Articles de revues sur le sujet « TIME QUANTUM »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : TIME QUANTUM.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « TIME QUANTUM ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhu, Gaoyan, Lei Xiao, Bingzi Huo et Peng Xue. « Photonic discrete-time quantum walks [Invited] ». Chinese Optics Letters 18, no 5 (2020) : 052701. http://dx.doi.org/10.3788/col202018.052701.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

AGLIARI, ELENA, OLIVER MÜLKEN et ALEXANDER BLUMEN. « CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING ». International Journal of Bifurcation and Chaos 20, no 02 (février 2010) : 271–79. http://dx.doi.org/10.1142/s0218127410025715.

Texte intégral
Résumé :
Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Góźdź, Andrzej, Marek Góźdź et Aleksandra Pȩdrak. « Quantum Time and Quantum Evolution ». Universe 9, no 6 (26 mai 2023) : 256. http://dx.doi.org/10.3390/universe9060256.

Texte intégral
Résumé :
The problem of quantum time and evolution of quantum systems, where time is not a parameter, is considered. In our model, following some earlier works, time is represented by a quantum operator. In this paper, similarly to the position operators in the Schrödinger representation of quantum mechanics, this operator is a multiplication-type operator. It can be also represented by an appropriate positive operator-valued measure (POVM) which together with the 3D position operators/measures provide a quantum observable giving a position in the quantum spacetime. The quantum evolution itself is a stochastic process based on Lüder’s projection postulate. In fact, it is a generalization of the unitary evolution. This allows to treat time and generally the spacetime position as a quantum observable, in a consistent and observer-independent way.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Skulimowski, Marcin. « Quantum World with Quantum Time ». Foundations of Physics Letters 19, no 2 (avril 2006) : 127–41. http://dx.doi.org/10.1007/s10702-006-0371-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bojowald, Martin, Golam Mortuza Hossain, Mikhail Kagan et Casey Tomlin. « Quantum Matter in Quantum Space-Time ». Quantum Matter 2, no 6 (1 décembre 2013) : 436–43. http://dx.doi.org/10.1166/qm.2013.1078.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nassar, Antônio B. « Quantum traversal time ». Physical Review A 38, no 2 (1 juillet 1988) : 683–87. http://dx.doi.org/10.1103/physreva.38.683.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Davies, P. C. W. « Quantum tunneling time ». American Journal of Physics 73, no 1 (janvier 2005) : 23–27. http://dx.doi.org/10.1119/1.1810153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Horiuchi, Noriaki. « Quantum time lens ». Nature Photonics 11, no 5 (mai 2017) : 267. http://dx.doi.org/10.1038/nphoton.2017.70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Loveridge, Leon, et Takayuki Miyadera. « Relative Quantum Time ». Foundations of Physics 49, no 6 (31 mai 2019) : 549–60. http://dx.doi.org/10.1007/s10701-019-00268-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kiefer, Claus, et Patrick Peter. « Time in Quantum Cosmology ». Universe 8, no 1 (8 janvier 2022) : 36. http://dx.doi.org/10.3390/universe8010036.

Texte intégral
Résumé :
Time in quantum gravity is not a well-defined notion despite its central role in the very definition of dynamics. Using the formalism of quantum geometrodynamics, we briefly review the problem and illustrate it with two proposed solutions. Our main application is quantum cosmology—the application of quantum gravity to the Universe as a whole.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ma, Chen-Te. « Early-time and late-time quantum chaos ». International Journal of Modern Physics A 35, no 18 (15 juin 2020) : 2050082. http://dx.doi.org/10.1142/s0217751x20500827.

Texte intégral
Résumé :
We show the relation between the Heisenberg averaging of regularized 2-point out-of-time ordered correlation function and the 2-point spectral form factor in bosonic quantum mechanics. The generalization to all even-point is also discussed. We also do the direct extension from the bosonic quantum mechanics to the noninteracting scalar field theory. Finally, we find that the coherent state and large-[Formula: see text] approaches are useful in the late-time study. We find that the computation of the coherent state can be simplified by the Heisenberg averaging. Therefore, this provides a simplified way to probe the late-time quantum chaos through a coherent state. The large-[Formula: see text] result is also comparable to the [Formula: see text] numerical result in the large-[Formula: see text] quantum mechanics. This can justify that large-[Formula: see text] technique in bosonic quantum mechanics can probe the late time, not the early time. Because the quantitative behavior of large-[Formula: see text] can be captured from the [Formula: see text] numerical result, the realization in experiments should be possible.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cafaro, Carlo, et Paul M. Alsing. « Continuous-time quantum search and time-dependent two-level quantum systems ». International Journal of Quantum Information 17, no 03 (avril 2019) : 1950025. http://dx.doi.org/10.1142/s0219749919500254.

Texte intégral
Résumé :
It was recently emphasized by Byrnes, Forster and Tessler [Phys. Rev. Lett. 120 (2018) 060501] that the continuous-time formulation of Grover’s quantum search algorithm can be intuitively understood in terms of Rabi oscillations between the source and the target subspaces. In this work, motivated by this insightful remark and starting from the consideration of a time-independent generalized quantum search Hamiltonian as originally introduced by Bae and Kwon [Phys. Rev. A 66 (2002) 012314], we present a detailed investigation concerning the physical connection between quantum search Hamiltonians and exactly solvable time-dependent two-level quantum systems. Specifically, we compute in an exact analytical manner the transition probabilities from a source state to a target state in a number of physical scenarios specified by a spin-[Formula: see text] particle immersed in an external time-dependent magnetic field. In particular, we analyze both the periodic oscillatory as well as the monotonic temporal behaviors of such transition probabilities and, moreover, explore their analogy with characteristic features of Grover-like and fixed-point quantum search algorithms, respectively. Finally, we discuss from a physics standpoint the connection between the schedule of a search algorithm, in both adiabatic and nonadiabatic quantum mechanical evolutions, and the control fields in a time-dependent driving Hamiltonian.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Han, Xiaochuan, Lantian Feng, Yuxuan Li, Lanxuan Zhang, Junfeng Song et Yongsheng Zhang. « Experimental observations of boundary conditions of continuous-time quantum walks ». Chinese Optics Letters 17, no 5 (2019) : 052701. http://dx.doi.org/10.3788/col201917.052701.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Christov, Ivan P. « Polynomial-Time-Scaling Quantum Dynamics with Time-Dependent Quantum Monte Carlo ». Journal of Physical Chemistry A 113, no 20 (21 mai 2009) : 6016–21. http://dx.doi.org/10.1021/jp901947t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kheyfets, Arkady, et Warner A. Miller. « Quantum geometrodynamics : Quantum-driven many-fingered time ». Physical Review D 51, no 2 (15 janvier 1995) : 493–501. http://dx.doi.org/10.1103/physrevd.51.493.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gambini, Rodolfo, et Jorge Pullin. « Quantum shells in a quantum space-time ». Classical and Quantum Gravity 32, no 3 (5 janvier 2015) : 035003. http://dx.doi.org/10.1088/0264-9381/32/3/035003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Feng, Yanyan, Qian Zhang, Jinjing Shi, Shuhui Chen et Ronghua Shi. « Quantum Proxy Signature Scheme with Discrete Time Quantum Walks and Quantum One-Time Pad CNOT Operation ». Applied Sciences 10, no 17 (20 août 2020) : 5770. http://dx.doi.org/10.3390/app10175770.

Texte intégral
Résumé :
The quantum proxy signature is one of the most significant formalisms in quantum signatures. We put forward a quantum proxy signature scheme using quantum walk-based teleportation and quantum one-time pad CNOT (QOTP-CNOT) operation, which includes four phases, i.e., initializing phase, authorizing phase, signing phase and verifying phase. The QOTP-CNOT is achieved by attaching the CNOT operation upon the QOTP and it is applied to produce the proxy signature state. The quantum walk-based teleportation is employed to transfer the encrypted message copy derived from the binary random sequence from the proxy signer to the verifier, in which the required entangled states do not need to be prepared ahead and they can be automatically generated during quantum walks. Security analysis demonstrates that the presented proxy signature scheme has impossibility of denial from the proxy and original signers, impossibility of forgery from the original signatory and the verifier, and impossibility of repudiation from the verifier. Notably, the discussion shows the complexity of the presented algorithm and that the scheme can be applied in many real scenarios, such as electronic payment and electronic commerce.
Styles APA, Harvard, Vancouver, ISO, etc.
18

BISWAS, S., A. SHAW et B. MODAK. « TIME IN QUANTUM GRAVITY ». International Journal of Modern Physics D 10, no 04 (août 2001) : 595–606. http://dx.doi.org/10.1142/s0218271801001384.

Texte intégral
Résumé :
The Wheeler–DeWitt equation in quantum gravity is timeless in character. In order to discuss quantum to classical transition of the universe, one uses a time prescription in quantum gravity to obtain a time contained description starting from Wheeler–DeWitt equation and WKB ansatz for the WD wavefunction. The approach has some drawbacks. In this work, we obtain the time-contained Schrödinger–Wheeler–DeWitt equation without using the WD equation and the WKB ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD wavefunction is consistent with the Hartle–Hawking or wormhole dominance proposal boundary condition. We thus find an answer to the small scale boundary conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
19

OLKHOVSKY, V. S., et E. RECAMI. « TIME AS A QUANTUM OBSERVABLE ». International Journal of Modern Physics A 22, no 28 (10 novembre 2007) : 5063–87. http://dx.doi.org/10.1142/s0217751x0703724x.

Texte intégral
Résumé :
Some new results are presented and recent developments are reviewed on the study of Time in quantum physics as an observable, canonically conjugate to energy. Operators for the observable Time are investigated in particle and photon quantum theory. In particular, this paper deals with the Hermitian (more precisely, maximal Hermitian, but non-self-adjoint) operator for Time which appears: (i) for particles, in ordinary nonrelativistic quantum mechanics; and (ii) for photons (i.e. in first-quantization quantum electrodynamics). In conclusion, various recent and possible future applications of the time quantum analysis for tunnelling processes, nuclear collisions and systems with (quasi)discrete energy spectra are indicated.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhiyong Tan, Zhiyong Tan, Li Gu Li Gu, Tianhong Xu Tianhong Xu, Tao Zhou Tao Zhou et Juncheng Cao Juncheng Cao. « Real-time reflection imaging with terahertz camera and quantum-cascade laser ». Chinese Optics Letters 12, no 7 (2014) : 070401–70403. http://dx.doi.org/10.3788/col201412.070401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

AMELINO-CAMELIA, GIOVANNI, NICCOLÒ LORET, GIANLUCA MANDANICI et FLAVIO MERCATI. « GRAVITY IN QUANTUM SPACE–TIME ». International Journal of Modern Physics D 19, no 14 (décembre 2010) : 2385–92. http://dx.doi.org/10.1142/s0218271810018451.

Texte intégral
Résumé :
The literature on quantum-gravity-inspired scenarios for the quantization of space–time has so far focused on particle-physics-like studies. This is partly justified by the present limitations of our understanding of quantum gravity theories, but we here argue that valuable insight can be gained through semi-heuristic analyses of the implications for gravitational phenomena of some results obtained in the quantum space–time literature. In particular, we show that the types of description of particle propagation that emerged in certain quantum space–time frameworks have striking implications for gravitational collapse and for the behavior of gravity at large distances.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Cai, Shuiying, Qingyu Huang, Yiwen Ye, Yongxian Wen et Yunguo Lin. « The sojourn times of one dimensional discrete-time quantum walks ». Laser Physics Letters 20, no 9 (8 août 2023) : 095210. http://dx.doi.org/10.1088/1612-202x/ace888.

Texte intégral
Résumé :
Abstract In the existing literature, a sojourn time of a discrete-time quantum walk is not a random variable. To solve this problem, we redefine the sojourn time of a quantum walk where its coin evolution operator can be general. We first discuss a class of quantum walks governed by flip operators. We cumulatively calculate how much time a walker spends in the set of non-negative integers up to a fixed evolution time. Whether a walker makes a left or right evolution, we add up the staying times as long as it stays within the target set. We define a sojourn time as the total amount of the staying times. Compared with existing definitions, we show that this definition can satisfy the probability normalization. From this, we define a random variable about the sojourn time and discuss its probability distribution. We build a mathematical model to characterize a sojourn time that is embedded into a quantum walk. These results are also valid for a class of quantum walks governed by general coin operators. We also give a method for calculating the sojourn time and analyze the shape features of its probability distribution.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Martínez-Pérez, Armando, et Gabino Torres-Vega. « A Quantum Time Coordinate ». Symmetry 13, no 2 (11 février 2021) : 306. http://dx.doi.org/10.3390/sym13020306.

Texte intégral
Résumé :
We discuss quantum time states formed with a finite number of energy eigenstates with the purpose of obtaining a time coordinate. These time states are eigenstates of the recently introduced discrete time operator. The coordinate and momentum representations of these time eigenstates resemble classical time curves and become classical at high energies. To illustrate this behavior, we consider the simple example of the particle-in-a-box model. We can follow the quantum-classical transition of the system. Among the many existing solutions for the particle in a box, we use a set which leads to time eigenstates for use as a coordinate system.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Schlatter, Andreas. « Time in Quantum Measurement ». Entropy 8, no 3 (6 septembre 2006) : 182–87. http://dx.doi.org/10.3390/e8030182.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Guts, А. К. « THE QUANTUM TIME MACHINE ». SPACE, TIME AND FUNDAMENTAL INTERACTIONS 3, no 28 (2019) : 20–44. http://dx.doi.org/10.17238/issn2226-8812.2019.3.20-44.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Góźdź, A., et M. Góźdź. « Time in Quantum Processes ». Acta Physica Polonica B Proceedings Supplement 12, no 3 (2019) : 581. http://dx.doi.org/10.5506/aphyspolbsupp.12.581.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Partovi, M. Hossein, et Richard Blankenbecler. « Time in Quantum Measurements ». Physical Review Letters 57, no 23 (8 décembre 1986) : 2887–90. http://dx.doi.org/10.1103/physrevlett.57.2887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Suter, Dieter, Matthias Ernst et Richard R. Ernst. « Quantum time-translation machine ». Molecular Physics 78, no 1 (janvier 1993) : 95–102. http://dx.doi.org/10.1080/00268979300100091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Ita, Eyo Eyo, Chopin Soo et Hoi-Lai Yu. « Intrinsic time quantum geometrodynamics ». Progress of Theoretical and Experimental Physics 2015, no 8 (août 2015) : 083E01. http://dx.doi.org/10.1093/ptep/ptv109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Bender, Carl M., Kimball A. Milton, David H. Sharp, L. M. Simmons et Richard Stong. « Discrete-time quantum mechanics ». Physical Review D 32, no 6 (15 septembre 1985) : 1476–85. http://dx.doi.org/10.1103/physrevd.32.1476.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hilgevoord, Jan. « Time in quantum mechanics ». American Journal of Physics 70, no 3 (mars 2002) : 301–6. http://dx.doi.org/10.1119/1.1430697.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Moiseev, E. S., et S. A. Moiseev. « Time-bin quantum RAM ». Journal of Modern Optics 63, no 20 (12 mai 2016) : 2081–92. http://dx.doi.org/10.1080/09500340.2016.1182222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

KHEYFETS, ARKADY, et WARNER A. MILLER. « TIME IN QUANTUM GEOMETRODYNAMICS ». International Journal of Modern Physics A 15, no 26 (20 octobre 2000) : 4125–40. http://dx.doi.org/10.1142/s0217751x00001361.

Texte intégral
Résumé :
We revisit the issue of time in quantum geometrodynamics and suggest a quantization procedure on the space of true dynamic variables. This procedure separates the issue of quantization from enforcing the constraints caused by the general covariance symmetries. The resulting theory, unlike the standard approach, takes into account the states that are off shell with respect to the constraints, and thus avoids the problems of time. In this approach, quantum geometrodynamics, general covariance, and the interpretation of time emerge together as parts of the solution of the total problem of geometrodynamic evolution.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mullins, Justin. « The quantum time machine ». New Scientist 208, no 2787 (novembre 2010) : 34–37. http://dx.doi.org/10.1016/s0262-4079(10)62886-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bohm, A. « Time-asymmetric quantum physics ». Physical Review A 60, no 2 (1 août 1999) : 861–76. http://dx.doi.org/10.1103/physreva.60.861.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Sudbery, Tony. « A quantum time machine ». Nature 346, no 6286 (août 1990) : 699–700. http://dx.doi.org/10.1038/346699a0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fleming, Gordon N. « Time in quantum mechanics ». Studies in History and Philosophy of Science Part B : Studies in History and Philosophy of Modern Physics 36, no 1 (mars 2005) : 181–90. http://dx.doi.org/10.1016/j.shpsb.2004.11.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Unruh, W. G. « Time and quantum gravity ». International Journal of Theoretical Physics 28, no 9 (septembre 1989) : 1181–93. http://dx.doi.org/10.1007/bf00670359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Englert, F. « Quantum physics without time ». Physics Letters B 228, no 1 (septembre 1989) : 111–14. http://dx.doi.org/10.1016/0370-2693(89)90534-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Bender, C. M., L. R. Mead et K. A. Milton. « Discrete time quantum mechanics ». Computers & ; Mathematics with Applications 28, no 10-12 (novembre 1994) : 279–317. http://dx.doi.org/10.1016/0898-1221(94)00198-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Zeh, H. D. « Time in quantum gravity ». Physics Letters A 126, no 5-6 (janvier 1988) : 311–17. http://dx.doi.org/10.1016/0375-9601(88)90842-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Meyers, Ronald, et Keith Deacon. « Space-Time Quantum Imaging ». Entropy 17, no 3 (23 mars 2015) : 1508–34. http://dx.doi.org/10.3390/e17031508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Turner, Leaf. « Time, Quantum and Information ». Journal of Physics A : Mathematical and General 37, no 14 (23 mars 2004) : 4301–2. http://dx.doi.org/10.1088/0305-4470/37/14/b01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Vaidman, Lev. « A quantum time machine ». Foundations of Physics 21, no 8 (août 1991) : 947–58. http://dx.doi.org/10.1007/bf00733217.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Laskin, Nick. « Time fractional quantum mechanics ». Chaos, Solitons & ; Fractals 102 (septembre 2017) : 16–28. http://dx.doi.org/10.1016/j.chaos.2017.04.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Haag, Moritz P., et Markus Reiher. « Real-time quantum chemistry ». International Journal of Quantum Chemistry 113, no 1 (12 octobre 2012) : 8–20. http://dx.doi.org/10.1002/qua.24336.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Aniello, P., F. M. Ciaglia, F. Di Cosmo, G. Marmo et J. M. Pérez-Pardo. « Time, classical and quantum ». Annals of Physics 373 (octobre 2016) : 532–43. http://dx.doi.org/10.1016/j.aop.2016.08.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Balatsky, Alexander V., Pavel O. Sukhachov et Sumanta Bandyopadhyay. « Quantum Pairing Time Orders ». Annalen der Physik 532, no 2 (13 janvier 2020) : 1900529. http://dx.doi.org/10.1002/andp.201900529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Vaidman, Lev. « Time-Symmetrized Quantum Theory ». Fortschritte der Physik 46, no 6-8 (novembre 1998) : 729–39. http://dx.doi.org/10.1002/(sici)1521-3978(199811)46:6/8<729 ::aid-prop729>3.0.co;2-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Wharton, K. B. « Time-Symmetric Quantum Mechanics ». Foundations of Physics 37, no 1 (6 janvier 2007) : 159–68. http://dx.doi.org/10.1007/s10701-006-9089-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie