Littérature scientifique sur le sujet « Threshold circuits »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Threshold circuits ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Threshold circuits"
Uchizawa, Kei, Rodney Douglas et Wolfgang Maass. « On the Computational Power of Threshold Circuits with Sparse Activity ». Neural Computation 18, no 12 (décembre 2006) : 2994–3008. http://dx.doi.org/10.1162/neco.2006.18.12.2994.
Texte intégralGoldmann, Mikael, et Marek Karpinski. « Simulating Threshold Circuits by Majority Circuits ». SIAM Journal on Computing 27, no 1 (février 1998) : 230–46. http://dx.doi.org/10.1137/s0097539794274519.
Texte intégralLAPPAS, G., R. J. FRANK et A. A. ALBRECHT. « A COMPUTATIONAL STUDY ON CIRCUIT SIZE VERSUS CIRCUIT DEPTH ». International Journal on Artificial Intelligence Tools 15, no 02 (avril 2006) : 143–61. http://dx.doi.org/10.1142/s0218213006002606.
Texte intégralHansen, Kristoffer Arnsfelt, et Vladimir V. Podolskii. « Polynomial threshold functions and Boolean threshold circuits ». Information and Computation 240 (février 2015) : 56–73. http://dx.doi.org/10.1016/j.ic.2014.09.008.
Texte intégralMahajan, Meena. « Depth-2 Threshold Circuits ». Resonance 24, no 3 (mars 2019) : 371–80. http://dx.doi.org/10.1007/s12045-019-0786-4.
Texte intégralWANG, YU, HUAZHONG YANG et HUI WANG. « SIGNAL-PATH-LEVEL DUAL-Vt ASSIGNMENT FOR LEAKAGE POWER REDUCTION ». Journal of Circuits, Systems and Computers 15, no 02 (avril 2006) : 197–216. http://dx.doi.org/10.1142/s021812660600299x.
Texte intégralThakral, Bindu, Arti Vaish et Rama Koteswara Rao Alla. « Design of Squarer Circuit in Sub-threshold Mode ». International Journal of Engineering & ; Technology 7, no 2.11 (3 avril 2018) : 38. http://dx.doi.org/10.14419/ijet.v7i2.11.11004.
Texte intégralSUZUKI, AKIRA, KEI UCHIZAWA et XIAO ZHOU. « ENERGY-EFFICIENT THRESHOLD CIRCUITS COMPUTING MOD FUNCTIONS ». International Journal of Foundations of Computer Science 24, no 01 (janvier 2013) : 15–29. http://dx.doi.org/10.1142/s0129054113400029.
Texte intégralGhavami, Behnam. « Spatial correlation-aware statistical dual-threshold voltage design of template-based asynchronous circuits ». COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 37, no 3 (8 mai 2018) : 1189–203. http://dx.doi.org/10.1108/compel-03-2016-0118.
Texte intégralHeo, Jae, Kyung-Tae Kim, Seok-Gyu Ban, Yoon-Jeong Kim, Daesik Kim, Taehoon Kim, Yongtaek Hong, In-Soo Kim et Sung Park. « Stable Logic Operation of Fiber-Based Single-Walled Carbon Nanotube Transistor Circuits Toward Thread-Like CMOS Circuitry ». Materials 11, no 10 (1 octobre 2018) : 1878. http://dx.doi.org/10.3390/ma11101878.
Texte intégralThèses sur le sujet "Threshold circuits"
LEPORATI, ALBERTO OTTAVIO. « Threshold Circuits and Quantum Gates ». Doctoral thesis, Università degli Studi di Milano, 2003. http://hdl.handle.net/10281/43616.
Texte intégralMaciel, Alexis. « Threshold circuits of small majority-depth ». Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28830.
Texte intégralThese circuits are usually studied by measuring their efficiency in terms of their total depth. Using this point of view, the best division and iterated multiplication circuits have depth three and four, respectively.
In this thesis, we propose a different approach. Since threshold gates are much more powerful than AND-OR gates, we allow the explicit use of AND-OR gates and consider the main measure of complexity to be the majority-depth of the circuit, i.e. the maximum number of threshold gates on any path in the circuit. Using this approach, we obtain division and iterated multiplication circuits of total depth four and five, but of majority-depth two and three.
The technique used is called Chinese remaindering. We present this technique as a general tool for computing functions with integer values and use it to obtain depth-four threshold circuits of majority-depth two for other arithmetic problems such as the logarithm and power series approximation. We also consider the iterated multiplication problem for integers modulo q and for finite fields.
The notion of majority-depth naturally leads to a hierarchy of subclasses of TC$ sp0$. We investigate this hierarchy and show that it is closely related to the usual depth hierarchy.
PALANISWAMY, ASHOK KUMAR. « SYNTHESIS AND TESTING OF THRESHOLD LOGIC CIRCUITS ». OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/963.
Texte intégralCaicedo, Jhon Alexander Gomez. « CMOS low-power threshold voltage monitors circuits and applications ». reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/144080.
Texte intégralA threshold voltage (VT0) monitor is a circuit that ideally delivers the estimated VT0 value as a voltage at its output, for a given temperature range, without external biases, parametric setups, curve fitting or any subsequent calculation. It can be used in temperature sensors, voltage and current references, radiation dosimeters and other applications since the MOSFET VT0 dependence on the operation conditions is a very well modeled aspect. Also, it can be used for fabrication process monitoring and process variability compensation, since VT0 is a key parameter for the transistor behavior and modeling. In this thesis, we present three novel circuit topologies, two of them being NMOS VT0 monitors and the last one being a PMOS VT0 monitor. The three structures are resistorless self-biased circuit topologies that present high power supply rejection, low line sensitivity, and allow the direct extraction of the threshold voltage for wide temperature and power supply voltage ranges, with small error. Its design methodology is based on the Unified Current Control Model (UICM), a MOSFET model that is continuous from weak to strong inversion and from triode to saturation regions. The circuits occupy small silicon area, consume just tens of nanoWatts, and can be implemented in any standard digital CMOS process, since they only use MOS transistors (does not need any resistor). The VT0 monitors are used in different applications in order to prove their functionality, and behavior as part of a system. The applications vary from a reference voltage, that presents performance comparable with state-of-the-art works, to a configuration that allows to obtain a lower process variability, in the output of a self-biased circuit that generates a complementary to the absolute temperature (CTAT) voltage. In addition, exploiting the ability to operate as an specific current (ISQ) generator, that the VT0 monitors presented here offer, we introduced a new self-biased circuit that produces a CTAT voltage and is less sensitive to process variations, and can be used in band-gap voltage references.
Narendra, Siva G. (Siva Gurusami) 1971. « Effect of MOSFET threshold voltage variation on high-performance circuits ». Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8341.
Texte intégralIncludes bibliographical references (p. 95-101).
The driving force for the semiconductor industry growth has been the elegant scaling nature of CMOS technology. In future CMOS technology generations, supply and threshold voltages will have to continually scale to sustain performance increase, limit energy consumption, control power dissipation, and maintain reliability. These continual scaling requirements on supply and threshold voltages pose several technology and circuit design challenges. One such challenge is the expected increase in threshold voltage variation due to worsening short channel effect. This thesis will address three specific circuit design challenges arising from increased threshold voltage variation and present prospective solutions. First, with supply voltage scaling, control of die-to-die threshold voltage variation becomes critical for maintaining high yield. An analytical model will be developed for existing circuit technique that adaptively biases the body terminal of MOSFET devices to control this threshold voltage variation. Based on this model, recommendations on how to effectively use the technique in future technologies will be presented. Second, with threshold voltage scaling, sub-threshold leakage power is expected to be a significant portion of total power in future CMOS systems. Therefore, it becomes imperative to accurately predict and minimize leakage power of such systems, especially with increasing within-die threshold voltage variation. A model that predicts system leakage based on first principles will be presented and a circuit technique to reduce system leakage without reducing system performance will be discussed.
(cont.) Finally, due to different processing steps and short channel effects, threshold voltage of devices of same or different polarities in the same neighborhood may not be matched. This will introduce mismatch in the device drive currents that will not be acceptable in some high performance circuits. In the last part of the thesis, voltage and current biasing schemes that minimize the impact of neighborhood threshold voltage mismatch will be introduced.
by Siva G. Narendra.
Ph.D.
Silva, Augusto Neutzling. « Syhthesis of thereshold logic based circuits ». reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/119435.
Texte intégralIn this work, a novel method to synthesize digital integrated circuits (ICs) based on threshold logic gates (TLG) is proposed. Synthesis considering TLGs is quite relevant, since threshold logic has been revisited as a promising alternative to conventional CMOS IC design due to its suitability to emerging technologies, such as resonant tunneling diodes, memristors and spintronics devices. Identification and synthesis of threshold logic functions (TLF) are fundamental steps for the development of an IC design flow based on threshold logic. The first contribution is a heuristic algorithm to identify if a function can be implemented as a single TLG. Furthermore, if a function is not detected as a TLF, the method uses the functional composition approach to generate an optimized TLG network that implements the target function. The identification method is able to assign optimal variable weights and optimal threshold value to implement the function. It is the first heuristic algorithm that is not based on integer linear programming (ILP) that is able to identify all threshold functions with up to six variables. Moreover, it also identifies more functions than other related heuristic methods when the number of variables is more than six. Differently from ILP based approaches, the proposed algorithm is scalable. The average execution time is less than 1 ms per function. The second major contribution is the constructive process applied to generate optimized TLG networks taking into account multiple goals and design costs, like gate count, logic depth and number of interconnections. Experiments carried out over MCNC benchmark circuits show an average gate count reduction of 32%, reaching up to 54% of reduction in some cases, when compared to related approaches.
Ting, Darwin Ta-Yueh. « Reconfigurable Threshold Logic Gates Implemented in Nanoscale Double-Gate MOSFETs ». Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1219672300.
Texte intégralDhillon, Yuvraj Singh. « Hierarchical Optimization of Digital CMOS Circuits for Power, Performance and Reliability ». Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6935.
Texte intégralParthasarathy, Krupa. « Aging Analysis and Aging-Resistant Design for Low-Power Circuits ». University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1415615574.
Texte intégralGopalakrishnan, Harish. « Energy Reduction for Asynchronous Circuits in SoC Applications ». Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1324264498.
Texte intégralLivres sur le sujet "Threshold circuits"
Anis, Mohab, et Mohamed Elmasry. Multi-Threshold CMOS Digital Circuits. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0.
Texte intégralKursun, Volkan. Multiple supply and threshold voltage CMOS circuits. Chichester, England : John Wiley, 2006.
Trouver le texte intégral1943-, Elmasry Mohamed I., dir. Multi-threshold CMOS digital circuits : Managing leakage power. Boston : Kluwer Academic Publishers, 2003.
Trouver le texte intégralAnis, Mohab. Multi-Threshold CMOS Digital Circuits : Managing Leakage Power. Boston, MA : Springer US, 2003.
Trouver le texte intégralAnis, Mohab. Multi-threshold CMOS digital circuits : Managing leakage power. Boston, MA : Kluwer Academic Publishers, 2004.
Trouver le texte intégralMeer, P. R. Low-Power Deep Sub-Micron CMOS Logic : Sub-threshold Current Reduction. Boston, MA : Springer US, 2004.
Trouver le texte intégralP. R. van der Meer. Low-power deep sub-micron CMOS logic : Sub-threshold current reduction. Boston : Kluwer Academic, 2004.
Trouver le texte intégralCircuits and Systems Advances in Near Threshold Computing. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0721-7.
Texte intégralAnis, Mohab, et Mohamed Elmasry. Multi-Threshold CMOS Digital Circuits : Managing Leakage Power. Springer, 2003.
Trouver le texte intégralMulti-Threshold CMOS Digital Circuits : Managing Leakage Power. Springer, 2012.
Trouver le texte intégralChapitres de livres sur le sujet "Threshold circuits"
Anis, Mohab, et Mohamed Elmasry. « MTCMOS Sequential Circuits ». Dans Multi-Threshold CMOS Digital Circuits, 135–61. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_5.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « MTCMOS Dynamic Circuits ». Dans Multi-Threshold CMOS Digital Circuits, 163–93. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_6.
Texte intégralHansen, Kristoffer Arnsfelt, et Vladimir V. Podolskii. « Polynomial Threshold Functions and Boolean Threshold Circuits ». Dans Mathematical Foundations of Computer Science 2013, 516–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40313-2_46.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « Embedded MTCMOS Combinational Circuits ». Dans Multi-Threshold CMOS Digital Circuits, 45–72. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_3.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « MTCMOS Current-Steering Circuits ». Dans Multi-Threshold CMOS Digital Circuits, 195–214. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_7.
Texte intégralRazborov, Alexander A. « On small depth threshold circuits ». Dans Algorithm Theory — SWAT '92, 42–52. Berlin, Heidelberg : Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55706-7_4.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « MTCMOS Combinational Circuits Using Sleep Transistors ». Dans Multi-Threshold CMOS Digital Circuits, 73–133. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_4.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « Introduction ». Dans Multi-Threshold CMOS Digital Circuits, 1–3. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_1.
Texte intégralAnis, Mohab, et Mohamed Elmasry. « Leakage Power : Challenges and Solutions ». Dans Multi-Threshold CMOS Digital Circuits, 5–44. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0391-0_2.
Texte intégralAlbrecht, A., E. Hein, D. Melzer, K. Steinhöfel et M. Taupitz. « CT Image Classification by Threshold Circuits ». Dans Bildverarbeitung für die Medizin 2001, 362–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56714-8_67.
Texte intégralActes de conférences sur le sujet "Threshold circuits"
Hansen, Kristoffer Arnsfelt, et Vladimir V. Podolskii. « Exact Threshold Circuits ». Dans 2010 IEEE 25th Annual Conference on Computational Complexity (CCC). IEEE, 2010. http://dx.doi.org/10.1109/ccc.2010.33.
Texte intégralYao, Jia, et Vishwani D. Agrawal. « Dual-threshold design of sub-threshold circuits ». Dans 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (Formerly known as SOI Conference). IEEE, 2013. http://dx.doi.org/10.1109/s3s.2013.6716544.
Texte intégralGoldmann, Mikael, et Marek Karpinski. « Simulating threshold circuits by majority circuits ». Dans the twenty-fifth annual ACM symposium. New York, New York, USA : ACM Press, 1993. http://dx.doi.org/10.1145/167088.167234.
Texte intégral« Session MC1 : Multi-Threshold Circuits ». Dans IEEE International SOC Conference, 2004. Proceedings. IEEE, 2004. http://dx.doi.org/10.1109/socc.2004.1362335.
Texte intégralKhatir, Mehrdad, Hassan Ghasemzadeh Mohammadi et Alireza Ejlali. « Sub-threshold charge recovery circuits ». Dans 2010 IEEE International Conference on Computer Design (ICCD 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccd.2010.5647815.
Texte intégralHajnal, Andras, Wolfgang Maass, Pavel Pudlak, Mario Szegedy et Gyorgy Turan. « Threshold circuits of bounded depth ». Dans 28th Annual Symposium on Foundations of Computer Science. IEEE, 1987. http://dx.doi.org/10.1109/sfcs.1987.59.
Texte intégralPham, Cong-Kha. « Simple Logic Threshold Conversion Circuits ». Dans 2006 13th IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icecs.2006.379777.
Texte intégralZhanbossinov, Askhat, Kamilya Smagulova et Alex Pappachen James. « CMOS-memristor dendrite threshold circuits ». Dans 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2016. http://dx.doi.org/10.1109/apccas.2016.7803914.
Texte intégralRazavi, Hassan M. « Realistic Realizations Of Threshold Circuits ». Dans OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), sous la direction de Raymond Arrathoon. SPIE, 1987. http://dx.doi.org/10.1117/12.939919.
Texte intégralKim, Namsung, et Radu Zlatanovici. « Session details : Sub-threshold circuits ». Dans ISLPED'09 : International Symposium on Low Power Electronics and Design. New York, NY, USA : ACM, 2009. http://dx.doi.org/10.1145/3253814.
Texte intégral