Littérature scientifique sur le sujet « Tiny ML »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tiny ML ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Tiny ML"
Lahade, Shashikant Vitthalrao, Srikanth Namuduri, Himanshu Upadhyay et Shekhar Bhansali. « Alcohol Sensor Calibration on the Edge Using Tiny Machine Learning (Tiny-ML) Hardware ». ECS Meeting Abstracts MA2020-01, no 26 (1 mai 2020) : 1848. http://dx.doi.org/10.1149/ma2020-01261848mtgabs.
Texte intégralLulec, Sevil Zeynep, Alvin Loke, Xinfei Guo, Ka-Meng Lei, Po-Hsuan Wei, Shahriar Mirabbasi, Abira Altvater et Kelsey Rodriguez. « IEEE SSCS and tiny ML Hold First Young Professionals Webinar [Chapters] ». IEEE Solid-State Circuits Magazine 12, no 3 (2020) : 51–53. http://dx.doi.org/10.1109/mssc.2020.3001885.
Texte intégralJose Rosa, Daniel Granhao, Guilherme Carvalho, Tiago Gon�alves, Monica Figueiredo, Luis Conde Bento, Nuno Paulino et Luis M. Pessoa. « BacalhauNet : A tiny CNN for lightning-fast modulation classification ». ITU Journal on Future and Evolving Technologies 3, no 2 (22 septembre 2022) : 252–60. http://dx.doi.org/10.52953/fywt4006.
Texte intégralZAROMB, SOLOMON, DENNIS MARTELL, NATHAN SCHATTKE et GARY HANKINS. « PRECONCENTRATION OF MICROORGANISMS INTO A TINY VOLUME OF LIQUID FOR ENHANCED SPECTRAL DETECTION ». International Journal of High Speed Electronics and Systems 17, no 04 (décembre 2007) : 739–46. http://dx.doi.org/10.1142/s0129156407004941.
Texte intégralSozzi, Marco, Giulio Pillan, Claudia Ciarelli, Francesco Marinello, Fabrizio Pirrone, Francesco Bordignon, Alessandro Bordignon, Gerolamo Xiccato et Angela Trocino. « Measuring Comfort Behaviours in Laying Hens Using Deep-Learning Tools ». Animals 13, no 1 (21 décembre 2022) : 33. http://dx.doi.org/10.3390/ani13010033.
Texte intégralSudharsan, Bharath. « Training Up to 50 Class ML Models on 3 $ IoT Hardware via Optimizing One-vs-One Algorithm (Student Abstract) ». Proceedings of the AAAI Conference on Artificial Intelligence 36, no 11 (28 juin 2022) : 13059–60. http://dx.doi.org/10.1609/aaai.v36i11.21666.
Texte intégralFarag, Mohammed M. « A Tiny Matched Filter-Based CNN for Inter-Patient ECG Classification and Arrhythmia Detection at the Edge ». Sensors 23, no 3 (26 janvier 2023) : 1365. http://dx.doi.org/10.3390/s23031365.
Texte intégralToyama, Haruko, Hong Rui Huang, Tomonori Nakamura, Leonid V. Bondarenko, Alexandra Y. Tupchaya, Dimitry V. Gruznev, Akari Takayama, Andrey V. Zotov, Aleksandr A. Saranin et Shuji Hasegawa. « Superconductivity of Pb Ultrathin Film on Ge(111) Surface ». Defect and Diffusion Forum 386 (septembre 2018) : 80–85. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.80.
Texte intégralMao, Jian, Long Wang, Zhiyong Qian et Mingjing Tu. « Uptake and Cytotoxicity of Ce(IV) Doped TiO2Nanoparticles in Human Hepatocyte Cell Line L02 ». Journal of Nanomaterials 2010 (2010) : 1–8. http://dx.doi.org/10.1155/2010/910434.
Texte intégralGolla, Kishore, et S. PallamSetty. « An Efficient Secure Cryptography Scheme for New ML-based RPL Routing Protocol in Mobile IoT Environment ». International Journal of Network Security & ; Its Applications 14, no 2 (31 mars 2022) : 1–13. http://dx.doi.org/10.5121/ijnsa.2022.14201.
Texte intégralThèses sur le sujet "Tiny ML"
PEREGO, RICCARDO. « Automated Deep Learning through Constrained Bayesian Optimization ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/314922.
Texte intégralIn an increasingly technological and interconnected world, the amount of data is continuously growing, and as a consequence, decision-making algorithms are also continually evolving to adapt to it. One of the major sources of this vast amount of data is the Internet of Things, in which billions of sensors exchange information over the network to perform various types of activities such as industrial and medical monitoring. In recent years, technological development has made it possible to define new high-performance hardware architectures for sensors, called Microcontrollers, which enabled the creation of a new kind of decentralized computing named Edge Computing. This new computing paradigm allowed sensors to run decision-making algorithm at the edge in order to take immediate and local decisions instead of transferring the data on central server processing. To support Edge Computing, the research community started developing new advanced techniques to efficiently manage the limited resources on these devices for applying the most advanced Machine Learning models, especially the Deep Neural Networks. Automated Machine Learning is a branch of the Machine Learning field aimed at disclosing the power of Machine Learning to non-experts as well as efficiently supporting data scientists in designing their own data analysis pipelines. The adoption of Automated Machine Learning has made it possible to develop increasingly high-performance models almost automatically. However, with the advent of Edge Computing, a specialization of Machine Learning, defined as Tiny Machine Learning (Tiny ML), has been arising, that is, the application of Machine Learning algorithms on devices having limited hardware resources. This thesis mainly addresses the applicability of Automated Machine Learning to generate accurate models which must be also deployable on tiny devices, specifically Microcontroller Units. More specifically, the proposed approach is aimed at maximizing the performances of Deep Neural Networks while satisfying the constraints associated to the limited hardware resources, including batteries, of Microcontrollers. Thanks to a close collaboration with STMicroelectronics, a leading company for design, production and sale of microcontrollers, it was possible to develop a novel Automated Machine Learning framework that deals with the black-box constraints related to the deployability of a Deep Neural Network on these tiny devices, widely adopted in IoT applications. The application on two real-life use cases provided by STMicroelectronics (i.e., Human Activity Recognition and Image Recognition) proved that the novel proposed approach can efficiently find out configurations for accurate and deployable Deep Neural Networks, increasing their accuracy against baseline models while drastically reducing hardware required to run them on a microcontroller (i.e., a reduction of more than 90\%). The approach was also compared against one of the state-of-the-art AutoML solutions in order to evaluate its capability to overcome the issues which currently limit the wide application of AutoML in the tiny ML field. Finally, this PhD thesis suggests interesting and challenging research directions to further increase the applicability of the proposed approach by integrating recent and innovative research results (e.g., weakly defined search spaces, Meta-Learning, Multi-objective and Multi-Information Source optimization).
Chapitres de livres sur le sujet "Tiny ML"
Gutti, Vivek, et R. Karthi. « Real Time Classification of Fruits and Vegetables Deployed on Low Power Embedded Devices Using Tiny ML ». Dans Third International Conference on Image Processing and Capsule Networks, 347–59. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12413-6_27.
Texte intégralFunk, Frederik, Thorsten Bucksch et Daniel Mueller-Gritschneder. « ML Training on a Tiny Microcontroller for a Self-adaptive Neural Network-Based DC Motor Speed Controller ». Dans Communications in Computer and Information Science, 268–79. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66770-2_20.
Texte intégralVuppalapati, Chandrasekar, Anitha Ilapakurti, Sharat Kedari, Raja Vuppalapati, Jaya Vuppalapati et Santosh Kedari. « Crossing the Artificial Intelligence (AI) Chasm, Albeit Using Constrained IoT Edges and Tiny ML, for Creating a Sustainable Food Future ». Dans Proceedings of Fifth International Congress on Information and Communication Technology, 540–53. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5859-7_54.
Texte intégralSharma, Avinash Kumar, Pranav Kumar Tripathi et Sushant Sharma. « Role of Artificial Intelligence in Biomedical Imaging ». Dans Advances in Medical Technologies and Clinical Practice, 17–34. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6957-6.ch002.
Texte intégralLi, Jie Jack, Chris Limberakis et Derek A. Pflum. « Reductions ». Dans Modern Organic Synthesis in the Laboratory. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780195187984.003.0010.
Texte intégralManikkampatti Palanisamy, Murugesan, Akilamudhan Palaniappan, VenkataRatnam Myneni, Padmapriya Veerappan et Minar Mohamed Lebba. « Leaching Technology for Precious Heavy Metal Recapture through (HCI + HNO3) and (HCI + H2SO4) from E-Waste ». Dans Heavy Metals - New Insights [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102347.
Texte intégralActes de conférences sur le sujet "Tiny ML"
Shankar, R., K. M. Gautham Mythireyan, Nikitha Reddy Nalla et M. Venkateshkumar. « Cough Recognition Using Tiny ML ». Dans 2022 IEEE Industrial Electronics and Applications Conference (IEACon). IEEE, 2022. http://dx.doi.org/10.1109/ieacon55029.2022.9951763.
Texte intégralVuppalapati, Chandrasekar, Anitha Ilapakurti, Karthik Chillara, Sharat Kedari et Vanaja Mamidi. « Automating Tiny ML Intelligent Sensors DevOPS Using Microsoft Azure ». Dans 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377755.
Texte intégralNyamukuru, Maria T., et Kofi M. Odame. « Tiny Eats : Eating Detection on a Microcontroller ». Dans 2020 IEEE Second Workshop on Machine Learning on Edge in Sensor Systems (SenSys-ML). IEEE, 2020. http://dx.doi.org/10.1109/sensysml50931.2020.00011.
Texte intégralProbierz, Eryka, Natalia Bartosiak, Martyna Wojnar, Kamil Skowronski, Adam Galuszka, Tomasz Grzejszczak et Olaf Kedziora. « Application of Tiny-ML methods for face recognition in social robotics using OhBot robots ». Dans 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2022. http://dx.doi.org/10.1109/mmar55195.2022.9874278.
Texte intégralAntonini, Mattia, Miguel Pincheira, Massimo Vecchio et Fabio Antonelli. « Tiny-MLOps : a framework for orchestrating ML applications at the far edge of IoT systems ». Dans 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS). IEEE, 2022. http://dx.doi.org/10.1109/eais51927.2022.9787703.
Texte intégralVuppalapati, Chandrasekar, Anitha Ilapakurti, Sharat Kedari, Jaya Vuppalapati, Santosh Kedari et Raja Vuppalapati. « Democratization of AI, Albeit Constrained IoT Devices & ; Tiny ML, for Creating a Sustainable Food Future ». Dans 2020 3rd International Conference on Information and Computer Technologies (ICICT). IEEE, 2020. http://dx.doi.org/10.1109/icict50521.2020.00089.
Texte intégralRamos Gurjao, Kildare George, Eduardo Gildin, Richard Gibson et Mark Everett. « Estimation of Far-Field Fiber Optics Distributed Acoustic Sensing DAS Response Using Spatio-Temporal Machine Learning Schemes and Improvement of Hydraulic Fracture Geometric Characterization ». Dans SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/209119-ms.
Texte intégralNandakumar, Krishnan, Allen G. Parr, Geon Hahm, Michael A. Huff et Stephen M. Phillips. « A Smart Shape Memory Alloy Actuated Microvalve With Feedback Control ». Dans ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1234.
Texte intégralLandolfi, R., R. De Cristofaro, S. De Carolis, G. Ciabattoni et B. Bizzi. « PLACENTAL-DERIVED PGI2 INHIBITS CORD PLATELET FUNCTION : POSSIBLE ROLE OF PGI2 IN THE TRANSIENT HYPOREACTIVITY OF NEWBORN PLATELETS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644274.
Texte intégralVila, V., E. Reganon, J. Aznar, V. Lacueva et M. Ruano. « EFFECT OF TREATMENT WITH STREPTOKINASE AND HEPARIN ON FIBRINOGEN, FIBRIN AND RELATED PROTEINS IN ACUIE MYOCARDIAL INFARCTION (/ME) PATIENTS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644895.
Texte intégral