Littérature scientifique sur le sujet « Torus knot »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Torus knot ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Torus knot"
Lee, Sangyop. « Knot types of twisted torus knots ». Journal of Knot Theory and Its Ramifications 26, no 12 (octobre 2017) : 1750074. http://dx.doi.org/10.1142/s0218216517500742.
Texte intégralLee, Sangyop. « Twisted torus knots T(p,q,p − kq,−1) which are torus knots ». Journal of Knot Theory and Its Ramifications 29, no 09 (août 2020) : 2050068. http://dx.doi.org/10.1142/s0218216520500686.
Texte intégralLee, Sangyop. « Composite Knots Obtained by Twisting Torus Knots ». International Mathematics Research Notices 2019, no 18 (9 décembre 2017) : 5744–76. http://dx.doi.org/10.1093/imrn/rnx282.
Texte intégralOZAWA, MAKOTO. « SATELLITE DOUBLE TORUS KNOTS ». Journal of Knot Theory and Its Ramifications 10, no 01 (février 2001) : 133–42. http://dx.doi.org/10.1142/s0218216501000779.
Texte intégralAmoranto, Evan, Brandy Doleshal et Matt Rathbun. « Additional cases of positive twisted torus knots ». Journal of Knot Theory and Its Ramifications 26, no 12 (octobre 2017) : 1750078. http://dx.doi.org/10.1142/s021821651750078x.
Texte intégralSATOH, SHIN. « VIRTUAL KNOT PRESENTATION OF RIBBON TORUS-KNOTS ». Journal of Knot Theory and Its Ramifications 09, no 04 (juin 2000) : 531–42. http://dx.doi.org/10.1142/s0218216500000293.
Texte intégralBAADER, SEBASTIAN. « Unknotting sequences for torus knots ». Mathematical Proceedings of the Cambridge Philosophical Society 148, no 1 (6 juillet 2009) : 111–16. http://dx.doi.org/10.1017/s0305004109990156.
Texte intégralNAKAMURA, INASA. « BRAIDING SURFACE LINKS WHICH ARE COVERINGS OVER THE STANDARD TORUS ». Journal of Knot Theory and Its Ramifications 21, no 01 (janvier 2012) : 1250011. http://dx.doi.org/10.1142/s0218216511009650.
Texte intégralTran, Anh T. « The strong AJ conjecture for cables of torus knots ». Journal of Knot Theory and Its Ramifications 24, no 14 (décembre 2015) : 1550072. http://dx.doi.org/10.1142/s0218216515500728.
Texte intégralABE, TETSUYA. « AN ESTIMATION OF THE ALTERNATION NUMBER OF A TORUS KNOT ». Journal of Knot Theory and Its Ramifications 18, no 03 (mars 2009) : 363–79. http://dx.doi.org/10.1142/s021821650900694x.
Texte intégralThèses sur le sujet "Torus knot"
Barker, Stephen J. « Interchanging Two Notations for Double-torus Links ». Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etd/2616.
Texte intégralBettersworth, Zachary S. « Nullification of Torus Knots and Links ». TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1626.
Texte intégralOBERTI, CHIARA. « Induction effects of torus knots and unknots ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/87792.
Texte intégralThe induction effects due to a steady source field in the shape of a torus knot or unknot filament are analysed in detail. Similar studies for rectilinear, circular or helical geometries have been done in the past, but very little is known for more complex geometries and topologies. Torus knots provide a rare example of closed, space curves of non-trivial topology, that admit a mathematically simple description; for this reason they represent an interesting case study to consider. Moreover, since torus knots are also a good mathematical model for studying braided field line structures, the present work provides useful information for a wide range of possible applications, from physical sciences (solar physics and astrophysics, vortex dynamics, fusion physics) to technology (telecommunication, new materials design, data analysis). The work is organized in 4 chapters. In chapter 1 we present a comprehensive study of geometric and topological properties of torus knots and unknots. By using a standard parametrization, we demonstrate the existence, and determine the location, of inection points for a given critical configuration, and prescribe the condition for removing the singularity associated with torsion at the inflection point. We show that, to first approximation, total length grows linearly with the number of coils, and it is proportional to the minimum crossing number of the knot type. By taking the winding number, given by the ratio between meridian and longitudinal wraps, as measure of topological complexity of the knot, we analyse its influence on several global quantities, such as total length, curvature, torsion and writhe. In chapter 2 we analyse the influence of the winding number and other geometric properties on induction, energy and helicity. This is done by assuming the physical filament of infinitesimally small cross-section and by using the Biot-Savart law adapted for the particular parametrization chosen. Field line patterns of the induced field are obtained for a large family of knots/unknots on several cross-sectional planes. The intensity of the induced field is shown to depend linearly on the number of toroidal coils. We provide bounds on energy, and an estimate of helicity in terms of writhe. In chapter 3 we compare local and global induction contributions in relation to the winding number, by providing asymptotic expansions of the integrand function. We show that in general local leading order terms are not sufficient to provide accurate global information; nevertheless, for some values of the winding number local and global behaviours are found to be in good agreement. In chapter 4 we investigate the influence of the winding number on the binormal component of the self-induction a point asymptotically near to the source field. Since in the limit the Biot-Savart integral becomes singular, we apply the analytical prescription of Moore and Saffman (1972) to regularize it. While to leading order the self-induction is proportional to local curvature, we derive an integral formula for next terms, including higher order local terms together with non-local terms, and we study its dependence on the winding number by showing that the dominant contribution is generally given by non-local terms.
Ameur, Kheira. « Polynomial quandle cocycles, their knot invariants and applications ». [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001813.
Texte intégralBellanco, Olivia. « Articulation topologique de la clinique ». Thesis, Paris 8, 2018. http://www.theses.fr/2018PA080039.
Texte intégralWe will trace the course of topology in Lacan’s teaching: from algebraic topology, where we will deal with topological surfaces (torus, Moebius strip, Klein bottle, cross-cap) we will reach topology whose paradigm is the Borromean knot. We will then consider the theoretical consequences implied: from the Freudian unconscious or symbolic unconscious we will move to the real unconscious and the une-bévue, and from the symptom we will consider the sinthome and its logic. We will refine the dual relationship of the subject to signifier and Jouissance, and highlight the importance of the body as living. To do this, we will study more precisely the relationship of the subject to the hole, a fundamental lack that constitutes him, both exterior and interior. We will see how, in its hollow and its edges, the subject lodges its singularity, its "x". We will link it to clinic to reveal the contribution of topology in practice
Hill, Peter Clifford. « On double-torus knots ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0011/NQ35186.pdf.
Texte intégralIrvine, Robin. « "Los toros guapos" - "good-looking bulls" : animal life, ethics and professional know-how on an Andalusian bull-breeding estate ». Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/15550.
Texte intégralRomuald, Camille. « Des Muscles Moléculaires dans tous leurs Etats aux Noeuds Moléculaires inédits à Cavité Modulable ». Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20167.
Texte intégralThis thesis is devoted to the synthesis of pH-sensitive molecular muscles and knots. The first molecular muscle has been readily synthesized and published in 2008, using a two-step strategy: 1) end-capping of the interlocked axles by copper(I)-catalyzed Huisgen alkyne-azide 1,3-dipolar cycloaddition, 2) methylation of triazoles to triazoliums, which are able to interact with the macrocycle DB24C8. Two stretched and contracted states, triggered by variation of pH, allow the control of the distance and of the orientation of the two glucidic ends, which are not covalently linked. Novel mono- and disubstituted pyridinium amide stations have been used for the synthesis of large-amplitude molecular muscles, whose translation of the macrocycles trigger a second co-conformational induced effect. In fact, upon contraction of the molecular muscle, using carbamoylation of the ammoniums, the slight different localizations of the macrocycles around the pyridinium amides (depending on their mono- or disubstitution) trigger two very different effects. The first one is a molecular break played by the DB24C8, whereas the second one is a flipping of the chair-like conformation of the mannopyranosyl ends. A methodologic study was then carried out with the aim to determine the relative affinity of the new described molecular stations for the DB24C8, and led to the synthesis of a molecular muscle which oscillates from the contracted to the semi-contracted co-conformation, depending on solvent and temperature. Eventually, different routes to very new double-lasso molecular knots were investigated from a molecular muscle building-block. One molecular knotted machine has been obtained, and has a double-lasso structure, whose rotation and size of its cavity can both been modulated by variation of pH
Henri, Delphine. « Production et consommation textiles à Tours aux XVe et XVIe siecles : Approche archéologique ». Thesis, Tours, 2015. http://www.theses.fr/2015TOUR2019/document.
Texte intégralThe discovery in Tours of a set of almost 6000 pieces in the same pit, located just outside the city walls along the Loire River ("place Anatole France") provides an opportunity to study the entire process of textile work. The fragments studied are mostly wool cloth, which was a significant commercial production on the 15th - 16th centuries. As for remains of silk which are less well preserved, the study attempted to determine if they were produced in Tours. Among the shapes of wool remains, remarkably preserved, were a few clear parts of garments. Textiles were re-used to fashion laces and hoses in such a high frequency that the corpus is interpreted as the emptying of a second-hand clothes dealer shop. This corpus, combined with law texts regarding Tours, provides a picture of a late medieval capital city, where bourgeoisie wore good broadcloth and, contrary to law, silk dress accessories
Hok, Jean-Marc. « 1-cocycles pour les n-tresses fermées dans le tore solide qui sont des nœuds et algorithmes de calculs ». Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30022.
Texte intégralThis manuscript is a work within the scope of topology, algebra, combinatorics and programming. More precisely, it is a thesis in knot theory. The main goal of this manuscript is to provide a family of invariants that can distinguish 4-braids that are knots (a particular family of knots) in the solid torus S1×D2. The construction and the computation of these invariants use knot theory basics but the proof of the main invariance theorem requires more advanced knowledge in singularity theory. The understanding of the computational program that implements these invariants in Sagemath requires basic knowledge of Python programming and algorithmics (Oriented-Object Programming, recursive function theory, dictionaries, etc...)
Livres sur le sujet "Torus knot"
Hikami, Kazuhiro. Torus knot and minimal model. Kyoto, Japan : Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2003.
Trouver le texte intégralHill, Peter Clifford. On double-Torus knots. Toronto : University of Toronto, 1998.
Trouver le texte intégralSpring, Michael. Great European itineraries : Everything you need to know to plan your own memorable vacation. Garden City, N.Y : Doubleday, 1987.
Trouver le texte intégralTort Law Update (5th 1994 Spokane & Seattle, Wash.). 5th Annual Tort Law Update : Strictly "need to know". [Seattle, Wash : Washington State Trial Lawyers Association, 1994.
Trouver le texte intégralSondra, Jamieson, dir. Historic Knoxville and Knox County : City center, neighborhoods, and parks : a walking and touring guide. Norris, Tenn : Laurel Place, 1990.
Trouver le texte intégralTort Law Update (1st 1990 SeaTac, Wash.). 1st Annual Tort Law Update : What you don't know can hurt you and your client. [Seattle, WA?] : Washington State Trial Lawyers Association, 1990.
Trouver le texte intégralPopper, Adrienne. Summer camps and teen tours : Everything parents and kids should know. New York : Pocket Books, 1988.
Trouver le texte intégralGindlesperger, James. So you think you know Gettysburg ? : The stories behind the monuments and the men who fought one of America's most epic battles. Winston-Salem, N.C : John F. Blair, 2010.
Trouver le texte intégralMark, Gorney, dir. Risk, liability and malpractice : What every plastic surgeon needs to know. [Philadelphia] : Elsevier Saunders, 2011.
Trouver le texte intégralSuzanne, Gindlesperger, dir. So you think you know Gettysburg ? : The stories behind the monuments and the men who fought one of America's most epic battles. Winston-Salem, N.C : John F. Blair Publisher, 2010.
Trouver le texte intégralChapitres de livres sur le sujet "Torus knot"
Murasugi, Kunio. « Torus Knots ». Dans Knot Theory & ; Its Applications, 132–51. Boston, MA : Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4719-3_8.
Texte intégralPandey, Vipul Kumar, et Bhabani Prasad Mandal. « BRST Qantization on Torus Knot ». Dans XXII DAE High Energy Physics Symposium, 513–16. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_120.
Texte intégralDamiani, Celeste. « Towards a Version of Markov’s Theorem for Ribbon Torus-Links in $$\mathbb {R}^4$$ ». Dans Knots, Low-Dimensional Topology and Applications, 309–28. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16031-9_15.
Texte intégralDiamantis, Ioannis. « An Alternative Basis for the Kauffman Bracket Skein Module of the Solid Torus via Braids ». Dans Knots, Low-Dimensional Topology and Applications, 329–45. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16031-9_16.
Texte intégralTyurina, S. D. « Closure of Drinfeld’s Associator and the Kontsevich Integral for (2,n)-Torus Knots ». Dans Proceedings of the Second ISAAC Congress, 1079–89. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0271-1_31.
Texte intégralTyurina, Svetlana, et Alexander Varchenko. « Finite-order Invariants for (n, 2)-Torus Knots and the Curve $${Y^2}={X^3}+{X^2}$$ ». Dans Notions of Positivity and the Geometry of Polynomials, 401–3. Basel : Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0142-3_21.
Texte intégralMahieu, Rilke. « ‘We're not coming from Mars ; we know how things work in Morocco!’ How diasporic Moroccan youth resists political socialisation in state-led homeland tours ». Dans The Microfoundations of Diaspora Politics, 202–19. London : Routledge, 2021. http://dx.doi.org/10.4324/9781003191261-11.
Texte intégralMee, Nicholas. « The Gordian Knot ». Dans Celestial Tapestry, 235–47. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851950.003.0023.
Texte intégral« Representations and the colored Jones polynomial of a torus knot ». Dans Chern-Simons Gauge Theory : 20 Years After, 153–71. Providence, Rhode Island : American Mathematical Society, 2011. http://dx.doi.org/10.1090/amsip/050/08.
Texte intégral« Torus Knots ». Dans Crafting Conundrums, 50–66. A K Peters/CRC Press, 2014. http://dx.doi.org/10.1201/b17578-7.
Texte intégralActes de conférences sur le sujet "Torus knot"
Xufeng, Zhang, et Luo Jianshu. « A New Torus Knot EFIE ». Dans 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. IEEE, 2007. http://dx.doi.org/10.1109/mape.2007.4393674.
Texte intégralKumar, S. Vinoth, et A. R. Harish. « Trefoil torus knot antenna with boresight radiation pattern ». Dans 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). IEEE, 2017. http://dx.doi.org/10.1109/iaim.2017.8402575.
Texte intégralKumar, S. Vinoth, et A. R. Harish. « Dual mode bandpass filter using trefoil torus knot resonator ». Dans 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC). IEEE, 2015. http://dx.doi.org/10.1109/imarc.2015.7411408.
Texte intégralKumar, S. Vinoth, et A. R. Harish. « Two-port 3D printed trefoil torus knot antenna with pattern diversity ». Dans 2018 3rd International Conference on Microwave and Photonics (ICMAP). IEEE, 2018. http://dx.doi.org/10.1109/icmap.2018.8354587.
Texte intégralKumar, S. Vinoth, et A. R. Harish. « Generation of circularly polarized conical beam pattern using (3, 8) torus knot antenna ». Dans 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017. http://dx.doi.org/10.23919/eucap.2017.7928724.
Texte intégralGolbus, Peter, Robert W. McGrail, Tomasz Przytycki, Mary Sharac et Aleksandar Chakarov. « Tricolorable torus knots are NP-complete ». Dans the 47th Annual Southeast Regional Conference. New York, New York, USA : ACM Press, 2009. http://dx.doi.org/10.1145/1566445.1566503.
Texte intégralSyrmos, G., R. Rassai et R. W. Newcomb. « Semistate Equations for Solid-Holed Torus Knots ». Dans 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790545.
Texte intégralBalutoiu, Maria anca, Alexandru Gradinaru, Alin Moldoveanu, Florica Moldoveanu, Anakarina Nazare, Andrei Lapusteanu et Mireille Radoi. « LIBQUEST - A CHALLENGE TO READ BOOKS THROUGH FUN ». Dans eLSE 2021. ADL Romania, 2021. http://dx.doi.org/10.12753/2066-026x-21-065.
Texte intégralWilkomirsky, Michèle. « Design Journey : A View from the Global South ». Dans LINK 2022. Tuwhera Open Access, 2022. http://dx.doi.org/10.24135/link2022.v3i1.189.
Texte intégral