Articles de revues sur le sujet « Topological strings »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Topological strings.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Topological strings ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Tsai, Ya-Wen, Yao-Ting Wang, Pi-Gang Luan et Ta-Jen Yen. « Topological Phase Transition in a One-Dimensional Elastic String System ». Crystals 9, no 6 (18 juin 2019) : 313. http://dx.doi.org/10.3390/cryst9060313.

Texte intégral
Résumé :
We show that topological interface mode can emerge in a one-dimensional elastic string system which consists of two periodic strings with different band topologies. To verify their topological features, Zak-phase of each band is calculated and reveals the condition of topological phase transition accordingly. Apart from that, the transmittance spectrum illustrates that topological interface mode arises when two topologically distinct structures are connected. The vibration profile further exhibits the non-trivial interface mode in the domain wall between two periodic string composites.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Montano, David, et Jacob Sonnenschein. « Topological strings ». Nuclear Physics B 313, no 2 (février 1989) : 258–68. http://dx.doi.org/10.1016/0550-3213(89)90318-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

BALACHANDRAN, A. P., W. D. McGLINN, L. O’RAIFEARTAIGH, S. SEN, R. D. SORKIN et A. M. SRIVASTAVA. « TOPOLOGICAL SPIN-STATISTICS THEOREMS FOR STRINGS ». Modern Physics Letters A 07, no 16 (30 mai 1992) : 1427–42. http://dx.doi.org/10.1142/s0217732392001105.

Texte intégral
Résumé :
Recently, a topological proof of the spin-statistics theorem has been proposed for a system of point particles. It does not require relativity or field theory, but assumes the existence of antiparticles. We extend this proof to a system of string loops in three space dimensions and show that by assuming the existence of antistring loops, one can prove a spin-statistics theorem for these string loops. According to this theorem, all unparametrized strings (such as flux tubes in superconductors and cosmic strings) should be quantized as bosons. Also, as in the point particle case, we find that the theorem excludes non-Abelian statistics.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Zhengwei, Alex Wozniakowski et Arthur M. Jaffe. « Quon 3D language for quantum information ». Proceedings of the National Academy of Sciences 114, no 10 (6 février 2017) : 2497–502. http://dx.doi.org/10.1073/pnas.1621345114.

Texte intégral
Résumé :
We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of theC∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation.
Styles APA, Harvard, Vancouver, ISO, etc.
5

WERESZCZYŃSKI, A. « KNOTS, BRAIDS AND HEDGEHOGS FROM THE EIKONAL EQUATION ». Modern Physics Letters A 20, no 15 (20 mai 2005) : 1135–46. http://dx.doi.org/10.1142/s0217732305017330.

Texte intégral
Résumé :
The complex eikonal equation in the three space dimensions is considered. We show that apart from the recently found torus knots, this equation can also generate other topological configurations with a nontrivial value of the π2(S2) index: braided open strings as well as hedgehogs. In particular, cylindric strings, i.e. string solutions located on a cylinder with a constant radius are found. Moreover, solutions describing strings lying on an arbitrary surface topologically equivalent to cylinder are presented. We discuss them in the context of the eikonal knots. The physical importance of the results originates in the fact that the eikonal knots have been recently used to approximate the Faddeev–Niemi hopfions.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Xinfei, Xin Liu et Yong-Chang Huang. « Tackling tangledness of cosmic strings by knot polynomial topological invariants ». International Journal of Modern Physics A 32, no 27 (30 septembre 2017) : 1750164. http://dx.doi.org/10.1142/s0217751x17501640.

Texte intégral
Résumé :
Cosmic strings in the early universe have received revived interest in recent years. In this paper, we derive these structures as topological defects from singular distributions of the quintessence field of dark energy. Our emphasis is placed on the topological charge of tangled cosmic strings, which originates from the Hopf mapping and is a Chern–Simons action possessing strong inherent tie to knot topology. It is shown that the Kauffman bracket knot polynomial can be constructed in terms of this charge for unoriented knotted strings, serving as a topological invariant much stronger than the traditional Gauss linking numbers in characterizing string topology. Especially, we introduce a mathematical approach of breaking-reconnection which provides a promising candidate for studying physical reconnection processes within the complexity-reducing cascades of tangled cosmic strings.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Achúcarro, A., A. Avgoustidis, A. López-Eiguren, C. J. A. P. Martins et J. Urrestilla. « Cosmological evolution of semilocal string networks ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2161 (11 novembre 2019) : 20190004. http://dx.doi.org/10.1098/rsta.2019.0004.

Texte intégral
Résumé :
Semilocal strings—a particular limit of electroweak strings—are an interesting example of a stable non-topological defect whose properties resemble those of their topological cousins, the Abrikosov–Nielsen–Olesen vortices. There is, however, one important difference: a network of semilocal strings will contain segments. These are ‘dumbbells’ whose ends behave almost like global monopoles that are strongly attracted to one another. While closed loops of string will eventually shrink and disappear, the segments can either shrink or grow, and a cosmological network of semilocal strings will reach a scaling regime. We discuss attempts to find a ‘thermodynamic’ description of the cosmological evolution and scaling of a network of semilocal strings, by analogy with well-known descriptions for cosmic strings and for monopoles. We propose a model for the time evolution of an overall length scale and typical velocity for the network as well as for its segments, and some supporting (preliminary) numerical evidence. This article is part of a discussion meeting issue ‘Topological avatars of new physics’.
Styles APA, Harvard, Vancouver, ISO, etc.
8

KAPUSTIN, ANTON. « TOPOLOGICAL STRINGS ON NONCOMMUTATIVE MANIFOLDS ». International Journal of Geometric Methods in Modern Physics 01, no 01n02 (avril 2004) : 49–81. http://dx.doi.org/10.1142/s0219887804000034.

Texte intégral
Résumé :
We identify a deformation of the N=2 supersymmetric sigma model on a Calabi–Yau manifold X which has the same effect on B-branes as a noncommutative deformation of X. We show that for hyperkähler X such deformations allow one to interpolate continuously between the A-model and the B-model. For generic values of the noncommutativity and the B-field, properties of the topologically twisted sigma-models can be described in terms of generalized complex structures introduced by N. Hitchin. For example, we show that the path integral for the deformed sigma-model is localized on generalized holomorphic maps, whereas for the A-model and the B-model it is localized on holomorphic and constant maps, respectively. The geometry of topological D-branes is also best described using generalized complex structures. We also derive a constraint on the Chern character of topological D-branes, which includes A-branes and B-branes as special cases.
Styles APA, Harvard, Vancouver, ISO, etc.
9

NITTA, MUNETO. « KNOTTED INSTANTONS FROM ANNIHILATIONS OF MONOPOLE–INSTANTON COMPLEX ». International Journal of Modern Physics A 28, no 32 (30 décembre 2013) : 1350172. http://dx.doi.org/10.1142/s0217751x13501728.

Texte intégral
Résumé :
Monopoles and instantons are sheets (membranes) and strings in d = 5+1 dimension, respectively, and instanton strings can terminate on monopole sheets. We consider a pair of monopole and antimonopole sheets which is unstable to decay and results in a creation of closed instanton strings. We show that when an instanton string is stretched between the monopole sheets, there remains a new topological soliton of codimension five after the pair annihilation, i.e. a twisted closed instanton string or a knotted instanton.
Styles APA, Harvard, Vancouver, ISO, etc.
10

DUAN, YI-SHI, LI-DA ZHANG et YU-XIAO LIU. « A NEW DESCRIPTION OF COSMIC STRINGS IN BRANE WORLD SCENARIO ». Modern Physics Letters A 23, no 24 (10 août 2008) : 2023–30. http://dx.doi.org/10.1142/s021773230802611x.

Texte intégral
Résumé :
In the light of ϕ-mapping topological current theory, the structure of cosmic strings are obtained from the Abelian Higgs model, which is an effective description to the brane world cosmic string system. In this topological description of the cosmic string, combining the result of decomposition of U(1) gauge potential, we analytically reach the familiar conclusions that in the brane world scenario the magnetic flux of the cosmic string is quantized and the RR charge of it is screened.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Rocek, Martin, Cumrun Vafa et Stefan Vandoren. « Hypermultiplets and topological strings ». Journal of High Energy Physics 2006, no 02 (23 février 2006) : 062. http://dx.doi.org/10.1088/1126-6708/2006/02/062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Berkovits, Nathan, et Cumrun Vafa. « N = 4 topological strings ». Nuclear Physics B 433, no 1 (janvier 1995) : 123–80. http://dx.doi.org/10.1016/0550-3213(94)00419-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Li, Xinfei, et Xin Liu. « Topological invariants for superconducting cosmic strings ». International Journal of Modern Physics A 33, no 27 (27 septembre 2018) : 1850156. http://dx.doi.org/10.1142/s0217751x18501567.

Texte intégral
Résumé :
Superconducting cosmic strings (SCSs) have received revived interests recently. In this paper we treat closed SCSs as oriented knotted line defects, and concentrate on their topology by studying the Hopf topological invariant. This invariant is an Abelian Chern–Simons action, from which the HOMFLYPT knot polynomial can be constructed. It is shown that the two independent parameters of the polynomial correspond to the writhe and twist contributions, separately. This new method is topologically stronger than the traditional (self-)linking number method, which fails to detect essential topology of knots sometimes, shedding new light upon the study of physical intercommunications of superconducting cosmic strings as a complex system.
Styles APA, Harvard, Vancouver, ISO, etc.
14

FIORE, R., D. GALEAZZI, L. MASPERI et A. MEGEVAND. « STRINGS AND NON-TOPOLOGICAL SOLITONS ». Modern Physics Letters A 09, no 06 (28 février 1994) : 557–68. http://dx.doi.org/10.1142/s0217732394003798.

Texte intégral
Résumé :
We have numerically calculated topological and non-topological solitons in two spatial dimensions with Chern-Simons term. Their quantum stability, as well as that of the Maxwell vortex, is analyzed by means of bounce instantons which involve three-dimensional strings and non-topological solitons.
Styles APA, Harvard, Vancouver, ISO, etc.
15

BALACHANDRAN, A. P., et S. DIGAL. « TOPOLOGICAL STRING DEFECT FORMATION DURING THE CHIRAL PHASE TRANSITION ». International Journal of Modern Physics A 17, no 08 (30 mars 2002) : 1149–58. http://dx.doi.org/10.1142/s0217751x02005864.

Texte intégral
Résumé :
We extend and generalize the seminal work of Brandenberger, Huang and Zhang on the formation of strings during chiral phase transitions1 and discuss the formation of Abelian and non-Abelian topological strings during such transitions in the early universe and in the high energy heavy-ion collisions. Chiral symmetry as well as deconfinement are restored in the core of these defects. Formation of a dense network of string defects is likely to play an important role in the dynamics following the chiral phase transition. We speculate that such a network can give rise to non-azimuthal distribution of transverse energy in heavy-ion collisions.
Styles APA, Harvard, Vancouver, ISO, etc.
16

DUAN, YI-SHI, et ZHEN-BIN CAO. « TOPOLOGICAL ZERO-THICKNESS COSMIC STRINGS ». Modern Physics Letters A 22, no 32 (20 octobre 2007) : 2471–78. http://dx.doi.org/10.1142/s0217732307022529.

Texte intégral
Résumé :
In this paper, based on the gauge potential decomposition and the ϕ-mapping theories, we study the topological structures and properties of the cosmic strings that arise in the Abelian–Higgs gauge theory in the zero-thickness limit. After a detailed discussion, we conclude that the topological tensor current introduced in our model is a better and more basic starting point than the generally used Nambu–Goto effective action for studying cosmic strings.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hayashi, Hirotaka, Patrick Jefferson, Hee-Cheol Kim, Kantaro Ohmori et Cumrun Vafa. « SCFTs, holography, and topological strings ». Surveys in Differential Geometry 23, no 1 (2018) : 105–211. http://dx.doi.org/10.4310/sdg.2018.v23.n1.a4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nekrasov, N., H. Ooguri et C. Vafa. « S-duality and Topological Strings ». Journal of High Energy Physics 2004, no 10 (7 octobre 2004) : 009. http://dx.doi.org/10.1088/1126-6708/2004/10/009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hofman, Christiaan, et Whee Ky Ma. « Deformations of topological open strings ». Journal of High Energy Physics 2001, no 01 (24 janvier 2001) : 035. http://dx.doi.org/10.1088/1126-6708/2001/01/035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Eguchi, Tohru, et Hiroaki Kanno. « Topological strings and Nekrasov's formulas ». Journal of High Energy Physics 2003, no 12 (3 décembre 2003) : 006. http://dx.doi.org/10.1088/1126-6708/2003/12/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Iqbal, Amer, Cumrun Vafa, Nikita Nekrasov et Andrei Okounkov. « Quantum foam and topological strings ». Journal of High Energy Physics 2008, no 04 (2 avril 2008) : 011. http://dx.doi.org/10.1088/1126-6708/2008/04/011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Diamantini, M. C., F. Quevedo et C. A. Trugenberger. « Confining strings with topological term ». Physics Letters B 396, no 1-4 (mars 1997) : 115–21. http://dx.doi.org/10.1016/s0370-2693(97)00132-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ooguri, Hirosi, et Cumrun Vafa. « Knot invariants and topological strings ». Nuclear Physics B 577, no 3 (juin 2000) : 419–38. http://dx.doi.org/10.1016/s0550-3213(00)00118-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Aganagic, Mina, Robbert Dijkgraaf, Albrecht Klemm, Marcos Mariño et Cumrun Vafa. « Topological Strings and Integrable Hierarchies ». Communications in Mathematical Physics 261, no 2 (19 octobre 2005) : 451–516. http://dx.doi.org/10.1007/s00220-005-1448-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Landsteiner, K., W. Lerche et A. Sevrin. « Topological strings from WZW models ». Physics Letters B 352, no 3-4 (juin 1995) : 286–97. http://dx.doi.org/10.1016/0370-2693(95)00518-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bouchard, Vincent, Albrecht Klemm, Marcos Mariño et Sara Pasquetti. « Topological Open Strings on Orbifolds ». Communications in Mathematical Physics 296, no 3 (7 mars 2010) : 589–623. http://dx.doi.org/10.1007/s00220-010-1020-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Ishibashi, N., et M. Li. « Topological strings from Liouville gravity ». Physics Letters B 262, no 4 (juin 1991) : 398–404. http://dx.doi.org/10.1016/0370-2693(91)90612-t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Alim, Murad, et Emanuel Scheidegger. « Topological strings on elliptic fibrations ». Communications in Number Theory and Physics 8, no 4 (2014) : 729–800. http://dx.doi.org/10.4310/cntp.2014.v8.n4.a4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Grassi, Alba, Yasuyuki Hatsuda et Marcos Mariño. « Topological Strings from Quantum Mechanics ». Annales Henri Poincaré 17, no 11 (9 avril 2016) : 3177–235. http://dx.doi.org/10.1007/s00023-016-0479-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Nekrasov, Nikita A. « Two-Dimensional Topological Strings Revisited ». Letters in Mathematical Physics 88, no 1-3 (28 mars 2009) : 207–53. http://dx.doi.org/10.1007/s11005-009-0312-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Arvanitakis, Alex S. « Chiral strings, topological branes, and a generalised Weyl-invariance ». International Journal of Modern Physics A 34, no 06n07 (10 mars 2019) : 1950031. http://dx.doi.org/10.1142/s0217751x19500313.

Texte intégral
Résumé :
We introduce a sigma model Lagrangian generalising a number of new and old models which can be thought of as chiral, including the Schild string, ambitwistor strings, and the recently introduced tensionless AdS twistor strings. This “chiral sigma model” describes maps from a [Formula: see text]-brane worldvolume into a symplectic space and is manifestly invariant under diffeomorphisms as well as under a “generalised Weyl invariance” acting on space–time coordinates and worldvolume fields simultaneously. Construction of the Batalin–Vilkovisky master action leads to a BRST operator under which the gauge-fixed action is BRST-exact; we discuss whether this implies that the chiral brane sigma model defines a topological field theory.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Nietzke, Andrew, et Cumrun Vafa. « Topological strings and their physical applications ». Surveys in Differential Geometry 10, no 1 (2005) : 147–219. http://dx.doi.org/10.4310/sdg.2005.v10.n1.a6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mariño, Marcos. « Chern-Simons theory and topological strings ». Reviews of Modern Physics 77, no 2 (4 août 2005) : 675–720. http://dx.doi.org/10.1103/revmodphys.77.675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Vafa, Cumrun. « Superstrings and topological strings at largeN ». Journal of Mathematical Physics 42, no 7 (juillet 2001) : 2798–817. http://dx.doi.org/10.1063/1.1376161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Hollands, Lotte. « Topological strings on compact Calabi-Yau's ». Nuclear Physics B - Proceedings Supplements 171 (septembre 2007) : 281–83. http://dx.doi.org/10.1016/j.nuclphysbps.2007.06.026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Borhade, Pravina, et P. Ramadevi. « reformulated link invariants from topological strings ». Nuclear Physics B 727, no 3 (novembre 2005) : 471–98. http://dx.doi.org/10.1016/j.nuclphysb.2005.08.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Aganagic, Mina, Vincent Bouchard et Albrecht Klemm. « Topological Strings and (Almost) Modular Forms ». Communications in Mathematical Physics 277, no 3 (22 novembre 2007) : 771–819. http://dx.doi.org/10.1007/s00220-007-0383-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Dijkgraaf, Robbert, Herman Verlinde et Erik Verlinde. « Topological strings in d < ; 1 ». Nuclear Physics B 352, no 1 (mars 1991) : 59–86. http://dx.doi.org/10.1016/0550-3213(91)90129-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Elitzur, S., A. Forge et E. Rabinovici. « On effective theories of topological strings ». Nuclear Physics B 388, no 1 (décembre 1992) : 131–55. http://dx.doi.org/10.1016/0550-3213(92)90548-p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sato, Masatoshi, et Shigeaki Yahikozawa. « “Topological” formulation of effective vortex strings ». Nuclear Physics B 436, no 1-2 (février 1995) : 100–128. http://dx.doi.org/10.1016/0550-3213(94)00531-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Pestun, Vasily. « Topological strings in generalized complex space ». Advances in Theoretical and Mathematical Physics 11, no 3 (2007) : 399–450. http://dx.doi.org/10.4310/atmp.2007.v11.n3.a3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

CAO, ZHEN-BIN. « TOPOLOGICAL CONSERVATION CURRENT OF COSMIC STRINGS ». Modern Physics Letters A 26, no 37 (7 décembre 2011) : 2803–11. http://dx.doi.org/10.1142/s0217732311037200.

Texte intégral
Résumé :
In our previous research, we have constructed a second rank antisymmetric topological current to study various topological properties of cosmic strings in the early universe. In this paper, starting from the conservation equation of the current, we give a detailed discussion of the structure of the current itself, and finally obtain a new constrained equation for the motion of cosmic strings and a conserved, antisymmetric world sheet tensor which may have a deep relation with the structure of the spacetime.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Szabo, Richard J. « Instantons, Topological Strings, and Enumerative Geometry ». Advances in Mathematical Physics 2010 (2010) : 1–70. http://dx.doi.org/10.1155/2010/107857.

Texte intégral
Résumé :
We review and elaborate on certain aspects of the connections between instanton counting in maximally supersymmetric gauge theories and the computation of enumerative invariants of smooth varieties. We study in detail three instances of gauge theories in six, four, and two dimensions which naturally arise in the context of topological string theory on certain noncompact threefolds. We describe how the instanton counting in these gauge theories is related to the computation of the entropy of supersymmetric black holes and how these results are related to wall-crossing properties of enumerative invariants such as Donaldson-Thomas and Gromov-Witten invariants. Some features of moduli spaces of torsion-free sheaves and the computation of their Euler characteristics are also elucidated.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Becchi, Carlo, Stefano Giusto et Camillo Imbimbo. « The Holomorphic Anomaly of Topological Strings ». Fortschritte der Physik 47, no 1-3 (janvier 1999) : 195–200. http://dx.doi.org/10.1002/(sici)1521-3978(199901)47:1/3<195 ::aid-prop195>3.0.co;2-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gukov, Sergei, Albert Schwarz et Cumrun Vafa. « Khovanov-Rozansky Homology and Topological Strings ». Letters in Mathematical Physics 74, no 1 (octobre 2005) : 53–74. http://dx.doi.org/10.1007/s11005-005-0008-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Oz, Y. « Topological B-model and fermionic strings ». Fortschritte der Physik 53, no 5-6 (13 mai 2005) : 542–47. http://dx.doi.org/10.1002/prop.200410216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Dijkgraaf, R., et H. Fuji. « The volume conjecture and topological strings ». Fortschritte der Physik 57, no 9 (5 mai 2009) : 825–56. http://dx.doi.org/10.1002/prop.200900067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

RUDAZ, SERGE, AJIT M. SRIVASTAVA et SHIKHA VARMA. « PROBING GAUGE STRING FORMATION IN A SUPERCONDUCTING PHASE TRANSITION ». International Journal of Modern Physics A 14, no 10 (20 avril 1999) : 1591–604. http://dx.doi.org/10.1142/s0217751x99000804.

Texte intégral
Résumé :
Superconductors are the only experimentally accessible systems with spontaneously broken gauge symmetries which support topologically nontrivial defects, namely string defects. We propose two experiments whose aim is the observation of the dense network of these strings thought to arise, via the Kibble mechanism, in the course of a spontaneous symmetry breaking phase transition. We suggest ways to estimate the order of magnitude of the density of flux tubes produced in the phase transition. This may provide an experimental check for the theories of the production of topological defects in a spontaneously broken gauge theory, such as those employed in the context of the early Universe.
Styles APA, Harvard, Vancouver, ISO, etc.
49

ZAIKOV, R. P. « BOSONIC STRING WITH TOPOLOGICAL TERM ». Modern Physics Letters A 06, no 16 (30 mai 1991) : 1453–57. http://dx.doi.org/10.1142/s0217732391001561.

Texte intégral
Résumé :
It is shown that in D = 3 space-time dimensions there exist a topological term for the bosonic strings. The corresponding constraints satisfy the same Virasoro algebra as the ordinary bosonic strings. These results are generalized for an arbitrary dimensional space-time if we have SO (1, 2) ⊗ O (D − 3) or SO (3) ⊗ O (1, D − 4) symmetry instead of SO (1, D − 1) space-time symmetry. A gauge-dependent correction to the Casimir energy corresponding to this topological term is derived.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Stebbins, A., S. Veeraraghavan, R. Brandenberger, J. Silk et N. Turok. « Cosmic String Wakes and Large-Scale Structure ». Symposium - International Astronomical Union 130 (1988) : 562. http://dx.doi.org/10.1017/s0074180900136903.

Texte intégral
Résumé :
Cosmic Strings are one-dimensional topological defects that may be formed in the early universe during a phase transition, and which may be the source of all inhomogeneities in our universe. Their mass per unit length, μ, gives us a dimensionless parameter, μ6 ≡ 106Gμ/c2, which must be of order unity for strings to seed galaxy formation. Results to date from the ongoing CfA redshift survey suggest that galaxies are distributed on two-dimensional surfaces, whose typical separation is about 50h50−1 Mpc. The loop distribution is unlikely to imprint such large-scale patterns in the galaxy positions so we have examined whether this structure could be caused by infinite strings. Because an infinite string typically moves at a substantial fraction of the speed of light, it will leave behind a very large accretion wake in the ambient medium. Gravitational instablity causes these wakes to continue to accrete matter long after the string has moved elsewhere. These wakes form around the two-dimensional surfaces swept out by the long strings.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie