Articles de revues sur le sujet « Time-Resolved spectroscopie »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Time-Resolved spectroscopie.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Time-Resolved spectroscopie ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yakovlev, V. « Time-resolved luminescence spectroscopy study of CsI:Eu crystal ». Functional Materials 20, no 4 (25 décembre 2013) : 451–56. http://dx.doi.org/10.15407/fm20.04.451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu Fan, 刘璠, 姚旭日 Yao Xuri, 刘雪峰 Liu Xuefeng et 翟光杰 Zhai Guangjie. « 基于压缩感知的单光子时间分辨成像光谱技术 ». Laser & ; Optoelectronics Progress 58, no 10 (2021) : 1011016. http://dx.doi.org/10.3788/lop202158.1011016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gaft, Michael, Harold Seigel, Gerard Panczer et Renata Reisfeld. « Laser-induced time-resolved luminescence spectroscopy of Pb2+ in minerals ». European Journal of Mineralogy 14, no 6 (25 novembre 2002) : 1041–48. http://dx.doi.org/10.1127/0935-1221/2002/0014-1041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

DAI Zijie, 戴子杰, 康黎星 KANG Lixing, 龚诚 GONG Cheng, 刘政 LIU Zheng et 刘伟伟 LIU Weiwei. « PtSe2薄膜的时间分辨太赫兹光谱特性研究(特邀) ». ACTA PHOTONICA SINICA 50, no 8 (2021) : 0850206. http://dx.doi.org/10.3788/gzxb20215008.0850206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Qingli Zhou, Qingli Zhou, et Xicheng Zhang Xicheng Zhang. « Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics (Invited Paper) ». Chinese Optics Letters 9, no 11 (2011) : 110006–9. http://dx.doi.org/10.3788/col201109.110006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang Tong, 张童, 刘东远 Liu Dongyuan et 高峰 Gao Feng. « 基于MC模型和Nelder‑Mead单纯形算法的时域组织光谱学 ». Chinese Journal of Lasers 51, no 3 (2024) : 0307203. http://dx.doi.org/10.3788/cjl231142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fabelinskii, Immanuil L. « Time-resolved spectroscopy ». Uspekhi Fizicheskih Nauk 152, no 8 (1987) : 722. http://dx.doi.org/10.3367/ufnr.0152.198708y.0722.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fabelinskiĭ, Immanuil L. « Time-resolved spectroscopy ». Soviet Physics Uspekhi 30, no 8 (31 août 1987) : 755–56. http://dx.doi.org/10.1070/pu1987v030n08abeh002959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Clark, R. J. H., R. E. Hester et T. L. Gustafson. « Time Resolved Spectroscopy ». Vibrational Spectroscopy 1, no 1 (décembre 1990) : 106–8. http://dx.doi.org/10.1016/0924-2031(90)80018-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Beddard, G. S. « Time resolved spectroscopy ». Spectrochimica Acta Part A : Molecular Spectroscopy 47, no 2 (janvier 1991) : 311. http://dx.doi.org/10.1016/0584-8539(91)80104-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

YAGI, Toshirou. « Time-Resolved Phonon Spectroscopy. » Journal of the Spectroscopical Society of Japan 44, no 5 (1995) : 281–91. http://dx.doi.org/10.5111/bunkou.44.281.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Görlach, Ekkehard, Hansruedi Gygax, Paolo Lubini et Urs P. Wild. « Time resolved fluorescence spectroscopy ». Proceedings / Indian Academy of Sciences 103, no 3 (mars 1991) : 395–400. http://dx.doi.org/10.1007/bf02842096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Jones, W. J. « Time-Resolved Vibrational Spectroscopy ». Optica Acta : International Journal of Optics 33, no 9 (septembre 1986) : 1096. http://dx.doi.org/10.1080/716099710.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Atkinson, George H. « Time-Resolved Vibrational Spectroscopy ». Journal of Physical Chemistry A 104, no 18 (mai 2000) : 4129. http://dx.doi.org/10.1021/jp001015m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Bakker, Huib, Stephen R. Meech et Edwin J. Heilweil. « Time-Resolved Vibrational Spectroscopy ». Journal of Physical Chemistry A 122, no 18 (10 mai 2018) : 4389. http://dx.doi.org/10.1021/acs.jpca.7b12769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Millar, David P. « Time-resolved fluorescence spectroscopy ». Current Opinion in Structural Biology 6, no 5 (octobre 1996) : 637–42. http://dx.doi.org/10.1016/s0959-440x(96)80030-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Erdmann, M., O. Rubner, Z. Shen et V. Engel. « Time-resolved photoelectron spectroscopy : ». Journal of Organometallic Chemistry 661, no 1-2 (novembre 2002) : 191–97. http://dx.doi.org/10.1016/s0022-328x(02)01822-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Ajb. « Time-resolved Vibrational Spectroscopy ». Journal of Molecular Structure 131, no 1-2 (octobre 1985) : 185. http://dx.doi.org/10.1016/0022-2860(85)85117-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Andreoni, Alessandra. « Time-resolved fluorescence spectroscopy ». Journal of Photochemistry and Photobiology B : Biology 9, no 3-4 (juin 1991) : 379–80. http://dx.doi.org/10.1016/1011-1344(91)80178-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yuzawa, Tetsuro, Chihiro Kato, Michael W. George et Hiro-O. Hamaguchi. « Nanosecond Time-Resolved Infrared Spectroscopy with a Dispersive Scanning Spectrometer ». Applied Spectroscopy 48, no 6 (juin 1994) : 684–90. http://dx.doi.org/10.1366/000370294774368947.

Texte intégral
Résumé :
A nanosecond time-resolved infrared spectroscopic system based on a dispersive scanning spectrometer has been constructed. This is an advanced version of a similar system reported in a previous paper; the time resolution has been improved from 1 μs to 50 ns and the sensitivity from 10−4 in intensity changes to 10−6. These have been achieved by the use of a high-temperature ceramic infrared light source, a photovoltaic MCT detector, and a low-noise, wide-band preamplifier developed specifically for the present purpose. Time-resolved infrared spectra of a few samples of photochemical and photobiological interests are presented to show the capability of the system. The origin of the thermal artifacts, which have been found to hamper the time-resolved infrared measurements seriously, is shown to be due to the transient reflectance change induced by a small temperature jump. The future prospect of time-resolved infrared spectroscopy is discussed with reference to other methods including infrared laser spectroscopy and Fourier transform infrared spectroscopy.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Maklygina, Yu S., I. D. Romanishkin, A. S. Skobeltsin, T. A. Savelyeva, A. A. Potapov, G. V. Pavlova, I. V. Chekhonin, O. I. Gurina et V. B. Loschenov. « Time-resolved fluorescence imaging technique for rat brain tumors analysis ». Journal of Physics : Conference Series 2058, no 1 (1 octobre 2021) : 012028. http://dx.doi.org/10.1088/1742-6596/2058/1/012028.

Texte intégral
Résumé :
Abstract The paper presents a new approach to assessing the state of tissues that differ in phenotype and in the degree of immunocompetent cells activity using photosensitizers (PS) and time-resolved fluorescence analysis methods. The main attention is paid to the detection of differences between tumor cells and tumor-associated macrophages (TAM) using spectroscopic and microscopic methods by the fluorescent kinetics signal and the difference in the accumulation of PS (the accumulation is several times greater in macrophages). The results of the PS photoluminescence study were obtained using two different techniques: time-resolved spectroscopy and time-resolved fluorescence microscopy (FLIM). Time-resolved spectroscopic analysis of the PS fluorescence lifetime was performed on adult female rats with induced C6 glioma in vivo. 5-ALA-induced Pp IX, which is widely used in clinical practice for carrying out effective conduction photodiagnostics and PDT, was used as the PS.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Bickerton, Steven, Carles Badenes, Thomas Hettinger, Timothy Beers et Sonya Huang. « Time-Resolved Spectroscopy with SDSS ». Proceedings of the International Astronomical Union 7, S285 (septembre 2011) : 289–90. http://dx.doi.org/10.1017/s1743921312000816.

Texte intégral
Résumé :
AbstractWe present a brief technical outline of the newly-formed project, “Detection of Spectroscopic Differences over Time” (DS/DT). Our collaboration is using individual exposures from the SDSS spectroscopic archive to produce a uniformly-processed set of time-resolved spectra. Here we provide an overview of the properties and processing of the available data, and highlight the wide range of time base-lines present in the archive.
Styles APA, Harvard, Vancouver, ISO, etc.
23

TORIUMI, Hirokazu. « FT-IR time-resolved spectroscopy. » Journal of the Spectroscopical Society of Japan 37, no 4 (1988) : 289–90. http://dx.doi.org/10.5111/bunkou.37.289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

IWATA, Koichi, et Hiro-o. HAMAGUCHI. « Picosecond Time-resolved Raman Spectroscopy. » Journal of the Spectroscopical Society of Japan 44, no 2 (1995) : 61–73. http://dx.doi.org/10.5111/bunkou.44.61.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Pophristic, Milan, Frederick H. Long, Chuong Tran et Ian T. Ferguson. « Time-Resolved Spectroscopy of InGaN ». MRS Internet Journal of Nitride Semiconductor Research 5, S1 (2000) : 803–9. http://dx.doi.org/10.1557/s109257830000510x.

Texte intégral
Résumé :
We have used time-resolved photoluminescence (PL), with 400 nm (3.1 eV) excitation, to examine InxGa1−xN/GaN light-emitting diodes (LEDs) before the final stages of processing at room temperature. We have found dramatic differences in the time-resolved kinetics between dim, bright and super bright LED devices. The lifetime of the emission for dim LEDs is quite short, 110 ± 20 ps at photoluminescence (PL) maximum, and the kinetics are not dependent upon wavelength. This lifetime is short compared to bright and super bright LEDs, which we have examined under similar conditions. The kinetics of bright and super bright LEDs are clearly wavelength dependent, highly non-exponential, and are on the nanosecond time scale (lifetimes are in order of 1 ns for bright and 10 ns for super bright LED at the PL max). The non-exponential PL kinetics can be described by a stretched exponential function, indicating significant disorder in the material. Typical values for β, the stretching coefficient, are 0.45 − 0.6 for bright LEDs, at the PL maxima at room temperature. We attribute this disorder to indium alloy fluctuations.From analysis of the stretched exponential kinetics we estimate the potential fluctuations to be approximately 75 meV in the super bright LED. Assuming a hopping mechanism, the average distance between indium quantum dots in the super bright LED is estimated to be 20 Å.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Helbing, Jan, et Mathias Bonmarin. « Time-Resolved Chiral Vibrational Spectroscopy ». CHIMIA International Journal for Chemistry 63, no 3 (25 mars 2009) : 128–33. http://dx.doi.org/10.2533/chimia.2009.128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Millers, D., L. Grigorjeva, V. Pankratov, S. Chernov et A. Watterich. « Time-resolved spectroscopy of ZnWO4 ». Radiation Effects and Defects in Solids 155, no 1-4 (novembre 2001) : 317–21. http://dx.doi.org/10.1080/10420150108214131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Greetham, G. M., D. Sole, I. P. Clark, A. W. Parker, M. R. Pollard et M. Towrie. « Time-resolved multiple probe spectroscopy ». Review of Scientific Instruments 83, no 10 (octobre 2012) : 103107. http://dx.doi.org/10.1063/1.4758999.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Betz, Timo, et Cécile Sykes. « Time resolved membrane fluctuation spectroscopy ». Soft Matter 8, no 19 (2012) : 5317–26. http://dx.doi.org/10.1039/c2sm00001f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chernikov, Alexej, Thomas Feldtmann, Sangam Chatterjee, Martin Koch, Mackillo Kira et Stephan W. Koch. « Time-resolved phonon-sideband spectroscopy ». Solid State Communications 150, no 37-38 (octobre 2010) : 1733–36. http://dx.doi.org/10.1016/j.ssc.2010.07.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Böhmer, Martin, Michael Wahl, Hans-Jürgen Rahn, Rainer Erdmann et Jörg Enderlein. « Time-resolved fluorescence correlation spectroscopy ». Chemical Physics Letters 353, no 5-6 (février 2002) : 439–45. http://dx.doi.org/10.1016/s0009-2614(02)00044-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Stolow, Albert, Arthur E. Bragg et Daniel M. Neumark. « Femtosecond Time-Resolved Photoelectron Spectroscopy ». Chemical Reviews 104, no 4 (avril 2004) : 1719–58. http://dx.doi.org/10.1021/cr020683w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Spoonhower, J. P., et M. S. Burberry. « Time-resolved spectroscopy of BaFBr:Eu2+ ». Journal of Luminescence 43, no 4 (juin 1989) : 221–26. http://dx.doi.org/10.1016/0022-2313(89)90005-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

ISHIDA, Yukiaki. « Ultrafast Time-Resolved Photoemission Spectroscopy ». Hyomen Kagaku 37, no 1 (2016) : 31–36. http://dx.doi.org/10.1380/jsssj.37.31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lin, S. H., B. Fain et C. Y. Yeh. « Ultrafast time-resolved fluorescence spectroscopy ». Physical Review A 41, no 5 (1 mars 1990) : 2718–29. http://dx.doi.org/10.1103/physreva.41.2718.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Plakhotnik, Taras, et Daniel Walser. « Time Resolved Single Molecule Spectroscopy ». Physical Review Letters 80, no 18 (4 mai 1998) : 4064–67. http://dx.doi.org/10.1103/physrevlett.80.4064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Maíz Apellániz, J., R. H. Barbá, S. Simón-Díaz, A. Sota, E. Trigueros Páez, J. A. Caballero et E. J. Alfaro. « Lucky Spectroscopy, an equivalent technique to Lucky Imaging ». Astronomy & ; Astrophysics 615 (juillet 2018) : A161. http://dx.doi.org/10.1051/0004-6361/201832885.

Texte intégral
Résumé :
Context. Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. Aims. We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. Methods. We obtained a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions. We selected those with the best characteristics, extracted the spectra using multiple-profile fitting, and combined the results to derive spatially separated spectra. Results. We demonstrate the usefulness of Lucky Spectroscopy by presenting the spatially resolved spectra of the components of each system, in two cases with separations of only ~0.′′3. Those are δ Ori Aa+Ab (resolved in the optical for the first time) and σ Ori AaAb+B (first time ever resolved). We also spatially resolve 15 Mon AaAb+B, ζ Ori AaAb+B (both previously resolved with GOSSS, the Galactic O-Star Spectroscopic Survey), and η Ori AaAb+B, a system with two spectroscopic B+B binaries and a fifth visual component. The systems have in common that they are composed of an inner pair of slow rotators orbited by one or more fast rotators, a characteristic that could have consequences for the theories of massive star formation.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Saito, Mitsunori, Takahiro Koketsu et Yusuke Itai. « Time-space conversion for time-resolved spectroscopy ». OSA Continuum 2, no 5 (29 avril 2019) : 1726. http://dx.doi.org/10.1364/osac.2.001726.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Moffat, Anthony F. J. « Time-resolved optical-UV spectroscopy of colliding wind effects ». Symposium - International Astronomical Union 193 (1999) : 278–88. http://dx.doi.org/10.1017/s0074180900205548.

Texte intégral
Résumé :
It is in the ultraviolet-optical domain where the strongest known emission lines arise in hot star winds. In the case of hot-star binaries, culminating in the relatively common, strong-wind WR+O systems, similar line-emission is seen in the cooling flows downstream from the highly compressed, X-ray emitting heads of the bow shock regions produced when the two winds collide. Time-resolved UV-optical spectroscopy of these flows around a complete orbit can provide important constraints not only on the colliding wind process itself, but also on the winds and the orbit. Spectroscopic wind-wind collision effects have now been seen in every relatively close WR+O system (P ≲ 100 d) that has been adequately observed so far.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ebihara, Ken, Hiroaki Takahashi et Isao Noda. « Nanosecond Two-Dimensional Resonance Raman Correlation Spectroscopy of Benzil Radical Anion ». Applied Spectroscopy 47, no 9 (septembre 1993) : 1343–44. http://dx.doi.org/10.1366/0003702934067405.

Texte intégral
Résumé :
Nanosecond two-dimensional resonance Raman spectroscopy was used to investigate the photochemistry of the production and decay of the radical anion of benzil in various solvents. A newly developed correlation formalism was applied to a set of time-resolved resonance Raman spectra of the benzil radical anion to generate two-dimensional Raman spectra. Unlike the 2D correlation method previously developed for IR spectroscopy, which was based on signals induced by a sinusoidally varying external perturbation, the new correlation formalism is generally applicable to the studies of any transient spectroscopic signals having an arbitrary waveform. This makes it ideally suited for the analysis of time-resolved spectroscopic signals following photoexcitation. 2D Raman spectra effectively accentuate certain useful information which is sometimes obscured in the original time-resolved spectra. Spectral intensity changes and peak shifts arising from the photochemical reaction processes were clearly observed by the synchronous and asynchronous correlation.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Mouchet, M., S. F. Van Amerongen, J. M. Bonnet-Bidaud et J. P. Osborne. « Time-Resolved Optical Spectroscopy of AM Her X-Ray Sources ». International Astronomical Union Colloquium 93 (1987) : 613–24. http://dx.doi.org/10.1017/s025292110010541x.

Texte intégral
Résumé :
AbstractWe present high-time resolution spectroscopy of two AM Her sources E1405−451 and E1013−477. For E1405−451, the Balmer emission lines profiles can be divided into a narrow component and a broad one. The amplitudes of the radial velocity curves of these components are respectively 265±30 km/s and 390±50 km/s. The orientation of the column determined from polarimetry is not compatible with the broad component being formed in the lowest parts of the column. Photometric and spectroscopic results on E1013−477 do not confirm the previous reported 103 min. period. Rapid variability (<1.5h) as well as long term modulation (>3.3h) is present in these data.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Satoh, Azusa, Mamoru Kitaura, Kei Kamada, Akimasa Ohnishi, Minoru Sasaki et Kazuhiko Hara. « Time-resolved photoluminescence spectroscopy of Ce:Gd3Al2Ga3O12crystals ». Japanese Journal of Applied Physics 53, no 5S1 (1 janvier 2014) : 05FK01. http://dx.doi.org/10.7567/jjap.53.05fk01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ostensen, R. « Time resolved spectroscopy of Balloon 090100001 ». Communications in Asteroseismology 150 (2007) : 265–66. http://dx.doi.org/10.1553/cia150s265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ashfold, Michael, Majed Chergui, Ingo Fischer, Lingfeng Ge, Gilbert Grell, Misha Ivanov, Adam Kirrander et al. « Time-resolved ultrafast spectroscopy : general discussion ». Faraday Discussions 228 (2021) : 329–48. http://dx.doi.org/10.1039/d1fd90024b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Weidner, H., et R. E. Peale. « Event-Locked Time-Resolved Fourier Spectroscopy ». Applied Spectroscopy 51, no 8 (août 1997) : 1106–12. http://dx.doi.org/10.1366/0003702971941917.

Texte intégral
Résumé :
A low-cost method of adding time-resolving capability to commercial Fourier transform spectrometers with a continuously scanning Michelson interferometer has been developed. This method is specifically designed to eliminate noise and artifacts caused by mirror-speed variations in the interferometer. The method exists of two parts: (1) a novel timing scheme for synchronizing the transient events under study and the digitizing of the interferogram and (2) a mathematical algorithm for extracting the spectral information from the recorded data. The novel timing scheme is a modification of the well-known interleaved, or stroboscopic, method. It achieves the same timing accuracy, signal-to-noise ratio, and freedom from artifacts as step-scan time-resolving Fourier spectrometers by locking the sampling of the interferogram to a stable time base rather than to the occurrences of the HeNe fringes. The necessary pathlength-difference information at which samples are taken is obtained from a record of the mirror speed. The resulting interferograms with uneven pathlength-difference spacings are transformed into wavenumber space by least-squares fits of periodic functions. Spectra from the far-infrared to the upper visible at resolutions up to 0.2 cm−1 are used to demonstrate the utility of this method.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Buchner, Franziska, Andrea Lübcke, Nadja Heine et Thomas Schultz. « Time-resolved photoelectron spectroscopy of liquids ». Review of Scientific Instruments 81, no 11 (novembre 2010) : 113107. http://dx.doi.org/10.1063/1.3499240.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Drescher, M., M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann et F. Krausz. « Time-resolved atomic inner-shell spectroscopy ». Nature 419, no 6909 (octobre 2002) : 803–7. http://dx.doi.org/10.1038/nature01143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Diaz, Marcos P. « Time‐resolved Spectroscopy of V Sagittae ». Publications of the Astronomical Society of the Pacific 111, no 755 (janvier 1999) : 76–83. http://dx.doi.org/10.1086/316289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Remacle, F., U. Even et R. D. Levine. « Time and Frequency Resolved ZEKE Spectroscopy ». Journal of Physical Chemistry 100, no 51 (janvier 1996) : 19735–39. http://dx.doi.org/10.1021/jp963005k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Khasanov, Oleg, Tatiana Smirnova, Olga Fedotova, Grigory Rusetsky, Vladimir Gayvoronsky et Sergey Pokutnyi. « Time resolved femtosecond spectroscopy of nanocomposites ». EPJ Web of Conferences 190 (2018) : 03004. http://dx.doi.org/10.1051/epjconf/201819003004.

Texte intégral
Résumé :
Characterization methods of nanocomposites consisted of semiconductor metal-oxide quantum dots (QD) incorporated into a dielectric matrix have been elaborated on the base of time resolved four-wave mixing and photon echo. Large permanent dipole moment, inherent to QDs under study, local field effect, the QD spatial dispersion and distribution function of the transition dipole moments in QDs are taken into account. New responses at multiple frequencies in directions differed from spatial synchronism conditions of well-known signals have been predicted.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie