Littérature scientifique sur le sujet « Tidal inlet morphodynamics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Tidal inlet morphodynamics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Tidal inlet morphodynamics"

1

Nienhuis, Jaap H., et Jorge Lorenzo-Trueba. « Simulating barrier island response to sea level rise with the barrier island and inlet environment (BRIE) model v1.0 ». Geoscientific Model Development 12, no 9 (12 septembre 2019) : 4013–30. http://dx.doi.org/10.5194/gmd-12-4013-2019.

Texte intégral
Résumé :
Abstract. Barrier islands are low-lying coastal landforms vulnerable to inundation and erosion by sea level rise. Despite their socioeconomic and ecological importance, their future morphodynamic response to sea level rise or other hazards is poorly understood. To tackle this knowledge gap, we outline and describe the BarrieR Inlet Environment (BRIE) model that can simulate long-term barrier morphodynamics. In addition to existing overwash and shoreface formulations, BRIE accounts for alongshore sediment transport, inlet dynamics, and flood–tidal delta deposition along barrier islands. Inlets within BRIE can open, close, migrate, merge with other inlets, and build flood–tidal delta deposits. Long-term simulations reveal complex emergent behavior of tidal inlets resulting from interactions with sea level rise and overwash. BRIE also includes a stratigraphic module, which demonstrates that barrier dynamics under constant sea level rise rates can result in stratigraphic profiles composed of inlet fill, flood–tidal delta, and overwash deposits. In general, the BRIE model represents a process-based exploratory view of barrier island morphodynamics that can be used to investigate long-term risks of flooding and erosion in barrier environments. For example, BRIE can simulate barrier island drowning in cases in which the imposed sea level rise rate is faster than the morphodynamic response of the barrier island.
Styles APA, Harvard, Vancouver, ISO, etc.
2

de Swart, H. E., et J. T. F. Zimmerman. « Morphodynamics of Tidal Inlet Systems ». Annual Review of Fluid Mechanics 41, no 1 (janvier 2009) : 203–29. http://dx.doi.org/10.1146/annurev.fluid.010908.165159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Ming, John Nicholson, Shunqi Pan et Brian A. O'Connor. « NUMERICAL MODELLING OF MORPHODYNAMICS AROUND A TIDAL INLET ». Coastal Engineering Proceedings 1, no 34 (30 octobre 2014) : 66. http://dx.doi.org/10.9753/icce.v34.sediment.66.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wei, Yizhang, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend et Changkuan Zhang. « The role of geological mouth islands on the morphodynamics of back-barrier tidal basins ». Earth Surface Dynamics 10, no 1 (17 janvier 2022) : 65–80. http://dx.doi.org/10.5194/esurf-10-65-2022.

Texte intégral
Résumé :
Abstract. Researchers have extensively investigated the back-barrier islands morphodynamics using numerical methods. However, the influence of rocky mouth islands, which may be submerged by sea-level rise, has been rarely explored. Using the Dongshan Bay in southern China as a reference, this study numerically explores the long-term morphodynamic effect of geological constraints (e.g. rocky islands) for back-barrier basins. Model results indicate that the spatial configuration of mouth islands can considerably affect the morphological development of tidal basins. The presence of mouth islands narrows the inlet cross-sectional area, increasing flow velocity and residual current, resulting in more sediment suspension and transport. Meanwhile, mouth islands tend to increase erosion in the tidal basin and sedimentation in the ebb-delta area. Furthermore, the spatial distribution of mouth islands can also affect tidal basin evolution: the basin-side mouth islands tend to cause more basin erosion with higher tidal currents and more sediment transport. In contrast, the delta-side ones may increase relative sediment deposition in the basin. Finally, larger tidal prisms are observed with more mouth islands and with basin-side mouth islands, suggesting that the number and location of islands can affect the relationship between the tidal prism and inlet cross-sectional area. This modelling study furthers the understanding of barrier basin morphodynamics affected by rocky mouth islands and informs management strategies under a changing environment.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Petti, Marco, Silvia Bosa, Sara Pascolo et Erika Uliana. « An Integrated Approach to Study the Morphodynamics of the Lignano Tidal Inlet ». Journal of Marine Science and Engineering 8, no 2 (24 janvier 2020) : 77. http://dx.doi.org/10.3390/jmse8020077.

Texte intégral
Résumé :
The morphological evolution of a tidal inlet is the combined result of tides and wind waves, which interact in a non-linear manner and over very different time-scales. Likewise, the presence of maritime structures built in the vicinity of the tidal inlet, for coastal or port defense or to stabilize the inlet itself, can greatly affect this dynamic equilibrium, changing erosional and depositional patterns of the adjacent shoreline. In this study, the narrowing phenomenon of the Lignano tidal inlet subsequent to the construction of the related port, is examined through an integrated approach in order to propose and verify a possible form of evolution. This approach is the result of the combination of three methods: the historical reconstruction of the shifting of the coastline, an empirical scheme which describes the qualitative morphology of a mixed-energy tidal inlet, and a process-based morphodynamic modeling, which adopts a bi-dimensional depth averaged (2DH) approach. The application of numerical modeling has required the definition of a reduced input set of data representing an average year, in particular for wind and tidal conditions, including the meteorological component. The magnitude and the directions of the simulated dominant sediment transport are coherent with real processes both from a qualitative and a quantitative point of view.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Xie, Dongfeng, Shu Gao et Cunhong Pan. « Process-based modeling of morphodynamics of a tidal inlet system ». Acta Oceanologica Sinica 29, no 6 (novembre 2010) : 51–61. http://dx.doi.org/10.1007/s13131-010-0076-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abida, Rizal Fadlan, Totok Suprijo et Budhy Soeksmantono. « Opak and Bogowonto Coastal Inlet Sand Spit Morphodynamics using Landsat and Sentinel Satellite Images ». Jurnal Segara 18, no 3 (4 janvier 2023) : 141. http://dx.doi.org/10.15578/segara.v18i3.11918.

Texte intégral
Résumé :
Sand spits are elongated sand deposits on the beach that often form at the inlet or the headland’s tip. The hydrodynamics of the river flow, waves, storm surge, and tide affect the sand spit formation, which was created by the longshore transport along the coast. Bogowonto and Opak inlets are located in southern coastal Java facing directly to the Indian ocean where micro-tidal, waves, and river flow affecting both inlets, are chosen for this case study. Morphodynamics analysis of sand spit using Landsat 7 and 8, Sentinel 2 image from 2000 to 2020, coastline identification using Modified Normalized Different Water Index (mNDWI). In November 2007 and October 2013, Opak Inlet migratory routes were detected, and closures related to the east season occurred at both of them. Inlet tend to close occur on east season during July until November.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Silva, Rodrigo Amado Garcia, Marcos Nicolás Gallo, Paulo Cesar Colonna Rosman et Izabel Christina Martins Nogueira. « Tidal inlet short-term morphodynamics analysed trough the tidal prism - longshore sediment transport ratio criterion ». Geomorphology 351 (février 2020) : 106918. http://dx.doi.org/10.1016/j.geomorph.2019.106918.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

van der Vegt, M., et P. Hoekstra. « Morphodynamics of a storm-dominated, shallow tidal inlet : the Slufter, the Netherlands ». Netherlands Journal of Geosciences - Geologie en Mijnbouw 91, no 3 (novembre 2012) : 325–39. http://dx.doi.org/10.1017/s0016774600000470.

Texte intégral
Résumé :
AbstractIn this article we study the morphodynamics of the Slufter on the short-term (months) and long-term (years to decades). The Slufter is a small, shallow tidal inlet located on the island of Texel, the Netherlands. A narrow (tens of meters) channel connects the North Sea with a dune valley of 400 ha. This narrow channel is located in between a 400-700 m wide opening in the dunes. Approximately 80% of the basin of the Slufter is located above mean high water level and is flooded only during storms, when a threshold water level is exceeded.Analysis of historical aerial photographs revealed that the inlet channel migrates about 100 m per year. In the 1970's it migrated to the south, while since 1980 it is migrating to the north. When the channel reached the dunes at the north side of the dune breach the channel was relocated to the south by man. The channel inside the backbarrier basin was less dynamic. It shows a gradual growth and southward migration of a meander on a decadal time scale.The short-term dynamics of the Slufter were studied during a field campaign in 2008. The campaign aimed at identifying the dominant hydrodynamic processes and morphological change during fair weather conditions and during storm events. During fair weather flow velocities in the main inlet channel were 0.5-0.8 m/s at water depths of 0-1.5 m, slightly ebb-dominant and associated morphological change was small. When water levels were above critical levels during a storm period the hydrodynamics in the main channel drastically changed. The flow in the main channel was highly ebb dominant. Long ebb periods with typical flow velocities of 2 m/s were alternated by much shorter flood periods with typical velocities of 0.5-1 m/s. This resulted in a net outflow of water via the main channel, while we measured a net inflow of water at the beach plain. During the storm period in 2008 we measured a 10 m migration of the channel to the north.We conclude that the Slufter is a storm-dominated tidal inlet system.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Vu, Thuy Thi Thu, Peter Nielsen et David P. Callaghan. « MONITORING INLET MORPHODYNAMICS VIA TIDAL RESPONSE, SEEN THROUGH A NOVEL 24.5HOUR MOVING WINDOW ». Coastal Engineering Proceedings 1, no 34 (26 octobre 2014) : 10. http://dx.doi.org/10.9753/icce.v34.posters.10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Tidal inlet morphodynamics"

1

Krock, Jennifer Rose. « Historical Morphodynamics of John’s Pass, West-Central Florida ». Scholar Commons, 2005. https://scholarcommons.usf.edu/etd/731.

Texte intégral
Résumé :
John’s Pass is a stable mixed-energy inlet located on a microtidal coast in Pinellas County, Florida. It is hydraulically connected to the northern portion of Boca Ciega Bay. Morphological analysis using a time-series of aerial photographs indicated that anthropogenic activities have influenced the evolution of the tidal deltas and adjacent shorelines at John’s Pass. Previous studies have documented the channel dimensions at the location of the existing bridge and calculated the tidal prism. A chronological analysis of these data yielded an increasing trend in the cross-sectional area at John’s Pass from 1873 to 2001. Anthropogenic activities occurring in Boca Ciega Bay impacting this trend begin in the 1920’s when Indian Pass, approximately 7 km north of John’s Pass, was artificially closed. Other significant events causing an increase or decrease in the crosssectional area at John’s Pass include dredging and filling in the bay, channel dredging at John’s Pass, and jetty construction. More recent data collected from a simultaneous current meter deployment at John’s Pass and Blind Pass were used to calculate the bay area serviced by each inlet resulting in an area serviced by John’s Pass being 1.8x104 km2 and 0.33x104 km2 serviced by Blind Pass. In comparison, Blind Pass captures 14 percent of the tidal prism that John’s Pass captures and John’s Pass captures 87 percent of the bay prism while Blind Pass captures 13 percent. Using the discharge equation and assuming the channel area was largely constant the tidal prism at John’s Pass was 1.07x107 m3 during the twenty-one day deployment. Based on a historical analysis of the tidal prism this study is within 40 percent of the tidal prism calculated by Mehta (1976) and Becker and Ross (2001) and within 20 percent of the tidal prism calculated by Jarrett (1976) and Davis and Gibeaut (1990). An analysis of the current meter time-series indicated that flood velocities in the channel were influenced by a frontal system passing through the study area during the deployment increasing the amount of potential sediment being deposited in the channel thalweg. The maximum ebb and flood-tidal velocities during the deployment were 143 cm/s and 115 cm/s, respectively. Morphological analysis of cross-sectional data from 1995 to 2004 indicated that sediment tends to accumulate along the northern portion of the channel. The channel thalweg tends to accumulate more sediment east of the bridge where wave energy is lower and currents are not as strong. An average net accumulation of 0.5 m per year was estimated along all seven cross-sections. Given the length and width of the surveyed channel, 610 m by approximately 150 m, the sediment flux through the inlet is approximately 45,800 m3 /yr along the channel thalweg. A small amount of sediment accumulation has occurred southwest of the bridge in response to channelized flood flows along the newly constructed jetty. An annual sediment budget was estimated for the John’s Pass inlet system using the beach profiles and inlet bathymetry data between 2000 and 2001. Overall, the inlet system has accumulated more sediment than it has lost during this time period.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Steeghs, Lauren. « Morphodynamics of the Whitianga Tidal Inlet and Buffalo Bay, New Zealand ». The University of Waikato, 2007. http://hdl.handle.net/10289/2447.

Texte intégral
Résumé :
The primary aim of this study was to investigate the sedimentation processes within Buffalo Bay, particularly within and adjacent to the Whitianga tidal inlet, in order to ascertain reasons for the shoaling at both the inlet, and the identified shallow zone around Pandora Rock. Comparison of historic bathymetries suggests the ebb delta and ebb discharge channel of the Whitianga tidal inlet are rapidly accreting and the ebb tidal discharge channel is gradually migrating northeast towards Whakapenui Point. Accretion rates of up to 25 cm y-1 were calculated in the ebb delta and inlet discharge channel area between 1979 and 1995 and aerial photo comparisons suggest the ebb delta area had increased by 400 % between 1990 and 2002. Results of the hydrodynamic and sediment transport modelling suggest the rapid accretion in the ebb delta vicinity is likely to be caused by a combination of catchment estuary inputs, which are deposited on the ebb tide as the ebb flow decelerates over the ebb delta, and inputs that have been moved south along Buffalo Beach by flood currents and an eddy that forms landward of the ebb tidal discharge. Residual tidal velocities further suggest a deposition zone in the ebb delta vicinity resulting from opposing currents and the deceleration of currents. Hydrodynamic modelling results indicate the isolated shallow zone around Pandora rock appears to be caused by a transient eddy in the southern section of Buffalo Bay. The eddy is formed by the ebb tidal discharge from the inlet. Accretion probably occurs in the centre of the eddy which moves north as the ebb tide progresses. Results obtained from a current meter and sediment trap deployed in northern Buffalo Bay suggest suspended sediment transport is minimal in northern Buffalo Bay, only occurring with large wave activity. Results of the hydrodynamic and sediment transport modelling further demonstrate that this area experiences low flow velocities, and has little interaction with the rest of Buffalo Bay. The minimal sediment input to this area, combined with the occasional erosion of the seafloor, primarily by wave activity, is thought to have resulted in long term erosion of northwestern Buffalo Bay between 1938 and 1979. Although the beach and nearshore is eroding, it is likely the addition of sediment would act to stabilise this section of eroding beach. Renourishment material could be provided by the ebb delta, the southern tip of Buffalo Bay or the isolated sandbar northeast of the inlet entrance.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Beck, Tanya M. « Tracking Sediment Bypassing, Geomorphological Analysis, and Regional Sediment Management at Tidal Inlets ». Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7741.

Texte intégral
Résumé :
Tidal inlets on sandy shorelines separate barrier islands and serve as a conduit for transport of sand and water between embayments and oceans, seas, or other tidally influenced waterbodies. Tides and waves induce currents along the coastline that transport sediment across-shore and alongshore. Coastal managers must optimize barrier-inlet system stability while conserving limited sediment resources, and often base management decisions and engineering design upon geomorphic and numerical models that predict the morphological behavior of tidal inlets on short-to-medium timescales (years to decades). The overall goal of this study was threefold. First, to provide science-based practical guidance for regional sediment management in the vicinity of tidal inlets. Secondly, to enhance the understanding of the temporal and spatial scales of sediment pathways in these regions through numerical simulation of traced sediment transport. And, third, to combine these lessons learned in both regional sediment management and analysis of morphodynamic and sediment bypassing pathways with application to a common practical management practice of inlet shoal mining and adjacent beach placement. The temporal and spatial scales controlling the morphodynamics of barrier-inlet systems were reviewed within a regional sediment management context. Next, the application of regional sediment management methods to case studies of multiple barrier-inlet systems in West-Central Florida led to the development of a decision-support tool for regional sediment management (RSM) as applied to barrier-inlet systems. Connecting multiple barrier islands and inlets at appropriate spatio-temporal scales is critical in developing an appropriately scoped sediment management plan for a barrier-inlet system. Evaluating sediment bypassing capacity and overall inlet morphodynamics can better inform regional sand sharing along barrier-inlet coastlines; particularly where sediment resources are scarce and a close coupling between inlet dredging and beach placement is vital to long-term sustainable management. Continued sea-level rise and anthropogenic activities may intensify the need for investigating longer-term processes and expanding regional planning at a centennial timescale, and are acknowledged as challenging tasks for RSM studies going forward. A regionally focused, multi-inlet study was necessary to improve the management plans for the case study inlets (from north to south): John’s Pass, Blind Pass, Pass-a-Grille Inlet, and Bunces Pass. Key recommendations based on the case studies include: 1) allow the natural sediment bypassing to be re-established at Blind Pass inlet through reduced ebb-tidal delta mining, 2) reduce the interruption to sediment bypassing at John’s Pass and Pass-a-Grille inlets through an improved design of the dredged mining areas located along sediment bypassing pathways, 3) allow for continued natural sediment bypassing at Bunces Pass, and, 4) incorporate the cyclic sediment bypassing through swash-bar attachment into the management plan at Bunces Pass and adjacent barrier-islands. Similar systems in other regions may benefit from the lessons derived in this case study of an adaptively managed multi-inlet system. A numerical model that computes hydrodynamics, sediment transport, and morphodynamics including bed layering was incorporated in this study to analyze sediment transport pathways between littoral sources from adjacent beaches and the geomorphic features of an idealized tidal inlet designed to imitate the John’s Pass tidal inlet in West-central Florida, USA. This study developed a methodology to numerically trace sediment transport, deposition and erosion. This method was applied to investigate sediment-bypassing pathways under varying temporal and spatial scales. The analyses of the adjacent beach’s contribution to tidal inlet sediment bypassing demonstrated variable temporal scales on sediment transport and exchange. High-energy wave events dominated the temporal scale for sand to be transported from the updrift beach to the ebb-tidal delta, whereas cyclical tidal processes had a significant influence on the spatial pattern of exchange between the shoals and channel features of the tidal inlet. The ability to simulate burial and erosion of tracers allowed identification of offshore sedimentation hotspots such as terminal lobe as well as zones of deposition and active transport in shallow water, such as the updrift channel margin linear bar and the downdrift platform of the ebb-tidal delta. The general sediment-bypassing pathway reflected a tidal-driven redistribution following event-driven pulses of wave-induced sediment mobilization. Sediment was transported along the beach during these energetic wave events. Flood- and ebb-tidal currents transported the sediment mobilized by high waves into the inlet channels. This was followed by subsequent gradual redistribution of the deposited channel sediments over the ebb-tidal delta features during fair-weather conditions. The modeling methods were then applied to investigate the sediment pathways and bypassing processes for three validated numerical models of coastal tidal inlets that span a range of forcing conditions. The processes that influence sediment transport along various pathways between the several morphological features of each inlet and its adjacent beaches were examined. The sediment tracing methodology employed in this study allowed for an evaluation of the sediment transport pathways between the various morphologic features of a tidal inlet, as well as their respective processes that drive the exchange of sediments. Characterizing and correlating the sediment pathways between tidal inlet morphologic features can improve the inlet reservoir model, which is a predictive model of inlet shoal volumes based on empirical formulae. The results of this study illustrate the value of including sediment-tracking techniques in simulating sediment bypassing and the potential of this application to inform coastal engineering and design modifications to sediment reservoirs of tidal inlets. And, finally, the spatial patterns of transport and erosion and deposition of traced, littoral source sediment, were investigated using the same modeling framework to evaluate the design of ebb-tidal delta mining on sediment bypassing dynamics of a tidal inlet system based on an idealized model of John’s Pass, Florida. Seven mining areas were simulated with traced sediment sources from the updrift beach, downdrift beach, and adjacent shoals. The tracers’ migration pattern and mining area infilling were analyzed to depict the sediment bypassing pathways and their contributions to mining area infilling. Mining area recovery rates were highest along the channel margin linear bar, and decrease offshore and downdrift. Updrift sand sources contributed more to mining area infilling than downdrift sand sources. The position of the mining area in relation to the updrift or downdrift morphological features dictates whether it will receive primarily updrift- or downdrift-originating littoral sediment from the beach. The source of sedimentation within the mining areas is a combination of inlet-ward transport of beach sediment and nearby shoal sediment. Proximity to the inlet channel determined the degree to which sedimentation had originated from longshore transported beach sediment. This methodology can improve confidence in management decisions concerned with the sand-sharing capacity of barrier-inlet systems in a local and regional context.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Beck, Tanya M. « Morphodynamics of Two Anthropogenically Altered Tidal Inlets : New Pass and Big Sarasota Pass, West-Central Florida ». [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tidwell, David K. « Sedimentation Patterns and Hydrodynamics of a Wave-Dominated Tidal Inlet : Blind Pass, Florida ». [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Delli, Quadri Francesca. « Coastal sedimentary traps as potential borrow sources for nourishment of neighbouring erosional beaches ». Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2711.

Texte intégral
Résumé :
2006/2007
ITALIANO Nel corso degli ultimi 20 anni, intensi fenomeni erosivi hanno interessato gli arenili situati lungo l’arco costiero nord adriatico e tra le soluzioni impiegate per contrastare tali fenomeni la pratica del ripascimento è stata largamente utilizzata, in quanto permette di riportare le spiagge ad un nuovo equilibrio evitando di provocare impatti significativi sul sistema litoraneo. La problematica maggiore connessa a questo tipo di intereventi è legata alla necessità di ingenti quantità di sabbia dalle caratteristiche granulometriche compatibili con quelle delle spiagge in erosione, con il duplice scopo di ridurre gli impatti negativi sul sistema spiaggia e di minimizzare i costi legati alle operazioni di estrazione e sversamento. Le strategie di gestione delle risorse sabbiose vanno assumendo una notevole importanza all’interno degli strumenti di gestione costiera (Finkl, 1994) e tali strategie, oltre a dover essere basate su estese competenze nel campo della geologia e della sedimentologia, devono prendere in considerazione tutti i fattori ambientali che influenzano il sistema e ne sono influenzati. Problematiche attuali quali l’innalzamento del livello marino e gli effetti sui sistemi costieri, i fenomeni erosivi, la progressiva diminuzione di aree utilizzabili come cave di prestito (sia onshore che offshore) e la creazione di impatti conseguenti alle diverse misure di protezione dei litorali richiedono un approfondito interesse e la ricerca di soluzioni innovative. A partire dalla seconda metà degli anni novanta, ingenti quantitativi di sabbia, pari a 8×106m3 (Consorzio Venezia Nuova, 2006), sono stati sversati sulle spiagge presenti lungo l’arco costiero nord adriatico. Gli interventi, attuati tramite il prelievo di sedimenti presso le coltri sabbiose che ricoprono gli alti fondali delle aree residuali di piattaforma, hanno interessato ad esempio le spiagge di Jesolo, Sottomarina, Pellestrina, Isola Verde. Attualmente, secondo quanto previsto dal Magistrato alle Acque di Venezia tramite il suo concessionario Consorzio Venezia Nuova (2006), è previsto l’utilizzo di circa 3×106m3 di sabbia per interventi di mantenimento, tramite ricariche più frequenti e di minore entità. La pratica di approvvigionamento di sabbie presso le aree relitte di piattaforma ha tuttavia lo svantaggio di essere onerosa, a causa dell’impiego di grandi draghe o di lunghe pipeline per coprire le distanze dalla costa. In tale contesto, un’alternativa vantaggiosa può essere rappresentata dalla ricerca e dall’utilizzo di sabbie dai rialzi morfologici associati alle bocche tidali o eventualmente in alternativa dagli apparati di foce fluviale. Le bocche tidali costituiscono le principali vie di comunicazione marittime da e verso le lagune e necessitano di ordinaria manutenzione nei casi in cui il trasporto longshore sia tale da occludere il canale. In questi contesti uno studio morfodinamico rappresenta una base indispensabile per una corretta pianificazione degli interventi finalizzati al mantenimento dell’ officiosità delle bocche lagunari; la funzionalità e la navigabilità possono essere garantite attraverso le operazioni di dragaggio periodico, con prelievo mirato di sabbie nelle aree di accumulo del delta di riflusso (barra lineare di margine di canale e lobo terminale).Questa operazione si configura dunque come soluzione vantaggiosa per le operazioni di ripascimento di litorali in erosione, in quanto i depositi di ebb-tidal delta generalmente presentano caratteristiche granulometriche compatibili con quelle dei litorali adiacenti. La pratica di escavazione dai bassifondi marini o “ebb-shoal mining” viene largamente effettuata negli Stati Uniti, in Florida e New Jersey ad esempio (Cialone & Stauble, 1998). A seguito della raccolta di dati batimetrici e sedimentologici, in parte forniti dal Magistrato alle Acque - Consorzio Venezia Nuova ed in parte acquisiti attraverso ricerche bibliografiche e due campagne di acquisizione di dati, sono state effettuate numerose elaborazioni con lo scopo di definire le potenzialità di prelievo di sabbie da alcuni apparati di delta di riflusso localizzati lungo l’arco costiero nord adriatico. La ricerca ha permesso inoltre di ampliare la base dati già esistente ed approfondire la morfodinamica delle bocche tidali presenti nel contesto ambientale nord adriatico, nonché le caratteristiche morfologiche degli ebb-tidal delta ad esse associati. Massicci interventi antropici, attuati a partire dallo scorso secolo, hanno portato alla modificazione dei litorali e dell’assetto delle bocche tidali, attraverso la costruzione di strutture permanenti a difesa degli arenili e per consentire la navigazione. Pertanto, le analisi sono state effettuate sia su apparati di bocca tidale in condizioni naturali che su bocche tidali stabilizzate da moli foranei. Infine, è stata analizzata l’evoluzione morfologica recente di alcuni apparati di foce fluviale (Adige, Piave e Sile), al fine di indagare l’eventuale possibilità di estrazione di sedimenti dagli scanni sabbiosi prospicienti tali apparati. Parte integrante del lavoro di ricerca è stata la messa a punto di una specifica procedura geostatistica in ambiente GIS (utilizzando il software ESRI ArcGis™), basata sul metodo elaborato in origine manualmente da Dean and Walton (1973). Una dettagliata analisi morfologica e morfodinamica degli apparati di bocca tidale e foce fluviale è stata effettuata attraverso l’elaborazione di modelli digitali del fondale marino (DEMs), consentendo l’elaborazione di alcune relazioni predittive relative a determinati parametri fisici quali prisma tidale, sezione della bocca e volume del delta di riflusso. Tali risultati sono stati messi a confronto con analoghe elaborazioni, relative a differenti contesti costieri come ad esempio le coste statunitensi e neozelandesi, in modo tale da evidenziare locali fattori morfodinamici responsabili dello sviluppo degli apparati di delta di riflusso. Le numerosi analisi metodologiche, condotte tramite l’estensione Geostatistical Analyst all’interno del software ESRI ArcGis™, hanno permesso di ottenere una valida procedura per il calcolo dei volumi di sabbia depositati nelle strutture di delta di riflusso. Infine, attraverso l’integrazione di tutti i dati raccolti, sia di nuova acquisizione che provenienti da fonti preesistenti, è stato predisposto un geodatabase in GIS, denominato Ebb-delta Geodatabase, che raggruppa tutte le potenziali cave di prestito individuate nonché le caratteristiche granulometriche dei depositi. Relativamente agli apparati deltizi del Piave e dell’Adige, dall’analisi è emersa una situazione critica di erosione dei fondali antistanti le foci, da attribuirsi con una certa sicurezza alla drastica diminuzione dell’apporto di materiale grossolano, avvenuta alla fine degli anni ’50 del secolo scorso e causata dagli interventi antropici sulle lungo le aste fluviali. I delta sommersi, privati di una parte consistente del contributo sedimentario, hanno subito un asporto di quantità significative di sedimento ad opera del moto ondoso e delle correnti marine e le occasionali ricariche, dovute agli eventi di piena, non sono sufficienti a riequilibrare il sistema. Su tale situazione insistono inoltre fenomeni puntuali, come nel caso dell’Adige, dovuti alla recente messa in opera di manufatti che hanno ulteriormente accentuato il processo di erosione dei fondali E’stato ritenuto pertanto che, in ragione di una dinamica sedimentaria legata ad eventi discontinui e a cicli stagionali di erosione-deposizione, ed essendo insufficiente l’apporto solido da parte dei corsi d’acqua, l’estrazione di materiale alle foci del Piave e dell’Adige non sia una soluzione praticabile ai fini del ripascimento di litorali in erosione. Diverso è il caso del fiume Sile, per il quale è stato verificato che l’apporto solido è per sua natura scarso, dunque insufficiente a creare significative anomalie deposizionali nell’area di foce. Gli apparati di delta di riflusso associati alle bocche tidali, sia naturali che stabilizzate, rappresentano al contrario significative trappole sedimentarie in ambiente sottocostiero, caratterizzate da volumi di sabbia compresi tra 270.000m3 e 10×106m3. La procedura geostatistica elaborata, definita procedura geostatica semi-automatica (Authomatic Detrending Procedure-ADP), si è rilevata un utile strumento analitico per la valutazione dell’estensione dei depositi sabbiosi e le elaborazioni effettuate hanno consentito di integrare dati provenienti da fonti non omogenee. Inoltre, lo studio della morfodinamica delle bocche tidali di Lido, Chioggia, Malamocco e Buso ha fornito un’interessante analisi relativa all’evoluzione dei delta di riflusso a seguito della costruzione di moli foranei. Come sottolineato da Carr and Kraus (2001), lo sviluppo verso mare e l’estensione degli apparati di delta di riflusso è determinato dall’ampiezza del prisma di marea, dalla pendenza della piattaforma costiera, e dal processo di confinamento del getto tidale da parte dei moli. Nonostante la casistica esaminata nel corso dello studio sia stata limitata a 11 bocche tidali, la correlazione riscontrata tra i valori di prima tidale ed i volumi ottenuti tramite la procedura geostatistica dimostra che nel caso di bocche tidali non armate i processi tidali siano prevalenti sull’azione del moto ondoso nell’influenzare lo sviluppo delle coltri deposizionali. La relazione V-P elaborata per l’area costiera nord adriatica risulta molto simile a quella ottenuta per le bocche tidali neozelandesi da Hicks and Hume (1996) mentre si discosta in maniera significativa da quelle elaborate per le coste statunitensi da Walton and Adams (1976) e Marino and Mehta (1988). L’utilizzo di una procedura standardizzata, come nel caso della procedura geostatica elaborata all’interno del progetto di ricerca qui presentato, ha permesso di ridurre la soggettività nella stima dei volumi che caratterizzava il metodo proposto originariamente da Dean and Walton (1973). Inoltre, tale procedura si è rivelata particolarmente utile nei casi in cui l’assetto morfologico risulti particolarmente complesso, come nel caso delle bocche tidali armate con moli fortemente aggettanti (Lido, Chioggia, Malamocco, Buso). In questi casi infatti è stata verificata una significativa discordanza tra i valori ottenuti tramite l’applicazione delle relazioni predittive e i risultati delle elaborazioni geostatistiche. Prima degli interventi di stabilizzazione, la maggior parte delle bocche tidali nord adriatiche presentava una configurazione marcatamente asimmetrica, dovuta all’ingente contributo del trasporto litoraneo che ha contributo in numerosi casi alla costruzione di lidi sfasati nella direzione sopraflutto (i.e. Punta Sabbioni; Alberoni; etc). A partire dal diciannovesimo secolo, a seguito delle difficoltà riscontrate per la navigazione dovute all’interramento e/o alla migrazione del canale principale, diverse foci lagunari sono state armate e tale intervento ha comportato una drastica modificazione del regime deposizionale nell’area sottocostiera. Di conseguenza, in relazione alla lunghezza dei moli foranei, la struttura deposizionale di delta di riflusso ha subito un processo di riconfigurazione, generalmente attraverso una traslazione verso mare a maggiori profondità, accompagnata da una parziale erosione dell’accumulo pre-esistente. In numerosi casi inoltre la presenza dei moli ha funzionato come sbarramento per il trasporto litoraneo il quale, prima di venire catturato dal getto tidale ed entrare nel by-pass sedimentario della bocca, ha alimentato l’accrescimento dei litorali posti sopraflutto, come ad esempio nel caso del litorale di Punta Sabbioni adiacente alla bocca di porto di Lido. Ciò ha portato alla formazione di differenti tipologie di delta di riflusso, pesantemente influenzate dall’intervento antropico, per le quali il volume di equilibrio teorico potrebbe essere raggiunto solamente a seguito di un ingente contributo del trasporto longshore, in un arco di tempo considerevole. Uno dei risultati di maggior interesse del presente lavoro risiede dunque nella verifica di uno “stato di immaturità” dei delta di riflusso associati alle bocche tidali stabilizzate, come nel caso della bocca di porto di Lido in cui la costruzione dei moli risale a circa un secolo fa. Come evidenziato da Hansen and Knowles (1988), il processo di confinamento da parte dei moli porta il flusso tidale ad abbandonare il canale principale naturalmente scavato, i canali marginali di flusso e la piattaforma di swash, con effetti sulla pre-esistente struttura deposizionali paragonabili a quelli osservati nei processi di rottura naturale dell’ ebb-tidal delta (ebb-tidal delta breaching; Fitzgerald et al., 1978). Al Lido a seguito della costruzione dei moli la maggior parte dei sedimenti in transito nell’area sottocostiera sono stati depositati sulla spiaggia di Punta Sabbioni, con una conseguente diminuzione del carico sedimentario disponibile per la costruzione del delta di riflusso. Poiché il volume stimato a seguito delle recenti indagini risulta corrispondere a solamente il 10% dell’ipotetico volume di equilibrio, il caso del Lido può essere considerato come un caso di delta “immaturo”, in quanto solo dopo l’esaursi dell’ingente fenomeno di accrescimento dell’arenile di Punta Sabbioni (che risale alla fine degli anni ’60) ha potuto intercettare la gran parte del carico sedimentario associato al trasporto longshore. Numerose incertezze permangono allo stato attuale delle indagini per quanto concerne l’effettivo raggiungimento del volume di equilibrio teorico; le annuali operazioni di escavazione effettuate per mantenere l’officiosità del canale, potrebbero difatti portare ad una configurazione stazionaria del deposito, che potrebbe essere confermata solamente attraverso uno specifico piano di monitoraggio. Gli studi effettuati sulle altre bocche tidali armate localizzate all’interno del contesto in esame hanno in ogni caso evidenziato un comportamento morfodinamico simile; i risultati delle elaborazioni confermano una estensione dei delta di riflusso inferiore a quanto previsto dalle relazioni predittive anche alle foci di Malamocco, Chioggia, e Buso. Per concludere, si sottolinea come la messa a punto di uno specifico database in GIS delle caratteristiche sedimentologiche delle morfologie oggetto di indagine costituisca un efficace strumento di gestione, che permette di associare ai diversi tipi di deposito le informazioni più significative riguardanti la localizzazione; i volumi utilizzabili, etc. Conoscendo le caratteristiche granulometriche dell’arenile da sottoporre all’intervento di ripascimento, un’interrogazione al database permette di identificare le potenziali cave di prestito compatibili, per poi progettare gli interventi più idonei, come ad esempio il prelievo di sedimenti dal canale principale nei casi in cui vi sia un surplus che provoca intralcio alla navigazione, oppure l’estrazione di sabbia nelle aree del delta di riflusso a maggior tasso di crescita (canali marginali flusso e/o lobo terminale). In ogni caso, l’estrazione deve essere limitata sia in estensione che per quanto riguarda lo spessore, per evitare effetti negativi e significativi disequilibri sui fenomeni di rifrazione delle onde e sulla dinamica sedimentaria. Non vi è alcun dubbio che un’attuazione sconsiderata della pratica di estrazione di sabbie dai delta di riflusso possa comportare conseguenze negative sui fondali ed i litorali adiacenti, d’altra parte come suggerito da Hansen and Work (1999) se gli interventi vengono pianificati in modo tale da rimuovere una frazione ridotta del deposito mantenendo così i naturali processi di scambio sedimentario, gli impatti sui litorali adiacenti possono essere di minima portata. La preservazione dell’assetto generale del delta, attraverso l’escavazione di sedimento nella parte terminale verso mare su un’area più estesa in superficie e meno in profondità, può efficacemente ridurre l’alterazione dei pattern di rifrazione delle onde e dei meccanismi di trasporto dei sedimenti.
ENGLISH Beach erosion has strongly affected a large number of beaches along the northern Adriatic coastal area over the past 20 years. Among the different engineering solutions available to contrast coastal erosion, the soft-engineering practice of beach re-nourishment is widely recognized to be a good compromise between desired outcomes and negative environmental impacts. One of the major issue concerning beach nourishment activities is the necessity to find suitable sources of sand, with the purpose of both reducing costs and minimizing environmental impacts. As stated by Finkl (1994), strategies for sand management are becoming increasingly more important as a coastal management tool. Also, the same author suggests that new sand management strategies, based on sound geological principles, must reflect sensitivity to environmental concerns. Rising sea levels, increased shore erosion, decreasing supplies of suitable fill materials (both on-and off-shore) and increasing concerns over environmental impacts associated with coastal protection measures (Finkl, 1994), are some of the reasons for a significant interest in these coastal problems. Along the Venice lagoon barrier islands and adjacent beaches (i.e. Jesolo, Sottomarina, Pellestrina, Isola Verde), 8×106m3 of sand have been extracted and placed for nourishment projects starting from the 1990s. Nowadays the Venice Water Authority (Magistrato alle Acque through its concessionary Consorzio Venezia Nuova, 2006) plans the placement of a total volume of 3 x 106 m3 of sand for beach maintenance, suggesting that critical beach erosion can be mitigated by smaller but more frequent nourishments. Previous re-nourishment projects were carried out through the utilization of sand borrow areas located offshore, at a distance of approximately 20km from the coast, a solution that has high operational costs. An alternative solution may be represented by the use of nearshore sand deposits, located in the proximity of tidal inlets or within the delta front area outside river mouths. Since inlets are the only access pathways between a lagoon and the sea, one of the major problems in terms of navigability is their intrinsic incapacity to maintain a predetermined configuration. Due to the longshore drift, the channel can shift and cause continuous filling of abandoned routes. Moreover, during storms landward pushes can increase the natural rise of the terminal lobe of the ebb delta, enhancing the phenomenon of shoaling at the channel entrance. During the last decades, the practice of ebb-tidal delta mining (Cialone and Stauble, 1998) has been progressively increasing, with the rising demand for suitable beach fill material along barrier islands. Ebb-tidal delta mining gives a new outlook on beach re-equilibrium projects since a large amount of sand, well compatible to native adjacent beaches, is stored by the ebb-tidal delta and easily mined at low cost. Dredging of an inlet opening and channel may also represent a good compromise between navigational needs and the rational use of dredged material. Several potential borrow areas were analysed in the present study, focussing on the evaluation of sand volumes deposited outside tidal inlets and river mouths, as a consequence of existing local hydrodynamic conditions. The coastal area object of the investigation is the northern Adriatic coastal area between the Isonzo and Po rivers, consisting of lagoon-river delta systems fronted by barrier islands and sandbars fed by tidal inlets. New data were collected through bathymetric surveys and sediment sampling and integrated with data from older surveys, thus obtaining a rather complete and uniform catalogue of sand resources. The development of a specific geostatistical procedure was also a main objective of the research, aimed at obtaining reliable results concerning ebb-tidal delta volumes. Considerable changes on the northern Adriatic barrier island systems and associated inlets have occurred over the last century as a result of intense human activity, including construction of permanent structures on both the barriers and the inlets. Those structures are mainly seawalls and groins designed to fix the shoreline and jetties to keep inlets from migrating and to maintain a given channel depth. Both natural and stabilized inlets were investigated, leading to a specific analysis concerning the morphodynamics of stabilized inlets. The present research has been developed through several phases. A detailed analysis of the overall morphology of different nearshore features such as natural and stabilized inlets and river mouths has been conducted, mainly through ESRI ArcGIS™ software, followed by elaborations of predictive numerical relationships concerning inlet parameters (i.e. tidal prism, cross-sectional area and ebb-tidal delta volume). The results obtained were then discussed and compared with analogue relationships elaborated for other environmental settings (i.e. the U.S.A and New Zealand coasts), highlighting the influence of local morphodynamic factors in determining ebb-tidal delta growth along the northern Adriatic coastal area. Methodological analyses concerned a large number of geostatistical tests through ESRI ArcGIS™ Geostatistical Analyst extension, that allowed to obtain a specific procedure for calculating ebb-tidal delta volumes. Finally, with the aim to provide a useful and agile tool for sand resources management, all results were integrated into a GIS geodatabase, named Ebb-delta Geodatabase, which includes the individuated potential sand borrow areas with associated grain size characteristics. The major outcomes of the research are the followings: 1) the seafloor morphologies facing the Piave and Adige river mouths exhibit strong erosional patterns over the last thirty years, possibly as a consequence of a decrease in sediment supply from rivers. Therefore, these areas were not considered suitable sand resources for beach nourishment projects, whereas their morphological evolution testifies that a disequilibrium in sediment supply and deposition is occurring; 2) ebb-tidal deltas represent significant sand sinks along the northern Adriatic coastal area, both the natural and the stabilized ones, with volumes comprised between c.a 270.000m3 and c.a. 10×106m3. 3) the newly-developed semi-authomatic procedure (ADP) provided to be a useful analytical tool for the evaluation of ebb-tidal delta volumes; the development of agile geostatistical procedures allowed the integration and processing of newly collected and older bathymetric and grain size data. Additionally, the study of the morphodynamics of Lido, Chioggia, Malamocco and Buso inlet, provided an analysis of ebb-tidal delta volumes and jetty effects. According to Carr and Kraus (2001) the offshore extent and dimension of the ebb-tidal delta is in great part determined by the magnitude of the tidal prism, the slope of the nearshore shelf, and the ebb-jet confinement caused by jetties. Notwithstanding the limited statistics, the direct proportionality between tidal prism and ebb-tidal delta volumes obtained from the application of the ADP on the bathymetric dataset, as well as the high correlation coefficient, demonstrates that natural or almost natural inlets in the northern Adriatic tend to build ebb-tidal deltas which are strongly influenced by tidal processes. Thus the effects of storm induced wave winnowing and longshore sedimentary drift may be considered uniformly distributed, since scattering in the prism vs. ebb-tidal delta volumes relationship is negligible. The V-P relationship of ebb tidal delta volumes in the northern Adriatic is very similar to that obtained by Hicks and Hume (1996), but significantly different from that found by Walton and Adams (1976) and Marino and Mehta (1987) in the United States. The use of a standardized procedure, as in the case of the geostatistical application here proposed, reduces the subjectivity in the calculation of the ebb-tidal deltavolume which occurs when using the Dean and Walton method (1973). The ADP could also be a useful method for a step-by-step preliminary test on ebb-tidal delta structure determination as in the case of complicated bathymetric frameworks. Equilibrium conditions based on delta volume vs. tidal prism relationships constructed for natural or almost natural northern Adriatic inlets, may be used to infer the hypothetical delta volume also for jettied inlets. During the past, many northern Adriatic inlets were strongly asymmetrical, because of significant longshore transport processes that gave rise to large up-drift coastal offset. Since the 19th Century, owing to great difficulties in navigation through the main channel, some inlets were fixed by jetties. Depending on the jetty length, precisely on the offset between shoreline and jetty apex, the ebb-tidal delta may re-shape or completely erode, and thus begin to re-form offshore, shifting to a distance equal to that of the jetty length. This may cause a delay in ebb-tidal delta formation, since the longshore sediment input is not immediately captured by the inlet system and stored in the ebb delta. In fact, the up-drift beach will accrete until the sediments are able to by-pass the jetty, thus entering in the inlet sedimentary budget. What can be observed is a large variety of new “human-induced” ebb deltas, whose equilibrium volumes may be reached only when a large amount of transported long-shore sediment has been trapped for long time. The “immaturity” status of the new ebb-tidal deltas is a major result, for the case of Lido inlet, the largest in the north Adriatic, where jetties were constructed about one century ago. According to Hansen and Knowles (1988) confinement of the flow by jetty construction has resulted in tidal flow abandonment of the natural main ebb channel, swash platform and marginal flood channels, resulting in effects similar to those observed in natural ebb-tidal delta breaching (Fitzgerald et al., 1978). After jetty construction, sediments were stored in the up-drift area of Punta Sabbioni and caused the accretion of that beach, resulting in a starved status of the ebb-tidal delta potential area. Considering that the present ebb-tidal delta volume accounts for only 10% of the equilibrium hypothetical volume, Lido inlet can be seen as a typical case of immature ebb-tidal delta, which only recently has significantly grown offshore due to the jetty fixation. Some doubts arise from the possibility that the delta volume will increase, owing to the periodic dredging operations that are done for navigational improvement. This practice may lead to a stationary configuration of the ebb tidal delta, that can be tested only through a specific monitoring plan. Additional studies concerning the behaviour of jettied inlets provided similar results in the cases of Malamocco, Chioggia and Buso inlets. Data analysis confirms the limited ebb-tidal delta extension also in these latter cases, and a morphodynamic response comparable to the one observed at Lido. The ebb-tidal delta sediment inventory that was processed through GIS has very high versatility and can associate type of deposits (grain-size, sorting) with its location and volume “excess”. Once the required physical parameters of the material are known for a beach that needs to be re-nourished, a GIS query could identify different potential borrow areas and subsequent actions can be planned. The suitability of a morphological artificial re-shaping may be planned, by mainly using sand from growing areas, i.e. the channel margin linear bar and terminal lobe, as well as the sedimentary surplus from navigational maintenance located inside the outer part of the main ebb channel. In any case, dredging must be limited both in extension and thickness, in order to minimize the already cited effects on wave and sedimentary dynamics. The use of ebb-tidal delta sediment as a source for beach nourishment material has and will be controversial. However, as suggested by Hansen and Work (1999) there is a natural variability to these inlets systems, and if artificial bypassing practices mimic the natural processes by removing a small percent of the delta on an annual basis, there is likely to be minimal adverse impact to adjacent shorelines. Mining the seaward edge of the delta over a large area would maintain the overall geomorphology of the inlet and would reduce the possibility of severely altering nearshore refraction and sediment transport patterns
XX Ciclo
1976
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ambrosio, Bruna Garcia. « Dinâmica da desembocadura lagunar de Cananéia, litoral sul do estado de São Paulo ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/21/21136/tde-20022017-152001/.

Texte intégral
Résumé :
As desembocaduras lagunares são sistemas costeiros dinâmicos e complexos em função de seu controle por diversos fatores ambientais, como amplitude de maré, energia de ondas e aporte fluvial. Essas variáveis atuam em conjunto produzindo condições hidrodinâmicas únicas e uma variedade de feições deposicionais. Estes sistemas, compostos por um canal principal e por deltas de maré, possuem fortes influências sobre a evolução da região costeira adjacente. O objetivo deste trabalho é avaliar a dinâmica da desembocadura de Cananéia, a fim de compreender os processos que governam as alterações morfológicas da região, considerando as prováveis influências do delta de maré vazante. Através de imagens aéreas e cartas náuticas históricas foi possível analisar as alterações morfológicas da desembocadura e do delta ao longo das últimas décadas. Posteriormente, foi aplicado o modelo numérico MIKE 21 para simular a propagação de ondas, a hidrodinâmica e o transporte sedimentar na região em duas situações batimétricas e em diferentes casos de ondas incidentes. Para tanto, utilizaram-se dados coletados in situ, resultados de modelos globais (WW3 e CFSR) e informações obtidas na literatura. Os resultados mostram alterações na morfologia da desembocadura com o predomínio de processos erosivos na margem norte, migração do canal e do delta para nordeste, aumento volumétrico do delta e avanço deste em direção ao oceano. Além disso, notou-se que a margem norte é exposta a maiores forças de onda e que, em ambas as margens, esta diminuiu ao longo do período analisado. Os resultados indicam a ação do delta de maré vazante como principal agente transformador de ondas, sendo a sua variação morfológica determinante para a ação das ondas nas margens do canal. A circulação é controlada predominantemente pela maré e o transporte de sedimentos, embora limitado, é aumentado sob o efeito sinérgico entre a ação de ondas e de maré. Devido a sua morfologia e hidrodinâmica, a margem norte é submetida à maior influência de ondas e de maré, resultando em processos erosivos. A dinâmica sedimentar reflete a complexidade deste ambiente.
Inlets are dynamic and complex coastal systems subjected to a variety of forces such as tidal range, wave energy and fluvial discharge. Combinations of these variables produce unique hydrodynamic conditions and a variety of depositional features. These systems, consisting of a main channel and tidal deltas, have strong influence on the evolution of the coastal zone. The aim of this study is to evaluate the dynamics of the Cananéia inlet in order to understand the processes that control the morphological changes in the region, considering the influence of its ebb-tidal delta morphology. Based on aerial photographs and historical nautical charts the morphological changes of the inlet and delta were analyzed over the last decades. Subsequently, the MIKE 21 numerical model was applied to simulate the wave propagation, the hydrodynamics and sediment transport in the region, for two different bathymetric situations and several wave scenarios. Therefore, we used in situ data, global model results (WW3 and CFSR) and information from the literature. Results show changes in the morphology of the inlet with the predominance of erosion on its northern margin, the migration of the channel and delta northeasterly, and the delta volume increase and its growth towards the ocean. Furthermore, it was noted that the northern margin is exposed to greater wave power and on both margins the wave power decreased over the analyzed period. The results show the action of the ebb tidal delta as the main transforming agent of the incoming waves and its morphological variation determines the action of the waves on the margins of the channel. The circulation is controlled predominantly by the tide and the sediment transport, although limited, is increased under the synergistic effect between the action of waves and tide. Due to its morphology and hydrodynamics, the northern margin is subjected to greater influence of waves and tide, resulting in erosional processes. The sediment dynamics reflects the complexity of this environment.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dodet, Guillaume. « Morphodynamic modelling of a wave-dominated tidal inlet : the Albufeira lagoon ». Thesis, La Rochelle, 2013. http://www.theses.fr/2013LAROS413/document.

Texte intégral
Résumé :
Les embouchures tidales dominées par la houle sont des systèmes côtiers particulièrement dynamiques dont la morphologie est continuellement remodelée par l’action des vagues et de la marée. Les rapides évolutions morphologiques auxquelles elles sont sujettes impactent directement leurs environnements écologiques et socio-économiques. Afin de mettre en œuvre des réglementations adaptées à la gestion durable des embouchures tidales, des études environnementales systématiques sont nécessaires. L’objectif principal de cette thèse est de mieux comprendre les processus physiques qui contrôlent les évolutions morphologiques d’une embouchure tidale éphémère au Portugal - l’embouchure de la lagune d’Albufeira – à partir de l’analyse de mesures hydrodynamiques et topographiques et de résultats d’un système de modélisation morphodynamique récemment développé. Les processus qui influent sur la dynamique de l’embouchure tidale à court terme, notamment ceux liés aux interactions vague-courant, ont été étudiés à travers l’application du système de modélisation à l’embouchure. Les modulations saisonnières du climat de vagues et du niveau moyen de la mer affectent fortement la dynamique sédimentaire de l’embouchure et contribuent au comblement naturel de l’embouchure pendant l’hiver. Les processus à long terme ont également été étudiés à partir de simulations rétrospectives de paramètres moyens de vagues pour des échelles régionales et locales sur une période 65 ans. Les fortes variabilités interannuelles du climat de vagues et de la dérive littorale qui lui est associée pourraient expliquer les différences d’évolutions morphologiques du système embouchure-lagune sur des échelles de temps pluri–annuels
Wave-dominated tidal inlets are very dynamic coastal systems, whose morphology is continuously shaped by the combined action of the waves and the tides. The rapid morphological changes they experience impact directly their ecological and socio-economic environments. In order to implement adequate regulations for the sustainable management of tidal inlets, systematic environmental studies are necessary. The main objective of this PhD research work is to gain a better understanding of the physical processes that control the morphological evolutions of an ephemeral tidal inlet in Portugal - the Albufeira Lagoon inlet - based on the analysis of hydrodynamic and topographic data and on the results of a newly developed morphodynamic modelling system. The processes that impact the dynamics of the inlet at short time-scales, particularly those related to wave-current interactions, are investigated through the application of the modelling system to the inlet. The seasonal modulations of the wave climate and mean sea level strongly affect the sediment dynamics of the inlet and contribute to the natural closure of the inlet during the winter period. Long-term processes are also investigated based on a 65-year hindcast of mean wave parameters at regional and local scales. The large inter-annual variability of the wave climate and the associated longshore sediment transport – both correlated to the North-Atlantic Oscillation – are proposed to explain the differences in the morphological behaviour of the inlet-lagoon system at pluri-annual time-scales
Styles APA, Harvard, Vancouver, ISO, etc.
9

Brownell, Andrew. « Morphological Changes Associated with Tropical Storm Debby in the Vicinity of Two Tidal Inlets, John's Pass and Blind Pass, West-Central Florida ». Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4869.

Texte intégral
Résumé :
Tropical Storm Debby affected the Gulf coast of Florida in late June, 2012. The storm's southerly approach temporarily reversed the annual net southward longshore sediment transport. The energetic conditions associated with Tropical Storm Debby can be seen in the wind, wave and tidal measurements taken from both onshore and offshore weather stations around the dual tidal inlets system of John's Pass and Blind Pass, approximately 25 kilometers north of the mouth of Tampa Bay. The energetic and persistent southerly forcing, in addition to higher storm induced water levels and wave heights, resulted in atypical beach erosion and sediment deposition on the ebb tidal deltas of the two inlets and the surrounding beaches. The John's Pass ebb delta gained 60,000 cubic meters of sediment and the Blind Pass ebb delta gained 9,000 cubic meters as a result of the storm. Shoreline position, beach profile and offshore bathymetric surveys conducted before and after Tropical Storm Debby illustrate the changes in the coastal morphology such as the development of an offshore bar south of Blind Pass and erosion of the dry beach north and south of John's Pass. The Coastal Modeling System (CMS) was used to simulate wave and tide-driven current fields during the passage of the storm. The modeled wave field qualitatively illustrated the shadowing effect of the Tampa Bay ebb delta in reducing the southerly approaching storm wave energy arriving at the study area during the storm. The tidal flow patterns through the inlets and over the ebb tidal deltas were considerably different during the storm, as compared to normal tidal cycles.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Tidal inlet morphodynamics"

1

Kreeke, J. van de, et R. L. Brouwer. Tidal Inlets : Hydrodynamics and Morphodynamics. Cambridge University Press, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kreeke, J. van de, et R. L. Brouwer. Tidal Inlets : Hydrodynamics and Morphodynamics. Cambridge University Press, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kreeke, J. van de, et R. L. Brouwer. Tidal Inlets : Hydrodynamics and Morphodynamics. Cambridge University Press, 2017.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Tidal inlet morphodynamics"

1

Mehta, Ashish J., et Earl J. Hayter. « Morphodynamic Stability of Tidal Inlet-Bay Systems ». Dans Encyclopedia of Earth Sciences Series, 1205–26. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93806-6_385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mehta, Ashish J., et Earl J. Hayter. « Morphodynamic Stability of Tidal Inlet-Bay Systems ». Dans Encyclopedia of Earth Sciences Series, 1–22. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48657-4_385-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

FitzGerald, Duncan, Ilya Buynevich et Christopher Hein. « Morphodynamics and Facies Architecture of Tidal Inlets and Tidal Deltas ». Dans Principles of Tidal Sedimentology, 301–33. Dordrecht : Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0123-6_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, James T., Donald K. Stauble, Graham S. Giese et David G. Aubrey. « Morphodynamic evolution of a newly formed tidal inlet ». Dans Coastal and Estuarine Studies, 62–94. Washington, D. C. : American Geophysical Union, 1993. http://dx.doi.org/10.1029/ce044p0062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Plecha, S., S. Rodrigues, P. Silva, J. Dias, A. Oliveira et A. Fortunato. « Trends of bathymetric variations at a tidal inlet ». Dans River, Coastal and Estuarine Morphodynamics : RCEM 2007, Two Volume Set, 19–23. CRC Press, 2007. http://dx.doi.org/10.1201/noe0415453639-c3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dissanayake, D., et J. Roelvink. « Process-based approach on tidal inlet evolution – Part 1 ». Dans River, Coastal and Estuarine Morphodynamics : RCEM 2007, Two Volume Set, 3–9. CRC Press, 2007. http://dx.doi.org/10.1201/noe0415453639-c1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ernstsen, V., M. Becker, C. Winter, A. Bartholomä, B. Flemming et J. Bartholdy. « Bedload transport in an inlet channel during a tidal cycle ». Dans River, Coastal and Estuarine Morphodynamics : RCEM 2007, Two Volume Set, 351–58. CRC Press, 2007. http://dx.doi.org/10.1201/noe0415453639-c45.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bertin, X., A. Fortunato et A. Oliveira. « Sensitivity analysis of a morphodynamic modeling system applied to a Portuguese tidal inlet ». Dans River, Coastal and Estuarine Morphodynamics : RCEM 2007, Two Volume Set, 11–17. CRC Press, 2007. http://dx.doi.org/10.1201/noe0415453639-c2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« Longterm morphodynamics of tidal inlets, ebb-tidal deltas and continental shelves ». Dans River, Coastal and Estuarine Morphodynamics : RCEM 2007, Two Volume Set, 1. CRC Press, 2007. http://dx.doi.org/10.1201/noe0415453639-p1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stive, Marcel J. F., et Z. B. Wang. « Chapter 13 Morphodynamic modeling of tidal basins and coastal inlets ». Dans Advances in Coastal Modeling, 367–92. Elsevier, 2003. http://dx.doi.org/10.1016/s0422-9894(03)80130-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Tidal inlet morphodynamics"

1

ELIAS, EDWIN, ROY TESKE, AD VAN DER SPEK et MARIAN LAZAR. « MODELLING TIDAL-INLET MORPHODYNAMICS ON MEDIUM TIME SCALES ». Dans Coastal Sediments 2015. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689977_0230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

NIENHUIS, JAAP H. « EFFECT OF TIDAL INLET STABILIZATION ON BARRIER ISLAND MORPHODYNAMICS ». Dans International Conference on Coastal Sediments 2019. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204487_0008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

VITAL, HELENICE, GUSTAVO R. ROCHA et JOSÉ S. PLÁCIDO. « MORPHODYNAMICS OF ARROMBADO TIDAL INLET, MACAU-RN (NE BRAZIL) ». Dans The Proceedings of the Coastal Sediments 2011. World Scientific Publishing Company, 2011. http://dx.doi.org/10.1142/9789814355537_0025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tran, T. T., Hong Son Truong et H. T. Le. « Hydrodynamics And Morphodynamics Of A Tidal Inlet On A Headland Dominated Coast ». Dans Proceedings of the 39th IAHR World Congress From Snow to Sea. Spain : International Association for Hydro-Environment Engineering and Research (IAHR), 2022. http://dx.doi.org/10.3850/iahr-39wc252171192022226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

BERTIN, X., A. DE BAKKER, T. GUERIN, K. MARTINS, B. MENGUAL, T. COULOMBIER et E. CHAUMILLON. « 3D MORPHODYNAMIC MODELLING OF A MIXED-ENERGY TIDAL INLET ». Dans International Conference on Coastal Sediments 2019. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204487_0166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

REEVE, DOMINIC E., HARSHINIE KARUNARATHNA, J. M. HORRILLO-CARABALLO, SHUNQI PAN, HELENE BURNINGHAM et JON FRENCH. « MODELLING THE MEDIUM TERM MORPHODYNAMIC RESPONSE OF A TIDAL COASTAL INLET USING LOGICAL NETWORKS ». Dans Coastal Sediments 2015. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689977_0232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

WILLIAMS, BEN, et VANESA MAGAR. « EVENT-PARALLEL SIMULATION OF MEDIUM-TERM MORPHODYNAMIC EVOLUTION WITHIN A MIXED ENERGY TIDAL INLET EBB DELTA ». Dans Coastal Sediments 2015. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689977_0130.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Tidal inlet morphodynamics"

1

Beck, Tanya. Review of coastal tidal inlet morphodynamics in the context of barrier-inlet sustainability. Engineer Research and Development Center (U.S.), août 2019. http://dx.doi.org/10.21079/11681/33788.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie