Littérature scientifique sur le sujet « Tomographic scanner »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tomographic scanner ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Tomographic scanner"
Dao, Viet, Ekaterina Mikhaylova, Max L. Ahnen, Jannis Fischer, Kris Thielemans et Charalampos Tsoumpas. « Evaluation of STIR Library Adapted for PET Scanners with Non-Cylindrical Geometry ». Journal of Imaging 8, no 6 (18 juin 2022) : 172. http://dx.doi.org/10.3390/jimaging8060172.
Texte intégralKarp, Joel S., Margaret E. Daube-Witherspoon et Gerd Muehllehner. « Factors Affecting Accuracy and Precision in PET Volume Imaging ». Journal of Cerebral Blood Flow & ; Metabolism 11, no 1_suppl (mars 1991) : A38—A44. http://dx.doi.org/10.1038/jcbfm.1991.35.
Texte intégralMangiorou, Eleni. « A Critical Assessment of the Four Basic Methods of Tomographic Imaging ». Key Engineering Materials 605 (avril 2014) : 657–60. http://dx.doi.org/10.4028/www.scientific.net/kem.605.657.
Texte intégralMichail, Christos, George Karpetas, Nektarios Kalyvas, Ioannis Valais, Ioannis Kandarakis, Kyriakos Agavanakis, George Panayiotakis et George Fountos. « Information Capacity of Positron Emission Tomography Scanners ». Crystals 8, no 12 (9 décembre 2018) : 459. http://dx.doi.org/10.3390/cryst8120459.
Texte intégralIzevbekhai, O. S., P. F. I. Irabor, S. U. Eluehike, B. Oriaifo et O. Otaigbe. « A Tally of Computed Tomographic Scan Findings in the Immediate Post-Installation Period in a Rural Based Hospital in Sub-Saharan Africa ». Journal of Advances in Medicine and Medical Research 35, no 20 (29 août 2023) : 197–204. http://dx.doi.org/10.9734/jammr/2023/v35i205190.
Texte intégralShampo, Marc A., et Robert A. Kyle. « Allan Cormack—Codeveloper of Computed Tomographic Scanner ». Mayo Clinic Proceedings 71, no 3 (mars 1996) : 288. http://dx.doi.org/10.4065/71.3.288.
Texte intégralTAGUCHI, Isamu. « Computerized tomographic scanner for iron and steel. » Analytical Sciences 1, no 1 (1985) : 93–94. http://dx.doi.org/10.2116/analsci.1.93.
Texte intégralJofre, L., M. S. Hawley, A. Broquetas, E. de los Reyes, M. Ferrando et A. R. Elias-Fuste. « Medical imaging with a microwave tomographic scanner ». IEEE Transactions on Biomedical Engineering 37, no 3 (mars 1990) : 303–12. http://dx.doi.org/10.1109/10.52331.
Texte intégralAbdelkarim, Ayman, Sion K. Roy, April Kinninger, Azadeh Salek, Olivia Baranski, Daniele Andreini, Gianluca Pontone et al. « Evaluation of Image Quality for High Heart Rates for Coronary Computed Tomographic Angiography with Advancement in CT Technology : The CONVERGE Registry ». Journal of Cardiovascular Development and Disease 10, no 9 (19 septembre 2023) : 404. http://dx.doi.org/10.3390/jcdd10090404.
Texte intégralChindasombatjaroen, Jira, Naoya Kakimoto, Hiroaki Shimamoto, Shumei Murakami et Souhei Furukawa. « Correlation Between Pixel Values in a Cone-Beam Computed Tomographic Scanner and the Computed Tomographic Values in a Multidetector Row Computed Tomographic Scanner ». Journal of Computer Assisted Tomography 35, no 5 (septembre 2011) : 662–65. http://dx.doi.org/10.1097/rct.0b013e31822d9725.
Texte intégralThèses sur le sujet "Tomographic scanner"
Laurendeau, Matthieu. « Tomographic incompleteness maps and application to image reconstruction and stationary scanner design ». Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0130.
Texte intégralComputed tomography (CT) is one of the most commonly used modality for three-dimensional (3D) imaging in the medical and industrial fields. In the past few years, new X-ray sources have been developed based on carbon nanotube (CNT) cathodes. Their compact size enables the design of a new generation of multi-source CT scanners. In contrast to traditional systems with a single moving source, these scanners often adopt stationary architectures where multiple sources are static. It would benefit both industry with cheaper and motionless systems and medical applications with light-weight and mobile scanners which could be brought to emergency sites. However, this type of scanner uses a fewer number of measurements, known as projections, and may acquire data with a limited range of angles, leading to well-known image reconstruction challenges. This thesis focuses on the design of such stationary CT scanners. Three axes of study were investigated. The first contribution is the development of an object-independent metric to assess the reconstruction capability of a given scanning geometry. Based on Tuy's condition, the metric evaluates local tomographic incompleteness and is visualized through 3D vector field maps. It is further extended to handle truncated projections, improving its applicability to real-world configurations. The metric enables ranking different geometries, predicting image quality reconstruction, and identifying the origin of geometric artifacts. It is applied to a variety of geometries, including existing scanners. The second is a novel local regularization method to address limited-angle reconstruction challenges. The method employs a directional total variation (DTV) regularizer whose strength and directional weights are adaptively selected at each voxel. The weights are determined based on the previously introduced metric. Two approaches for directional weights were explored: ratio-based weighting relative to image axes and ellipse-based weighting. The reconstruction algorithm is evaluated in both 2D and 3D simulations, considering noiseless and noisy data, as well as real data. The third is a tool for optimizing the geometry of CT scanners. Given a fixed number of sources and the surface area available for their positions, the tool optimizes the placement of sources based on the proposed metric. Several state-of-the-art optimization algorithms were implemented and tested on simple 2D and 3D scenarios
Heathcote, Alan D. « The dual development of an optical tomographic scanner and three dimensional gel dosimeter for complex radiotherapy verification ». Thesis, University of Hull, 2008. http://hydra.hull.ac.uk/resources/hull:764.
Texte intégralBARUFFALDI, FILIPPO. « Development of a Proton Tomography scanner ». Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3455159.
Texte intégraliMPACT, innovative Medical Proton Achromatic Calorimeter and Tracker, is a University of Padova and INFN research project, funded by the European Research Council. The project aims to design, develop and prototype a fast and accurate proton Computed Tomography (pCT) Scanner, with the ultimate goal of demonstrating the technology necessary to realize a clinically viable pCT system. The overall development, current state, and projected performances of the scanner will be illustrated and discussed. Monte Carlo simulation, a selection of data collected with cosmic rays, and tests with a proton beam will be reviewed as well to quantitatively assess the performance of the apparatus. Preliminary studies on proton track reconstruction, based on a Maximum Likelihood path formalism, will be also presented, together with a supporting object shape identification algorithm. The iMPACT scanner is essentially made by a multi-layer silicon pixels sensors tracker stage using the ALPIDE sensors, and a scintillators-based range calorimeter. There will be an in-depth review of the innovative, highly segmented structure of the calorimeter, based on multiple, orthogonal scintillating elements, and of its read-out architecture, which exploits massive FPGAs parallelism and distributed memory to achieve the triggering and data collection performance necessary to cope with the extremely high event-rate requested by pCT applications. On the tracker side, an overview of the ALPIDE sensor, developed within the ALICE Collaboration for its Inner Tracking System (ITS), and currently adopted for the prototyping phase of the iMPACT tracker, will be illustrated as well, together with the general tracker layout and operations. In parallel, in order improve upon the techniques and methods used in particle physics for tracking purposes, specific studies have been performed to optimize the ALICE ITS alignment, which results will be also presented. Finally, a brief mention will be given to the INFN project ARCADIA, focused on the development of innovative Monolithic Active Pixel Sensors characterized by fully depleted substrate to improve the charge collection efficiency and timing characteristics over a wide range of operational and environmental conditions. The iMPACT project in fact plans to employ the ARCADIA technology to build a pixel detector more suited for the pCT application respect to the ALPIDE sensor.
Yao, Yongjia. « Wearable sensor scanner using electrical impedance tomography ». Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600214.
Texte intégralBARUFFALDI, FILIPPO. « Development of a proton computed tomography scanner ». Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3453783.
Texte intégralBergeron, Mélanie. « Construction et expérimentation d'un scanner bimodal TEP/TDM combiné de résolution spatiale submillimétrique pour petits animaux ». Thèse, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6755.
Texte intégralKemgue, Alain Trésor. « Modélisation des formes volumiques complexes par des volumes quadriques. Application à la représentation de l'espace poral du sol à partir des images tomographiques 3D ». Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS158.pdf.
Texte intégralMost of the natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In our study, we are interested by the complex volume shapes structures representation from computed tomographic images. Thanks to the technological advances in Computed Tomography scanners, the image acquisition of complex shapes becomes possible. However, these image data are not directly usable for simulation or modeling purposes. In this thesis, we investigate an approach of modeling of such shapes which consists in making a piecewise approximation of the image data by quadric volumes. We propose to use a split-merge strategy and a region growing algorithm to optimize a function that includes both an approximation error term and a scale factor term that is opposed to it. The input of our algorithms is voxel-based shape description and the result is a set of tangent or disjoint quadric volumes representing the shape in an intrinsic way. We apply our method to represent 3D soil pore space obtained from the Computed Tomography scanners. Within this specific context, we validate our geometrical modeling by performing simulations of water draining and microbial decomposition activities on real data soil sample. This study involves several ecological, agricultural and industrial issues
Louis, Nicolas Desgranges Pascal. « Étude au scanner multibarrettes des dissections aigues de type A opérées ». Créteil : Université de Paris-Val-de-Marne, 2006. http://doxa.scd.univ-paris12.fr:80/theses/th0247917.pdf.
Texte intégralQuatrehomme, Auréline. « Caractérisation des lésions hépatiques focales sur des acquisitions scanner multiphasiques ». Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20207/document.
Texte intégralMedical imaging acquisition has taken benefits from recent advances and is becoming more and more important in the patient care process. New needs raise, which are related to image processing. Hepatic lesion recognition is a hot topic, especially because liver cancer is wide-spread and leads to death, most of the time because of the diagnosis which is made too late. In this context is born this manuscrit research project, a collaboration between IMAIOS company and the Laboratory of Informatics, Robotics and Micro-electronics ofMontpellier (LIRMM).This thesis presents a complete and automated system that extracts visual features from lesion images in the medical format DICOM, then differenciate them on these features.The various described contributions are: intensity normalization using healthy liver values, analysis and experimentations around new visual features, which use temporal information or tissue density, different kind of caracterisation of the lesions. This work has been done on multi-phase Computed Tomography acquisitions
McFarland, Sheila J. « Development of a prototype scanner for pulsed ultrasound computed tomography ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ61142.pdf.
Texte intégralLivres sur le sujet "Tomographic scanner"
L, Arrivé, dir. Guide d'interprétation en scanner. Paris : Masson, 2001.
Trouver le texte intégralLionel, Arrivé, dir. Guide d'interprétation en scanner. 3e éd. Paris : Masson, 2005.
Trouver le texte intégralOlivier, Vigneaux, dir. Imagerie cardiaque : Scanner et IRM. Issy-les-Moulineaux : Masson, 2005.
Trouver le texte intégralCanadian Coordinating Office for Health Technology Assessment. A comparison of fixed and mobile CT and MRI scanners. Ottawa, Ont : The Office, 1995.
Trouver le texte intégralTrajtenberg, Manuel. Economic analysis of product innovation : The case of CT scanners. Cambridge, Mass : Harvard University Press, 1990.
Trouver le texte intégralJacqueline, Vignaud, Jardin Caroline et Rosen Lawrence, dir. The ear, diagnostic imaging : CT scanner, tomography, and magnetic resonance. New York : Masson Pub., U.S.A., 1986.
Trouver le texte intégralCaroline, Jardin, Rosen Lawrence et Vignaud Jacqueline, dir. The ear, diagnostic imaging : CT scanners, tomography and magnetic resonance. New York : Masson Pub., 1986.
Trouver le texte intégralK, Fishman Elliot, et Jeffrey R. Brooke, dir. Multidetector CT : Principles, techniques, and clinical applications. Philadelphia : Lippincott Williams & Wilkins, 2004.
Trouver le texte intégralHsieh, Jiang. Computed tomography : Principles, design, artifacts, and recent advances. Bellingham, Washington : SPIE, 2015.
Trouver le texte intégral1930-, Stanford William, et Rumberger John A, dir. Ultrafast computed tomography in cardiac imaging : Principles and practice. Mount Kisco, NY : Futura Pub. Co., 1992.
Trouver le texte intégralChapitres de livres sur le sujet "Tomographic scanner"
Williams, Mark B., Patricia G. Judy, Mitali J. More, Jennifer A. Harvey, Stan Majewski, James Proffitt, John McKisson et al. « Tomographic Dual Modality Breast Scanner ». Dans Digital Mammography, 99–107. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-70538-3_15.
Texte intégralMeerhoff, Walter, et Guillermo Meerhoff. « Variability of topographic measurements after trabeculectomy in primary angle closure glaucoma with the laser tomographic scanner ». Dans Laser Scanning : Update 1, 29–35. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0322-3_6.
Texte intégralKnisely, J. P. S., L. Liu, M. J. Maryanski, M. Ranade, R. J. Schulz et J. C. Gore. « Three-Dimensional Dosimetry for Complex Stereotactic Radiosurgery Using a Tomographic Optical Density Scanner and BANGTMPolymer Gels ». Dans Radiosurgery 1997, 251–60. Basel : KARGER, 1997. http://dx.doi.org/10.1159/000062284.
Texte intégralRaja, Aamir Y., Steven P. Gieseg, Sikiru A. Adebileje, Steven D. Alexander, Maya R. Amma, Fatemeh Asghariomabad, Ali Atharifard et al. « Spectral CT Imaging Using MARS Scanners ». Dans Spectral, Photon Counting Computed Tomography, 117–38. First edition. | Boca Raton : CRC Press, 2020. | Series : Devices, circuits, & systems : CRC Press, 2020. http://dx.doi.org/10.1201/9780429486111-7.
Texte intégralBarzas, Konstantinos, Shereen Fouad, Gainer Jasa et Gabriel Landini. « An Explainable Deep Learning Framework for Mandibular Canal Segmentation from Cone Beam Computed Tomography Volumes ». Dans Lecture Notes in Computer Science, 1–13. Cham : Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-82768-6_1.
Texte intégralMiroshnychenko, Oleksandra, Sergii Miroshnychenko, Boris Goldberg, Sergey Guzeev, Andrii Nevgasymyi et Yurii Khobta. « Veterinary Self-protected Cone-Beam Computed Tomography Scanner ». Dans Lecture Notes in Networks and Systems, 237–47. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03877-8_21.
Texte intégralRusso, P., G. Mettivier, A. Lauria et M. C. Montesi. « A Laboratory Scanner for Cone Beam Breast Computed Tomography ». Dans IFMBE Proceedings, 563–65. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03879-2_157.
Texte intégralKritikos, Michaela, Jan Urminsky et Ivan Buransky. « Comparison of Optical Scanner and Computed Tomography Scan Accuracy ». Dans Lecture Notes in Mechanical Engineering, 521–30. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90421-0_44.
Texte intégralCierniak, Robert. « Technical Concepts of X-ray Computed Tomography Scanners ». Dans X-Ray Computed Tomography in Biomedical Engineering, 21–62. London : Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-027-4_3.
Texte intégralYamada, F., A. Tamaki et Y. Obara. « Assessment of Time-Space Evolutions of Intertidal Flat Geo-Environments Using an Industrial X-Ray CT Scanner ». Dans Advances in Computed Tomography for Geomaterials, 343–51. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557723.ch41.
Texte intégralActes de conférences sur le sujet "Tomographic scanner"
Vidal, Franck, Shaghayegh Afshari, Sharif Ahmed, Carolyn Atkins, Eric Béchet, Alberto Corbi Bellot, Stefan Bosse et al. « X-ray simulations with gVXR as a useful tool for education, data analysis, set-up of CT scans, and scanner development ». Dans Developments in X-Ray Tomography XV, sous la direction de Bert Müller et Ge Wang, 30. SPIE, 2024. http://dx.doi.org/10.1117/12.3025315.
Texte intégralKoo, Kyoungmo, Lucia Lee, Morgan McCloud et Mark Draelos. « Reducing cost but not quality with digital scanner interfaces for optical coherence tomography ». Dans Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIX, sous la direction de Rainer A. Leitgeb et Yoshiaki Yasuno, 77. SPIE, 2025. https://doi.org/10.1117/12.3044047.
Texte intégralZhang, Jingyue, Hu Zhang, Ting Hu, Zhe Li, Zhonghua Sun, Kebin Jia et Jinchao Feng. « Rotational Cherenkov-excited luminescence scanned tomography reconstruction with symmetry vision mamba ». Dans Seventeenth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2024), sous la direction de Valery V. Tuchin, Qingming Luo et Lihong V. Wang, 36. SPIE, 2025. https://doi.org/10.1117/12.3057819.
Texte intégralQuanhu, Zhang, Li Sufen, Hou Suxia, Zhang Lin et Zuo Wenming. « A Prototype of Tomographic Gamma Scanner ». Dans 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67372.
Texte intégralWeiss Cohen, Miri, John A. Kennedy, Archil Pirmisashvili et Gleb Orlikov. « An Automatic System for Analyzing Phantom Images to Determine the Reliability of PET/SPECT Cameras ». Dans ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46254.
Texte intégralMason, J. A., A. C. Tolchard, A. C. N. Towner, K. Burke, R. A. Price, S. Dittrich, F. Zurey et D. Walraven. « A Tomographic Segmented Gamma Scanner for the Measurement of Decommissioning Wastes ». Dans ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4658.
Texte intégralRavindranath, B., S. S. Junnarkar, M. L. Purschke, S. H. Maramraju, S. S. Southekal, S. P. Stoll, J. F. Pratte, P. Vaska, C. L. Woody et D. J. Schlyer. « 3D tomographic wrist scanner for non-invasive determination of input function ». Dans 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401613.
Texte intégralQiao, H., T. G. Murthy et C. Saldana. « Structure and Deformation of Gradient Metal Foams Produced by Machining ». Dans ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2980.
Texte intégralBille, J. F., et S. I. Brown. « 3D Imaging Of The Human Eye Using The Laser Tomographic Scanner Lts ». Dans 14th Congress of the International Commission for Optics, sous la direction de Henri H. Arsenault. SPIE, 1987. http://dx.doi.org/10.1117/12.967146.
Texte intégralTroiani, Francesco, Nadia Cherubini, Alessandro Dodaro, Franco Vittorio Frazzoli et Romolo Remetti. « L/ILW Waste Characterisation by the ENEA Multi-Technique Gamma System SRWGA ». Dans ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4730.
Texte intégralRapports d'organisations sur le sujet "Tomographic scanner"
Mercer, David J. Tomographic Gamma Scanner Experience : Three Cases. Office of Scientific and Technical Information (OSTI), juin 2014. http://dx.doi.org/10.2172/1136107.
Texte intégralEstep, R. J., D. Miko, S. Melton et M. W. Rawool-Sullivan. A demonstration of the gross count tomographic gamma scanner (GC-TGS) method for the nondestructive assay of transuranic waste. Office of Scientific and Technical Information (OSTI), décembre 1998. http://dx.doi.org/10.2172/335195.
Texte intégralKarimi, S., et H. Martz. Dose Measurement on Microfocus Computed Tomography Scanner. Office of Scientific and Technical Information (OSTI), avril 2024. http://dx.doi.org/10.2172/2375414.
Texte intégralRoberson, G. P., et C. M. Logan. Estimate of external background radiation interference on a tomography scanner. Office of Scientific and Technical Information (OSTI), juillet 2000. http://dx.doi.org/10.2172/15003405.
Texte intégralLin, Pei-Jan Paul, Thomas J. Beck, Caridad Borras, Gerald Cohen, Robert A. Jucius, Robert J. Kriz, Edward L. Nickoloff et al. Specification and Acceptance Testing of Computed Tomography Scanners. AAPM, 1993. http://dx.doi.org/10.37206/38.
Texte intégralKaplan, Daniel, Kenneth Gibbs, Abdullah Mamun et Brian Powell. Non-Destructive Imaging of a Liquid Moving Through Porous Media Using a Computer Tomography Scanner. Office of Scientific and Technical Information (OSTI), août 2020. http://dx.doi.org/10.2172/1647017.
Texte intégralAtherosclerosis Biomarkers by Computed Tomography Angiography (CTA). Chair Andrew Buckler, Luca Saba et Uwe Joseph Schoepf. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), mars 2023. http://dx.doi.org/10.1148/qiba/20230328.
Texte intégralSaba, Luca, et Uwe Joseph Schoepf. Atherosclerosis Biomarkers by Computed Tomography Angiography (CTA) - Maintenance version June 2024. Chair Andrew Buckler. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), juin 2024. http://dx.doi.org/10.1148/qiba/202406.
Texte intégralGantzer, Clark J., Shmuel Assouline et Stephen H. Anderson. Synchrotron CMT-measured soil physical properties influenced by soil compaction. United States Department of Agriculture, février 2006. http://dx.doi.org/10.32747/2006.7587242.bard.
Texte intégralPositron Emission Tomography-Scanner at Children`s Hospital of Michigan at Detroit, Michigan. Office of Scientific and Technical Information (OSTI), décembre 1992. http://dx.doi.org/10.2172/10110463.
Texte intégral