel measurements on the Leyland T45 and DAF 3300 vehicles used for the T.R.R.L. spray dispersion programme. Cranfield, U.K : College of Aeronautics, Cranfield Institute of Technology, 1986.
Trouver le texte intégralCowperthwaite, N. A. Full scale and wind tunnel surface pressure measurements on the T.R.R.L. spray dispersion programme vehicles. Cranfield, U.K : College of Aeronautics, Cranfield Institute of Technology, 1987.
Trouver le texte intégralAlberta. Energy Resources Conservation Board. et Concord Environmental Corporation, dir. Field measurement program : Atmospheric dispersion tracer study under stable conditions and meteorological study. Calgary, Alta : Energy Resources Conservation Board, 1990.
Trouver le texte intégralNATO, Advanced Research Workshop on Chaotic Advection Tracer Dynamics and Turbulent Dispersion (1993 Sereno di Gavi Italy). Chaoticadvection, tracer dynamics and turbulent dispersion : Proceedings of the NATO Advanced Research Workshop and EGS Topical Workshop on Chaotic Advection, Tracer Dynamics and Turbulent Dispersion, conference centre Sereno di Gavi, Italy, 24-29May 1993. Amsterdam : North-Holland, 1994.
Trouver le texte intégralLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore : U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Trouver le texte intégralLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore : U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Trouver le texte intégralLee, Karl K. Stream velocity and dispersion characteristics determined by dye-tracer studies on selected stream reaches in the Willamette River Basin, Oregon. Portland, Ore : U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Trouver le texte intégralChapitres de livres sur le sujet "Tracers dispersion"
Bedmar, A. Plata. « Use of Artificial Tracers for Pollution Dispersion Studies in Surface Water ». Dans Water Pollution : Modelling, Measuring and Prediction, 329–51. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3694-5_24.
Texte intégralMoroni, Monica, et John H. Cushman. « Anomalous Dispersion of Conservative Tracers : Theory and Three-Dimensional Particle Tracking Velocimetry Experiments ». Dans Stochastic Methods in Subsurface Contaminant Hydrology, 365–93. Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/9780784405321.ch10.
Texte intégralKoplik, Joel. « The Tracer Transit-Time Tail in Multipole Reservoir Flows ». Dans Dispersion in Heterogeneous Geological Formations, 199–209. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_10.
Texte intégralBenson, David A., Rina Schumer, Mark M. Meerschaert et Stephen W. Wheatcraft. « Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests ». Dans Dispersion in Heterogeneous Geological Formations, 211–40. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_11.
Texte intégralBuhmann, Stefan Yoshi. « Introduction : Dispersion Forces ». Dans Springer Tracts in Modern Physics, 1–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32484-0_1.
Texte intégralBuhmann, Stefan Yoshi. « Common Properties of Dispersion Forces ». Dans Springer Tracts in Modern Physics, 75–111. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32466-6_3.
Texte intégralSilliman, S. E., et L. Zheng. « Comparison of Observations from a Laboratory Model with Stochastic Theory : Initial Analysis of Hydraulic and Tracer Experiments ». Dans Dispersion in Heterogeneous Geological Formations, 85–107. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_5.
Texte intégralPannone, Marilena, et Peter K. Kitanidis. « Large-Time Spatial Covariance of Concentration of Conservative Solute and Application to the Cape Cod Tracer Test ». Dans Dispersion in Heterogeneous Geological Formations, 109–32. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1278-1_6.
Texte intégralKuznetsov, Alexander, et Nickolay Mikheev. « Particle Dispersion in External Active Media ». Dans Springer Tracts in Modern Physics, 45–126. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36226-2_4.
Texte intégralGraziani, Giovanni, Franco Girardi, Gianni Grippa et Christine Vernetti. « Simulation of Transport and Dispersion of Tracer Releases ». Dans Air Pollution Modeling and Its Application IX, 285–93. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3052-7_28.
Texte intégralActes de conférences sur le sujet "Tracers dispersion"
Assemat, P., A. Bergeon et F. Plouraboue´. « Inertia Driven Dispersion Between Patterned Surfaces ». Dans ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75243.
Texte intégralEckstein, Eugene C., Vinay Bhal, JoDe M. Lavine, Baoshun Ma, Mark Leggas et Jerome A. Goldstein. « Nested First-Passages of Tracer Particles in Flows of Blood and Control Suspensions : Symmetry and Lorentzian Transformations ». Dans ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69549.
Texte intégralVelasco-Lozano, Moises, et Matthew Thomas Balhoff. « Modeling of Chemical Tracers to Estimate Oil Volume Contacted and Sweep Efficiency in Porous Media Under Countercurrent Spontaneous Imbibition ». Dans SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209382-ms.
Texte intégralUthe, Edward E., William Viezee et Jason K. S. Ching. « Airborne Lidar Tracking of Fluorescent Tracers for Atmospheric Transport and Diffusion Studies ». Dans Optical Remote Sensing. Washington, D.C. : Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.wc26.
Texte intégralNiu, Haibo, et Shihan Li. « Modeling the dispersion of tracers in the marine environment : A model sensitivity study ». Dans OCEANS 2016 - Shanghai. IEEE, 2016. http://dx.doi.org/10.1109/oceansap.2016.7485528.
Texte intégralCevheri, Necmettin, et Minami Yoda. « Evanescent-Wave Particle Velocimetry Studies of Electrokinetically Driven Flows : Divalent Counterion Effects ». Dans ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75274.
Texte intégralPirrone, Marco, Satria Andrianata, Sara Moriggi, Giuseppe Galli et Simone Riva. « Full Analytical Modeling Of Intrawell Chemical Tracer Concentration For Robust Production Allocation In Challenging Environments ». Dans SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206245-ms.
Texte intégralKabelka, V., A. V. Masalov, S. Nikitin et H. Milchberg. « Tracing the phase distortion of a single femtosecond light pulse ». Dans The European Conference on Lasers and Electro-Optics. Washington, D.C. : Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cma6.
Texte intégralYaralidarani, Muhammad, Shokoufeh Aghabozorgi, Seyed Amir Farzaneh et Mehran Sohrabi. « Evaluation of Different Numerical Techniques for Accurate Modelling of Tracer Flow in Porous Media ». Dans SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212598-ms.
Texte intégralGalani, A. N., M. E. Kainourgiakis, E. S. Kikkinides, A. K. Stubos, C. Chatzichristos, J. Muller et A. Papaioannou. « Tracer Dispersion in Stochastically Reconstructed Porous Media ». Dans ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24156.
Texte intégralRapports d'organisations sur le sujet "Tracers dispersion"
Feddersen, Falk. Dispersion in the Surfzone : Tracer Dispersion Studies. Fort Belvoir, VA : Defense Technical Information Center, septembre 2011. http://dx.doi.org/10.21236/ada557187.
Texte intégralAbernathy, R. N., I. A. Min, B. L. Lundblad et W. S. Kempf. Tracer Puff Dispersion at Launch Sites. Fort Belvoir, VA : Defense Technical Information Center, juillet 1999. http://dx.doi.org/10.21236/ada368855.
Texte intégralJunker, D. Tracer studies for determining dispersion coefficients in isotope exchange columns. Office of Scientific and Technical Information (OSTI), juillet 1990. http://dx.doi.org/10.2172/7070309.
Texte intégralGuza, R. T., et Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Tidal Inlets and River Mouths. Fort Belvoir, VA : Defense Technical Information Center, janvier 2013. http://dx.doi.org/10.21236/ada580343.
Texte intégralAllwine, K. Jerry, et Julia E. Flaherty. Urban Dispersion Program MSG05 Field Study : Summary of Tracer and Meteorological Measurements. Office of Scientific and Technical Information (OSTI), août 2006. http://dx.doi.org/10.2172/890733.
Texte intégralGuza, R. T., et Falk Feddersen. Transport and Dispersion of Dye-tracer and Drifters at a Tidal Inlet. Fort Belvoir, VA : Defense Technical Information Center, janvier 2015. http://dx.doi.org/10.21236/ada614273.
Texte intégralGuza, R. T., et Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & ; River Mouths. Fort Belvoir, VA : Defense Technical Information Center, janvier 2011. http://dx.doi.org/10.21236/ada540572.
Texte intégralGuza, R. T., et Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & ; River Mouths. Fort Belvoir, VA : Defense Technical Information Center, septembre 2013. http://dx.doi.org/10.21236/ada598302.
Texte intégralGuza, R. T., et Falk Feddersen. Lagrangian Tracer Transport and Dispersion in Shallow Tidal Inlets & ; River Mouths. Fort Belvoir, VA : Defense Technical Information Center, septembre 2011. http://dx.doi.org/10.21236/ada557205.
Texte intégralSenum, G., R. Dietz, T. D'Ottavio, R. Goodrich, E. Cote et D. Spandau. A perfluorocarbon tracer transport and dispersion experiment in the North Sea Ekofisk oil field. Office of Scientific and Technical Information (OSTI), décembre 1989. http://dx.doi.org/10.2172/7270738.
Texte intégral