Littérature scientifique sur le sujet « Timing detectors »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Timing detectors ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Timing detectors"
Tan, Yuhang, Tao Yang, Kai Liu, Congcong Wang, Xiyuan Zhang, Mei Zhao, Xiaochuan Xia et al. « Timing Performance Simulation for 3D 4H-SiC Detector ». Micromachines 13, no 1 (28 décembre 2021) : 46. http://dx.doi.org/10.3390/mi13010046.
Texte intégralDuranti, Matteo, Valerio Vagelli, Giovanni Ambrosi, Mattia Barbanera, Bruna Bertucci, Enrico Catanzani, Federico Donnini et al. « Advantages and Requirements in Time Resolving Tracking for Astroparticle Experiments in Space ». Instruments 5, no 2 (31 mai 2021) : 20. http://dx.doi.org/10.3390/instruments5020020.
Texte intégralFerrero, V., J. Werner, M. Aglietta, P. Cerello, E. Fiorina, A. Gorgi, A. Vignati, M. Rafecas et F. Pennazio. « The MERLINO project:characterization of LaBr3:Ce detectors for stopping power monitoring in proton therapy ». Journal of Instrumentation 17, no 11 (1 novembre 2022) : C11013. http://dx.doi.org/10.1088/1748-0221/17/11/c11013.
Texte intégralTully, Christopher G. « Fast timing for collider detectors ». International Journal of Modern Physics A 31, no 33 (22 novembre 2016) : 1644022. http://dx.doi.org/10.1142/s0217751x1644022x.
Texte intégralStaszewski, Rafał, et Janusz J. Chwastowski. « Timing detectors for forward physics ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 940 (octobre 2019) : 45–49. http://dx.doi.org/10.1016/j.nima.2019.05.090.
Texte intégralHitomi, Keitaro, Tsutomu Tada, Toshiyuki Onodera, Tadayoshi Shoji, Seong-Yun Kim, Yuanlai Xu et Keizo Ishii. « Timing Performance of TlBr Detectors ». IEEE Transactions on Nuclear Science 60, no 4 (août 2013) : 2883–87. http://dx.doi.org/10.1109/tns.2013.2268855.
Texte intégralKlein, Ch, J. Trötscher et H. Wollnik. « Fast timing position sensitive detectors ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 335, no 1-2 (octobre 1993) : 146–47. http://dx.doi.org/10.1016/0168-9002(93)90266-k.
Texte intégralBaldazzi, G., D. Bollini, F. Casali, P. Chirco, A. Donati, W. Dusi, G. Landini, M. Rossi et J. B. Stephen. « Timing response of CdTe detectors ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 326, no 1-2 (mars 1993) : 319–24. http://dx.doi.org/10.1016/0168-9002(93)90372-o.
Texte intégralVa’vra, J. « Picosecond timing detectors and applications ». Journal of Physics : Conference Series 1498 (avril 2020) : 012013. http://dx.doi.org/10.1088/1742-6596/1498/1/012013.
Texte intégralTaylor, Gregor G., Ewan N. MacKenzie, Boris Korzh, Dmitry V. Morozov, Bruce Bumble, Andrew D. Beyer, Jason P. Allmaras, Matthew D. Shaw et Robert H. Hadfield. « Mid-infrared timing jitter of superconducting nanowire single-photon detectors ». Applied Physics Letters 121, no 21 (21 novembre 2022) : 214001. http://dx.doi.org/10.1063/5.0128129.
Texte intégralThèses sur le sujet "Timing detectors"
Carulla, Areste Maria del Mar. « Thin LG AD timing detectors for the ATLAS experiment ». Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667283.
Texte intégralThe Large Hadron Collider (LHC) with its 27 kilometer in circumference is the world's largest and most powerful particle accelerator. The LHC was designed to collide protons at 14 TeV energy at the center-of-mass. The design luminosity is 1034 cm2 s-1, which is achieved with 2808 circulating bunches, each with - 1011 protons. Bunches are spaced by 25ns, corresponding to a collision rate of 40 MHz at each of the four interaction points. The main priority of the European Strategy for P article Physics is the exploitation of the full potential of the LHC. An upgrade of the LHC to the high-luminosity LHC (HL-LHC) was planned for this purpose. The HL-LHC will require an upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. The major challenges for the high-luminosity phase are the occupancy, pile-up, high data rates, and radiation tolerance of the detectors. The increase in occupancy will be mitigated using higher granularity. Fast timing detectors with time resolution in the range of 30 ps will be used to reduce pile-up. Fur thermore , precision timing will provide additional physics capabilities. The purpose of the present thesis is the design, development and study of silicon detectors with high granularity and 30 ps time resolution suitable for the upgrade of the A Toroidal LHC Apparatus (ATLAS) experiment in the HL-LHC phase. Low Gain Avalanche Detectors (LGAD) have been proposed by RD50 collaboration as timing detectors for the Endcap Timing Layer (ETL) of ATLAS experiment. Three different strategies have been studied in order to fulfil with the high granularity, time resolution and radiation hardness specifications of devices for the ET L. The first strategy has consisted in detectors thickness reduction to decrease its collection time, rise time and intrinsic Landau noise. The second strategy has been the minimization of the capacitance developing strips and pixels with gain. Finally, the last strategy has lied in the use of other dopants to reduce radiation effects as boron removal. The structure of the thesis is as follows: chapter 2 introduces the major issues in the LHC upgrade, the CERN experiments, the required specifications of particle detectors for the HL LHC phase, their working principles, the measurement of time resolution, the microscopic and macroscopic radiation effects, and the state of the art in timing detectors; chapter 3 presents the technological and electrical simulation of the designed devices after the calibration of the technological simulation with the process characterization; chapter 4 gives an outline of the different device processes; chapter 5 presents the obtained results of unirradiated and irradiated devices; chapter 6 condenses the simulation, production and results of inverse Low Gain Avalanche Detectors (i-LGAD), and chapter 7 reports the conclusions and future work of the measured devices.
Najafi, Faraz. « Timing performance of superconducting nanowire single-photon detectors ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97816.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-89).
Superconducting nanowire single-photon detectors (SNSPDs) are becoming increasingly popular for applications in quantum information and long-distance communication. While the detection efficiency of SNSPDs has significantly improved over time, their timing performance has largely remained unchanged. Furthermore, the photodetection process in superconducting nanowires is still not fully understood and subject to ongoing research. In this thesis, I will present a systematic study of the timing performance of different types of nanowire single-photon detectors. I will analyze the photodetection delay histogram (also called instrument response function IRF) of these detectors as a function of bias current, nanowire width and wavelength. The study of the IRF yielded several unexpected results, among them a wavelength-dependent exponential tail of the IRF and a discrepancy between experimental photodetection delay results and the predicted value based on the electrothermal model. These results reveal some shortcomings of the basic models used for SNSPDs, and may include a signature of the initial process by which photons are detected in superconducting nanowires. I will conclude this thesis by presenting a brief introduction into vortices, which have recently become a popular starting point for photodetection models for SNSPDs. Building on prior work, I will show that a simple image method can be used to calculate the current flow in presence of a vortex, and discuss possible implications of recent vortex-based models for timing jitter.
by Faraz Najafi.
S.M.
Sjöström, Fredrik. « Auto-triggering studies of Low Gain Avalanche Detectors for the ATLAS High-Granularity Timing Detector ». Thesis, KTH, Fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253905.
Texte intégralLacasa, Calvo Luis. « Investigation of Variety of Non-CoherentFront end Detectors For Timing Estimation ». Thesis, KTH, Signalbehandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-138045.
Texte intégralStrazzi, Sofia. « Study of first thin LGAD prototypes for the ALICE 3 timing layers ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24382/.
Texte intégralSidorova, Mariia. « Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs) ». Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22296.
Texte intégralThis Ph.D. thesis is based on the experimental study of two mutually interconnected phenomena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and relaxation of the electron energy in superconducting films. Microscopically, a building element of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents a complex object for both experimental and theoretical studies. The complexity arises because, in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which acoustically mismatch with the underlying substrate, and implies a non-equilibrium state. This thesis addresses the complexity of the most conventional superconducting material used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental techniques. As an emerging application of the SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with single-photon sensitivity.
Feroci, M., E. Bozzo, S. Brandt, M. Hernanz, der Klis M. van, L. P. Liu, P. Orleanski et al. « The LOFT mission concept : a status update ». SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622719.
Texte intégralJohnson, Jeremy Ryan. « Fault propagation timing analysis to aid in the selection of sensors for health management systems ». Diss., Rolla, Mo. : University of Missouri--Rolla i.e. [Missouri University of Science and Technology], 2008. http://scholarsmine.mst.edu/thesis/pdf/Johnson_09007dcc804bcda7.pdf.
Texte intégralVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 19, 2008) Degree granted by Missouri University of Science and Technology, formerly known as University of Missouri--Rolla. Includes bibliographical references (p. 39-41).
Hancock, Jason. « Evaluation of the timing characteristics of various PET detectors using a time alignment probe ». Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=18467.
Texte intégralL'alignement de temps est effectué sur un TEP conventionnelle pour réduire le bruit dans l'image causé par des interactions hasard. Dans les appareils utilisant le temps-de-vol, cet alignement est essentiel pour bien connaitre la position exacte de l'annihilation. Traditionnellement, l'alignement est un processus répétitif accompli en ajustant les décalés de temps et en enregistrant le taux de compte jusqu'il soit maximisé. Nous avons créé un détecteur de positron que nous pouvons placer l'intrieur du PET. Ceci nous permet d'aligner chaque cristal dans le scanner au même événement (la détection de positron), et de fournir une référence constante à chaque cristal. Ceci augmente la précision et la vitesse de l'alignement.
Sjölin, Martin. « On the Fundamental Limitations of Timing and Energy Resolution for Silicon Detectors in PET Applications ». Thesis, KTH, Fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101790.
Texte intégralChapitres de livres sur le sujet "Timing detectors"
Bornheim, Adi, Jiajing Mao, Aashrita Mangu, Cristian Pena, Maria Spiropulu, Si Xie et Zhicai Zhang. « Precision Timing Detectors with Cadmium Telluride Sensors ». Dans Springer Proceedings in Physics, 56–60. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_10.
Texte intégralLv, Hongkui, Huihai He, Xiangdong Sheng et Jia Liu. « Timing Calibration of the LHAASO-KM2A Electromagnetic Particle Detectors Using Charged Particles Within the Extensive Air Showers ». Dans Springer Proceedings in Physics, 31–34. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1313-4_7.
Texte intégralTamulaitis, Gintautas. « Fast Optical Phenomena in Self-Activated and Ce-Doped Materials Prospective for Fast Timing in Radiation Detectors ». Dans Springer Proceedings in Physics, 35–54. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68465-9_2.
Texte intégralLecoq, Paul, Alexander Gektin et Mikhail Korzhik. « Addressing the Increased Demand for Fast Timing ». Dans Inorganic Scintillators for Detector Systems, 103–23. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45522-8_3.
Texte intégralGaur, Ankit, Aman Phogat, Moh Rafik, Ashok Kumar et Md Naimuddin. « Timing and Induced Charge Profile of Large Size RPC Detector for INO-ICAL Experiment ». Dans XXII DAE High Energy Physics Symposium, 369–71. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73171-1_85.
Texte intégralDu, Yuanjie. « Physical Analysis on Pulsar-Based Navigation System : Preliminary Designs of Timing Model and a New Prototype of X-Ray Detector ». Dans Lecture Notes in Electrical Engineering, 557–70. Berlin, Heidelberg : Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46632-2_49.
Texte intégralKolanoski, Hermann, et Norbert Wermes. « Semiconductor detectors ». Dans Particle Detectors, 255–372. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198858362.003.0008.
Texte intégral« Timing Measurements ». Dans Signal Processing for Radiation Detectors, 295–348. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119410225.ch6.
Texte intégralTully, Christopher G. « Fast Timing for Collider Detectors ». Dans The Future of High Energy Physics — Some Aspects, 255–60. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220089_0022.
Texte intégralVerma, Anshul, Mahatim Singh et Kiran Kumar Pattanaik. « Failure Detectors of Strong S and Perfect P Classes for Time Synchronous Hierarchical Distributed Systems ». Dans Applying Integration Techniques and Methods in Distributed Systems and Technologies, 246–80. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8295-3.ch010.
Texte intégralActes de conférences sur le sujet "Timing detectors"
Inami, Kenji. « Timing properties of MCP-PMT ». Dans International Workshop on new Photon-Detectors. Trieste, Italy : Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.051.0020.
Texte intégralOtero Ugobono, Sofia. « LGAD and 3D as timing detectors ». Dans The 28th International Workshop on Vertex Detectors. Trieste, Italy : Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.373.0035.
Texte intégralO'Neill, KEVIN, Nikolai Pavlov, Sergei DOLINSKY et Carl Jackson. « SensL New Fast Timing SPM - High-Speed Silicon Photomultiplier Signal Output for High-Performance Timing Applications ». Dans International Workshop on New Photon-detectors. Trieste, Italy : Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.158.0022.
Texte intégralKaaret, Philip. « Silicon-Based Large-Area X-Ray Detectors ». Dans X-RAY TIMING 2003 : Rossie and Beyond. AIP, 2004. http://dx.doi.org/10.1063/1.1781065.
Texte intégralObertino, Maria Margherita. « Silicon Sensor technologies for timing (LGAD) ». Dans The 26th International Workshop on Vertex Detectors. Trieste, Italy : Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.309.0033.
Texte intégralVarner, Gary. « Compact low-power and precision timing photodetector readout ». Dans International Workshop on new Photon-Detectors. Trieste, Italy : Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.051.0026.
Texte intégralRONZHIN, Anatoly. « Studies of timing properties of SiPms at Fermilab ». Dans International Workshop on New Photon-detectors. Trieste, Italy : Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.158.0073.
Texte intégralSola, Valentina. « Precision Timing with the CMS MTD Endcap Timing Layer for HL-LHC ». Dans Proceedings of the 29th International Workshop on Vertex Detectors (VERTEX2020). Journal of the Physical Society of Japan, 2021. http://dx.doi.org/10.7566/jpscp.34.010013.
Texte intégralStuden, A., D. Burdette, E. Chesi, N. H. Clinthorne, S. S. Huh, K. Honscheid, H. Kagan et al. « Timing in Thick Silicon Pad Detectors ». Dans 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.356036.
Texte intégralBaktoraz, Aliya, Nurzhan Saduyev, Orazaly Kalikulov, Dmitriy Beznosko, Yerzhan Mukhamejanov, Shynbolat Utey, Saken Shinbulatov et al. « "Chronotron" timing detectors for EAS studies ». Dans 37th International Cosmic Ray Conference. Trieste, Italy : Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0259.
Texte intégralRapports d'organisations sur le sujet "Timing detectors"
McDonald, Kirk T. Detectors with Fast Timing via Electron Multiplication in Silicon and Gases. Office of Scientific and Technical Information (OSTI), mars 2018. http://dx.doi.org/10.2172/1582120.
Texte intégralLipton, Ronald. A Double Sided LGAD-Based Detector Providing Timing, Position, and Track Angle Information. Office of Scientific and Technical Information (OSTI), janvier 2022. http://dx.doi.org/10.2172/1841398.
Texte intégralEmery, M. S., M. N. Ericson et C. L. Jr Britton. Timing and control requirements for a 32-channel AMU-ADC ASIC for the PHENIX detector. Office of Scientific and Technical Information (OSTI), février 1998. http://dx.doi.org/10.2172/570172.
Texte intégral