Thèses sur le sujet « Thermomechanical finite element »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Thermomechanical finite element ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Kim, Chun-Sam. « Finite element method evaluation of thermomechanical responses of fluid-saturated porous media under finite deformation / ». The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487687115926948.
Texte intégralPimenta, Paulo Vicente de Cassia Lima. « Thermomechanical simulation of continuous casting process using element based finite-volume method ». Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13684.
Texte intégralThe continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations
A tÃcnica de lingotamento contÃnuo nas Ãltimas quatro dÃcadas à cada vez mais utilizada na produÃÃo de aÃo semiacabado. A transferÃncia de calor à o principal mecanismo dominante e ocorre em todas as etapas do processo. A qualidade do aÃo no lingotamento està diretamente relacionada à forma que ocorrem as trocas de calor pois as variaÃÃes tÃrmicas produzem carregamentos mecÃnicos assim como as forÃas de contato as quais sÃo geradas por intermÃdio dos rolos e da oscilaÃÃo do molde. Tais fatores podem causar defeitos como fraturas ou trincas no produto final caso as tensÃes e deformaÃÃes resultantes excedam valores crÃticos. O aprimoramento da tÃcnica tem a finalidade de evitar o surgimento de defeitos e reduzir o tempo de produÃÃo. Para isso à fundamental uma boa compreensÃo dos fenÃmenos fÃsicos envolvidos ao longo do processo de solidificaÃÃo. O foco deste trabalho à aplicar a abordagem do EbFVM (Element based Finite-Volume Method) no estudo dos efeitos das tensÃes lineares acopladas unidirecionalmente com a temperatura aplicado ao lingotamento contÃnuo do aÃo 1013D (0,3% de carbono) Nas simulaÃÃes adotou-se algumas simplificaÃÃes com o estado plano de tensÃes e isotropia do material. Descartando-se as forÃas de corpo o contato com os rolos a pressÃo do aÃo lÃquido nas paredes do lingote (pressÃo ferrostÃtica) e o efeito convectivo. Contudo apesar das simplificaÃÃes adotadas este trabalho traz informaÃÃes quantitativas quanto a formaÃÃo do acÃmulo das tensÃes lineares que apontam para regiÃes de possÃveis formaÃÃes de trincas
Chen, Kuo-Hsiang. « Probabilistic finite-element modeling of fluid-infiltrated porous media under thermomechanical loadings / ». The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487929745333332.
Texte intégralDelhelay, Davinder Singh. « Nonlinear finite element analysis of the coupled thermomechanical behaviour of turbine disc assemblies ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ46072.pdf.
Texte intégralBasaran, Cemalettin. « Finite element thermomechanical analysis of electronic packaging problems using disturbed state constitutive models ». Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186961.
Texte intégralGennick, Kendall. « Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites ». Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8410.
Texte intégralDuring the consolidation phase, reinforcement particles of Metal Matrix Composites (MMC's) tend to be non uniformly distributed. The result is that the material properties of the composite materials are not as good as those originally desired. Through large amounts of straining, homogeneity can be achieved. Finite element models of MMC's undergoing different thermomechanical processes (TMP's) to true strains of approximately 1.2 were generated. The models consist of particle clusters within the particle-depleted matrix. The particle clusters were modeled by either a smeared model in which the particles refine the grains in the cluster, or a discrete model of the particles within clusters. The smeared and discrete models qualitatively agreed with each other. The results suggest that the best TMP to reach a state of reinforcement particle homogeneity was a hot worked, low strain rate TMP
Barua, Ananda. « Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs) ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49028.
Texte intégralTurner, Travis Lee. « Thermomechanical Response of Shape Memory Alloy Hybrid Composites ». Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29771.
Texte intégralPh. D.
Rolseth, Anton, et Anton Gustafsson. « Implementation of thermomechanical laser welding simulation : Predicting displacements of fusing A AISI304 T-JOINT ». Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19946.
Texte intégralIsmail, Dahman, et Alexis Andrei. « Thermomechanical stress analysis of the main insulation system of traction electrical machines ». Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20305.
Texte intégralMer effektiva tunga fordon utvecklas med högre räckvidd, uppdaterade elektroniska och mekaniska delar. Bränsleeffektiviteten och föroreningen av koldioxid måste vara lägre för att uppnå nya EU-förordningar. Antalet tunga fordon ökar i takt med att den globala befolkningen ökar, detta leder i sin tur till ökad utsläpp av bland annat koldioxid. Genom att ta de elektriska och mekaniska delarna till nästa steg kan de globala utsläppsproblemen minskas massivt. Elektriska maskiner för framdrivning är nästa steg mot en renare framtid. Studiens huvudmål för att undersöka den elektriska maskinens isoleringssystem. Termomekaniska påfrestningar på grund av termisk cykling påverkar de elektriska maskinerna och dess delkomponenter. Genom att använda en FEM-applikation med förenklade modeller av den elektriska maskinen erhålls och diskuteras resultat. Specifikt om 2D-modeller är tillräckliga för att representera en 3D-modell. Hur tillräckligt de olika 2D-modeller kan representera 3D-modellen jämförs och diskuteras i denna studie. Ett fysiskt experiment utförs för att validera och kalibrera FEA-modellerna. Vilken av de mindre frekventa cykler med högre amplitud eller mer frekventa cyckler med lägre amplitud påverkar isoleringssystemet mest har undersökts. Simuleringarna kan göras med antingen, temperatur kopplad förskjutnings analys eller sekventiellt kopplad analys. Temperatur kopplad kopplad förskjutning är den snabbaste metoden att använda i simuleringsmodellerna. En 3D-modell är det bästa sättet att beskriva ett objekt och har därför implementerats. Ytterligare två, 2Dmodeller är framtagna i FEM-miljö för snabbare beräkning och för att undersöka om 2D-modellerna kan representera den tredimensionella geometrin. Samtliga tre modeller har specifika randvillkor för att förenkla modellerna. Känslighetsstudier görs för att bestämma vilken parameter som påverkar de inducerade termomekaniska spänningarna mest. Ett fysiskt experiment har utförsts för att validera och kalibrera simuleringsmodellerna. Resultatet visar att 3D-modellen representerar ett tre dimensonellt objekt bäst. Simuleringsresultat har visat att epoxy, som är en av huvudkomponenterna i isoleringssystemet, är mest kritisk när det gäller att först nå brott- och sträckgräns, följt av pappersisolering och koppar beläggningen. Detta är ett typiskt resultat av alla tre simuleringsmodeller. Slutsatsen visar att vissa 2D-modeller kan presentera 3D-modellen, andra kan inte. Den beroende faktorn beror på ur vilket tvärsnitt man tittar på den elektriska maskinen. Det fysiska experimentet visar liknande resultat jämfört med simuleringen när det gäller belastning vid en lägre temperatur, och avvikelsen blir större när temperaturen ökar. 3D-modellen, är den modell som har den bästa representationen av en riktig elektrisk maskin eftersom den inkluderar normal- och skjuvspänningskomponenter i alla riktningar. Anledningen är att den har bättre randvillkor jämfört med 2Dmodellerna. 2D-modellen i XY-planet har visat liknande resultat som 3D-modellen. En av huvudkomponenterna i isoleringssystemet, epoxy, utsätts för de högsta spänningarna jämfört med dess sträck- och den brottgräns, följt av pappersisolering och koppar beläggning. Känslighetsstudien har kommit fram till att statorns axiella längd inte påverkar spänningsamplituderna. Den mest kritiska parametern som påverkar de termomekaniska spänningarna är temperatur amplituden, materialens CTE och tjockleken på det skarvade skiktet. Alla maximala spänningsamplituder för samtliga tre komponenter är belägna i den fria änden.
Liu, Deqi. « Thermomechanical modeling of the solidification process of an aqueous urea solution ». Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI029.
Texte intégralMany liquids involve a change in volume when they freeze. For water and some aqueous solutions, the volumetric expansion during solidification may invoke a series of mechanical issues. In automobile industries, the security of tanks installed in vehicles is challenged by the Phase-Change Expansion (PCE) of the freezing liquid in cold conditions. One of the most problematic issues is the expansion of Aqueous Urea Solution (AUS) in the SCR tank of diesel vehicles. As the liquid freezes, interior components may be deformed under the stress or pressure of the expanding AUS, potentially leading to failures of the storage tank. In the product center, a numerical method is of high demand to perform thermo-mechanical analysis to predict the temperature and stress distribution during a liquid solidification process in their tanks. In this work, a bibliographic study is carried out first on the basic knowledge of the ice and AUS. Due to the very limited information on urea solution in the literature, the structure and behaviors of freshwater ice are mainly reviewed. The grain orientation preference at the growth interface of polycrystalline ice provides the evidence of non-isotropic PCE for the solidification problem. A series of mechanical tests have been performed to characterize the basic properties of the solidified AUS at different temperatures. The density evolution is measured using a volume-difference method. Then, both thermal and mechanical analytical studies are performed. The classical thermal Stefan problem is reviewed and a finite-difference scheme is proposed to calculate the interface position and temperature profiles of a spherical solidification model. Mechanically, a similar spherical model is established based on the non-isotropic PCE phenomenon of ice growth. The solutions of stress distribution and liquid pressure evolution are given as a function of the solidification interface position. Finally, an efficient thermo-mechanical FEM is proposed to evaluate the thermal stress, strain, displacement and pressure in solidification problems with highly nonlinear relations. Three particular methods for treating the liquid phase with fixed-grid approaches are introduced. The thermal stress is computed at each integration point by integrating the elasto-viscoplastic constitutive equations with non-isotropic PCE. Then, the boundary value problem is solved using the full Newton-Raphson method. This procedure is implemented into the FE package Abaqus via a UMAT subroutine. The numerical model is validated first for the algorithmic aspect by the analytical solutions, and then for the parametric calibration by a series of benchmark tests. In the end, a realistic study case on a real-size AUS storage tank is introduced. Advantages and limitations of the numerical method in the application are evaluated
Jia, Yabo. « Numerical simulation of steady states associated with thermomechanical processes ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEE007.
Texte intégralIn the numerous thermomechanical manufacturing processes such as rolling, welding, or even machining involve either moving loads with respect to the fixed material or moving material with respect to fixed loads. In all cases, after a transient regime which is generally quite short, the thermal, metallurgical, and mechanical fields associated with these processes reach a steady state. The search for these stationary states using the classical finite element method requires the implementation of complex and expensive models where the loads move with respect to the material (or vice versa). The steady-state simulation in one increment has been the subject of much researches over the past thirty years. Methods are now available and some are integrated into calculation codes commercial. Thus, a so-called Moving Reference Frame method proposed by various authors is available in the SYSWELD software. This method makes it possible to calculate the steady-state of thermal, metallurgical, and mechanical states associated with a welding process, by solving a thermal diffusion-convection problem in thermal-metallurgy and by integrating, in mechanics, the constitutive equations of the material along the streamline. Moreover, this method has been used successfully in many applications, it nevertheless has some limitations. Thus the mesh must be structured and the convergence of computations is generally quite slow. In this thesis, we propose to solve the mechanical problem in a frame linked to the solicitations, by relying on a finite element calculation method based on nodal integration and the SCNI (Stabilized Conforming Numerical Integration) technique. This method allows the use of tetrahedron meshes (or 2D triangles) without encountering a locking problem resulting from the plastic incompressibility associated with the von Mises plasticity criterion. Rather than directly calculating the steady-state, the general idea here is to construct the steady-state from a transient analysis by bringing material step by step upstream and by making it exit downstream of a fixed mesh related to the solicitations and of the limited mesh size. The steady-state is therefore only achieved after certain steps of analysis. Apart from a general introduction (Chapter 1) and a state of the art on the existing methods (Chapter 2), we present an approach of simulation of the movement of material within the framework of the classical finite element method on a welding problem (Chapter 3). We also provide relevant thermal boundary conditions for directly calculating the steady-state of temperature distribution. The finite element method based on the nodal integration technique is then described in Chapter 4. The advantages and disadvantages of the method are discussed. The nodal-integration-based finite element is validated by comparing its simulation results with classical finite element methods in large elastoplastic strains, a bending problem, and a thermomechanical simulation of welding. The nodal-integration-based finite element is then developed and applied to simulate material motion (Chapter 5). Three types of movement are considered: translational, circular, and helical. Different methods of field transport are approached and discussed as well as thermomechanical coupling. Perspectives for this work are presented in Chapter 6. The envisaged perspectives aim, on the one hand, to improve the proposed method and on the other hand, to develop the method to simulate other processes. A first application of the material motion method to the simulation of the orthogonal cut is presented there
Ek, David. « Material parameter study for aheavy-vehicle exhaust manifoldusing the finite element method : to increase component lifetime and decrease its environmental impact ». Thesis, Linköpings universitet, Konstruktionsmaterial, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165869.
Texte intégralAl, Nahas Roula. « On the Use of a Spacetime Formalism for Thermomechanical Applications ». Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0001.
Texte intégralIn order to optimize the forming processes, modeling the thermomecanical behavior for large deformations is particularly interesting. Objectivity of the models is questioned. This study investigates the spacetime approach as a mean to build thermomechanical models respecting the covariance and causality principles as well as the laws of thermodynamics. Several models are proposed in the spacetime framework and next compared to existing models: heat conduction and the thermo-hyperelastic behavior are discussed. The spacetime numerical resolution is also tested: the variational forms corresponding to thermal and thermomechanical problems were developed. The study of material behavior is possible using these forms written in the proper frame. Numerical simulations implementing these forms in the software FEniCS project were then conducted in order to validate test cases of the spacetime models. Comparison of the spacetime models with the classical Newtonian models at the non-relativistic limit shows the compatibility of their results. Applications aiming to model the heat conduction in cooling fins, the self-heating occurring during fatigue tests and the behavior of a bimetallic element show that the use of the spacetime approach enable predicting material behaviors while guaranteeing objectivity of the models. We also suggest the use of this approach to model the tube bending process, preliminary results requiring more investigation are given in the appendix
Gonçalves, Giancarlo de Gusmão. « Estudo paramétrico da influência da temperatura na análise termomecânica durante a escavação em rochas salinas ». Universidade Federal de Alagoas, 2011. http://repositorio.ufal.br/handle/riufal/403.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este trabalho apresenta um estudo paramétrico para avaliar o efeito da temperatura em problemas de perfuração em rochas salinas. Essas rochas possuem deformação lenta e contínua quando submetidas a tensões constantes, fenômeno conhecido como fluência. Com as recentes descobertas de petróleo em grandes profundidades como, por exemplo, no pré-sal, onde as temperaturas são elevadas, o estudo da influência da temperatura se torna relevante, uma vez que contribui para o aumento do fenômeno de fluência. O objetivo desse estudo é a realização de simulações numéricas, através do Método dos Elementos Finitos, utilizando modelos viscoelásticos não lineares e um fraco acoplamento termomecânico para avaliar, através de análises paramétricas, o efeito da temperatura durante a perfuração das rochas salinas. Exemplos numéricos são realizados para validação dos estudos. Mais especificamente, considera-se o problema de escavação de poços para exploração de petróleo abaixo dessas camadas salinas.
Luo, Haoming. « High frequency thermomechanical study of heterogeneous materials with interfaces ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI130.
Texte intégralHeat transfer is actually intimately related to the sound propagation (acoustic transfer) in materials, as in insulators and semi-conductors the main heat carriers are acoustic phonons. The concept of the presence of interfaces has been largely exploited for efficiently manipulating phonons from long-wavelength to nanometric wavelengths, i.e., frequencies in THz regime, responsible for thermal transport at room temperature. In this thesis, the finite element method is used to perform transient analysis of wavepacket propagation in different mediums. I started with a parametric study of attenuation of acoustic wave-packets in a 2D semi-infinite elastic system with periodic circular interfaces. Three key parameters are investigated, including rigidity contrast, interface density and phonon wavelength. Different energy transfer regimes (propagative, diffusive, and localized) are identified allowing to understand the phonon contribution to thermal transport. Besides the circular interfaces, mechanical response and acoustic attenuation for different types of interfaces are also investigated, such as Eshelby’s inclusion, dendritic shape inclusion and porous materials with ordered/disordered holes. In order to extend the study to amorphous materials, I also considered a heterogeneous medium with random rigidities distributed in space according to a Gaussian distribution based on the theory of heterogeneous shear elasticity of glasses. Finally yet importantly, viscoelastic constitutive laws are proposed to take into account the frequency-dependent intrinsic phonon attenuation in glasses, with the aim of reproducing such intrinsic attenuation using a homogeneous viscous medium. Finite element simulation confirms that a continuum model may strictly follow the atomistic attenuation (G) for a well-calibrated macroscopic linear viscoelastic constitutive law. Compared with the experimental data in a-SiO2, our second constitutive law reproduces qualitatively and quantitatively the three regimes of acoustic attenuation versus frequency : successively Γ∝ω^2,ω^4,ω^2
Choi, Joonho. « Concurrent fire dynamic models and thermomechanical analysis of steel and concrete structures ». Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26679.
Texte intégralRangasamy, Mahendren Sharan Raj. « Thermomechanical behaviour of multi-cracked brittle media taking into account unilateral effects : theoretical and numerical approaches ». Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0070.
Texte intégralMicromechanical and numerical methods are explored to predict the effective thermal and thermoelastic properties of a microcracked media. The effective properties are given in 2D and3D. In this thesis, special attention is paid to the anisotropy, induced by the orientation of the cracks and the unilateral effect related to the opening and closing of the cracks. The cracks aremodelled as ellipsoidal inclusions. The open cracks are considered to have no stiffness and to be thermally insulating, whereas the closed cracks are represented by a fictitious isotropic material.The theoretical approach takes advantage of various homogenization schemes and bounds to derive closed-form expressions of effective properties. The numerical approach considers finiteelement modelling and is based on the same geometry and properties of cracks as in the theory. Finally, results are compared to demonstrate the consistency between the two approaches
Johnson, Janine. « Thermomechanical modeling of porous ceramic-metal composites accounting for the stochastic nature of their microstructure ». Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33857.
Texte intégralMoreno, Navarro Pablo. « Multiphysics formulation and multiscale finite element discretizations of thermo-electro-magneto-mechanic coupling for smart materials design ». Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2525.
Texte intégralNumerical algorithms based on the Finite Element Method will be specialized for Analysis, Design, and Optimization of Sensors and Actuators (S-A) and their Application to Smart Structures. The S-A based on tangible assets can couple several fields, such as mechanical, electrical, magnetic, and thermal. They are used in many applications, particularly in smart structures, damage monitoring, or aerodynamics. Despite the considerable experience in these studies, the steps addressed are first to develop a thermodynamically consistent formulation for macro-scale to introduce plasticity models; second, to provide the tools to take into account the heterogeneities of multi-scale models for smart materials. The main objective is the development of a research computer code to simulate and study the performance, not only of the S-A themselves but also of the smart structures in which these S-A will be mounted
Al-Sibahy, Adnan Flayih Hassan. « Thermo-mechanical behaviour of a novel lightweight concrete and its application in masonry walls ». Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/thermomechanical-behaviour-of-a-novel-lightweight-concrete-and-its-applicationin-masonry-walls(a803fcb4-a33c-4594-8622-87e565a7ceb4).html.
Texte intégralBencheikh, Issam. « Simulation multi-étapes de l’usure des outils de coupe revêtus par une modélisation XFEM/Level-set ». Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0094/document.
Texte intégralIn high speed machining, wear resistance of the cutting tools is improved by depositing single or multilayered coatings on their surface. However, the thermomechanical loading generated at the tool-workpiece interface greatly affects the contact zones. For this purpose, several wear modes such as cracking, abrasion, adhesion and delamination of the coating can be occurred. The study of the coatings behavior and their different degradation modes lead to better understanding of their impact on the tool life and machining process under optimal conditions. In this PhD thesis work, a multi-step numerical approach has been proposed to predict wear of the coated cutting tools. This approach involves three main steps. The first is to perform a finite element simulation of the orthogonal cutting for a short time (until the loading stabilization at the tool/workpiece interface). The second step is to recover this loading and use it as an input for the XFEM/Level-set model. The latter allow to take into account the coating layers presence without any need of mesh conforming to the interfaces. As a result, the mesh distortion is avoided when the worn tool profile is updated, as well as the CPU calculation time is drastically reduced. The final step of this approach is to convert the wear rate equation into a nodal displacement, thus representing the cutting tool wear. Based on the experimental tests, a procedure for identifying tool/workpiece contact parameters, and for calibrating the wear equation for each coating layer has been proposed. Experimental trials have been also used to validate the proposed approach
Capron, Adélie. « Towards the predictive FE analysis of a metal/composite booster casing’s thermomechanical integrity ». Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/314767/5/contratAC.pdf.
Texte intégralDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Bendaou, Omar. « Caractérisation thermomécanique, modélisation et optimisation fiabiliste des packages électroniques ». Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR20/document.
Texte intégralDuring operation, electronic packages are exposed to various thermal and mechanical solicitations. These solicitations combined are the source for most of electronic package failures. To ensure electronic packages robustness, manufacturers perform reliability testing and failure analysis prior to any commercialization. However, experimental tests, during design phase and prototypes development, are known to be constraining in terms of time and material resources. This research aims to develop four finite element models in 3D, validated/calibrated by experimental tests, integrating JEDEC recommendations to : - Perform electronic packages thermal and thermomechanical characterization ; - Predict the thermal fatigue life of solder joints in place of the standardized experimental characterization.However, implementation of the finite element model has some disadvantages related to uncertainties at the geometry, material properties, boundary conditions or loads. These uncertainties influence thermal and electronic systems thermomechanical behavior. Hence the need to formulate the problem in probabilistic terms, in order to conduct a reliability study and a electronic packages reliability based design optimization.To remedy the enormous computation time generated by classical reliability analysis methods, we developed methodologies specific to this problem, using approximation methods based on advanced kriging, which allowed us to build a substitution model, combining efficiency and precision. Therefore reliability analysis can be performed accurately and in a very short time with Monte Carlo simulation (MCS) and FORM / SORM methods coupled with the advanced model of kriging. Reliability analysis was associated in the optimization process, to improve the performance and electronic packages structural design reliability. In the end, we applied the reliability analysis methodologies to the four finite element models developed. As a result, reliability analysis proved to be very useful in predicting uncertainties effects related to material properties. Similarly, reliability optimization analysis performed out has enabled us to improve the electronic packages structural design performance and reliability. In the end, we applied the reliability analysis methodologies to the four finite element models developed. As a result, reliability analysis proved to be very useful in predicting uncertainties effects related to material properties. Similarly, reliability optimization analysis performed out has enabled us to improve the electronic packages structural design performance and reliability
Luňáček, Erik. « Modelování vlastností mikroelektronických struktur ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217901.
Texte intégralGomes, Romeu. « Compréhension des mécanismes de dégradation des outils de découpage à chaud de tôles d'acier trempant au bore-manganèse ». Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2018. http://www.theses.fr/2018EMAC0018/document.
Texte intégralCar manufacturers are building using a self-hardening high strength boron steel (22MnB5) for safety and environmental concerns. But the shaping of sheets made of these kind of steel imposes on tools severe mechanical stresses and strong thermal transfer. The integration of a blanking function in transfer presses is a response to reach high profitability, but blades are subjected to the same durability problems. The aim of this thesis is to understand how hot blanking tools are wearing in order to give to manufacturers tool material guidelines (X38CrMoV5-3 or X70CrMoV5-2) and process parameters guidelines. To do so, an estimation of mechanical stresses and thermal solicitation is required. The methodology is based on four steps: literature search, hot blanking trials on a specific module of ICA laboratory industrial pilot MEFISTO, finite element simulations of the operation, and microstructural analysis. The state of art is focused on the description of the operation, the physical and mechanical properties of the blank material and tools materials, the blank/tool interface behavior, and the techniques used simulate the hot blanking process. Trials on the hot blanking module provided blanking force and observations of worn blades. These informations are needed to validate the finite element model. This model shows that mechanical stresses are local, intense and slides in the blade cutting edge. Moreover, the blade heating generates a surface temperature close to tool steel tempering temperature. Experimental results compared to numerical ones allow to understand the link between thermo-mechanical stresses and how the damage occurs
Sardo, Lucas. « Modélisation et simulation numérique de la thermomécanique des écoulements dans les co-malaxeurs ». Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM044/document.
Texte intégralThe aim of this study was to model molten polymers flow in BUSS type co-kneaders. The BUSS co-kneader is a particular single-screw extruder. It is composed of a rotating screw like standard single screw extruders, but with interrupted flights and mixing pins fixed to the barrel. The screw has also an axial reciprocal movement. It has been used for decades in industry for its mixing capacities, specifically for PVC gelification or polymer compounding with fibres, additives or carbon black. This work is therefore answering to nowadays industrial needs, as developing new products is expensive and time consuming.A 2D time-dependent thermomechanical model based on Hele Shaw approximations was developed and the co-kneader domain was discretized by finite elements. The numerical problem was solved by finite elements and SUPG stabilized finite elements. This model provides, at every point of the calculation domain, the pressure, throughput vectors, shear rates, viscosity as well as temperature.Simulation results provide pressure and temperature orders of magnitude, as well as information on polymer mixing depending on process parameters. A comparison between the model and experimental trials shows a satisfactory agreement in the filled zones
Angeloni, Mauricio. « Fatigue life evaluation of A356 aluminum alloy used for engine cylinder head ». Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00661622.
Texte intégralMcCaslin, Luke. « Methodology for predicting microelectronic substrate warpage incorporating copper trace pattern characteristics ». Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24641.
Texte intégralMostallino, Roberto. « Développement de diodes laser émettant à 975nm de très forte puissance, rendement à la prise élevé et stabilisées en longueur d’onde pour pompage de fibres dopées et réalisation de lasers à fibre ». Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0132/document.
Texte intégralThis PhD addresses the development of high-power laser diodes emitting at 975nm withhigh efficiency and wavelength stabilized using a Bragg grating. This thesis was conducted in the framework of a close partnership between IMS Laboratory, the GIE III-V lab, who is themain French founder of III-V semiconductor devices for electronic and photonic applications,and THALES Research & Technology in Palaiseau. An in-depth characterization and analysiswork has addressed thermal aspects that contribute, in particular, to limit the optical outputpower of a laser diode. In such a context, we have carried out a set of complementary characterizations both at III-V lab and IMS allowing us to provide some corrective solutionsfor technological optimization concerning the etching depth of the grooves that defines the emitting stripe of the laser diode and the nature of the submount acting as a thermocompensator.These solutions have been proposed from optical modelling implemented with a dedicated simulator, property of III-V lab, and thermal and thermomechanical (multiphysics approach) finite element simulations of the overall microassembled structure. All this work has resulted in the fabrication as well as electro-optical and thermal characterizations of three vertical structures namely LOC (Large Optical Cavity), SLOC (Super Large Optical Cavity)and AOC (Asymmetrical Optical Cavity). The LOC and SLOC vertical structures have been processed with a Fabry-Perot cavity and also including a Bragg grating (DFB architecture) while the AOC one was only fabricated with a Fabry-Perot cavity. State-of-the-art results aredemonstrated since in particular an optical power of 8W with an efficiency of 60% has been obtained that can be compared to those recently published by the Ferdinand-Braun Institute.The originality of the work carried out in this PhD has allowed us to receive a grant from the European Laserlab Cluster (The Integrated Initiative of the European Laser Research Infrastructures), to conduct dedicated experiments at the Max-Born Institute (Berlin) in thegroup of Dr. J.W. Tomm. The work aimed to characterize mechanical strain of the laser diode induced by the soldering process. Two vertical structures (SLOC and AOC) were investigated using complementary techniques (microphotoluminescence, time-resolved photoluminescence,photocurrent spectroscopy and pulsed L-I measurements), allowing to quantify the level of residual stress provided by the laser diode mounting process as well as the kinetics of the catastrophic degradation process (COD)
Avevor, Yao Venunye. « Effets thermomécaniques en usinage à sec : une modélisation analytique-numérique ». Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0112/document.
Texte intégralIn dry machining, the thermomechanical process of chip formation, the tool wear and the surface integrity depend strongly on the tribological conditions along the tool rake face. Besides, the friction conditions at the tool-chip interface and along the round cutting edge are very complex. It should be noted that to understand the friction effects in machining, we have to analyse the inherent relationship among, the cutting conditions (cutting and feed velocities, tool geometry), the workpiece material behaviour, the thermomechanical characteristics of the tool material, the frictional heat partition in the sliding zone and the friction conditions at the tool-chip and tool-workpiece interfaces. Due to the problem complexity, it appears that despite many works on machining, the understanding of the effect of friction conditions requires further investigations. In the present work, to identify the interaction between the thermomechanical phenomena at the tool-chip interface and the material flow in the primary shear zone; an analytical model has been coupled with a finite element approach. For the tool rake face, a new pressure model was developed. The transient nonlinear thermal problem in the workpiece-tool-chip system has been solved by using a FE model based on the Petrov-Galerkin formulation. The coupling between the primary shear zone (PSZ) (chip formation), the secondary shear zone (SSZ) (sticking zone) and the frictional heat at the sliding zone has been taking into account. The model allows to determine in a fast and simple way several significant machining parameters as: (i) the cutting forces, (ii) the temperature distribution in the tool-chip-workpiece system, (iii) the heat flux from the PSZ to the workpiece, (iv) the tool-chip contact length, (v) the frictional heat partition and (vi) the apparent friction coefficient. The proposed model allows to analyze different industrial machining processes such as drilling and milling
Zhang, Yang. « Etude des conséquences mécaniques de la transformation de phase dans les réfractaires électrofondus à très haute teneur en zircone ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM035/document.
Texte intégralFused-cast refractories, which are concerned by this work, belong to the alumina-zirconia-silica system. They are obtained by casting in molds at temperatures higher than 2000°C, that make very difficult any instrumentation. Many phenomena intrinsic to the material occur during cooling-down after casting. Among these latter, this research essentially focused on the phase transformation (from tetragonal to monoclinic) of zirconia and the associated phenomena (swelling, plasticity,...).From high temperature mechanical tests performed in laboratory, the thermal and mechanical behavior laws were characterized and modeled during the zirconia transformation. Plasticity at very low stress threshold was observed. A Leblond type model has been extended by introducing a Cam-clay yield function without consolidation. In this model, the progress of the transformation is controlled by the evolution of the temperature. This model was complemented by other components of the mechanical behavior (creep, elasticity, ...). It has been validated by experimental tests under multiaxial loadings that replicate the main thermomechanical phenomena observed during cooling.In parallel, blocks casted in laboratory conditions, instrumented with thermocouples and acoustic emission sensors, allowed a numerical simulation of the change in temperature field within the block during cooling-down. This simulation took into account the solidification enthalpy and the enthalpy associated to the phase transformation, previously quantified by DTA. The implementation of the complete mechanical model integrating all the behavior components led to a calculation of the stress field changes generated by thermal gradients as a function of time and, in particular, to highlight the essential role played by the phase transformation on stress relaxation
Goupil, Anne-Charlotte. « Contribution à l'étude numérique du comportement au feu d'un panneau composite pour l'industrie navale ». Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1003/document.
Texte intégralStructural panels used in naval industry such as bulkheads and decks must succeed in standard certification testssuch as ISO 834 to be commercialized and settled on board. As these tests are long and expensive, panel manufacturerswish to maximize chances of success for their panels when submitted to certification tests especially when it comes toalternative designs such as composite sandwich panels.Finite elements analyses are used to model thermo-mechanical behavior. Industrial software such as SAMCEF,which was used to conduct this work, are able to solve thermal analyses with degradation and mechanical analyses involvingcontact conditions, degradation of mechanical properties and loss of structures due to failure.The objective in this study is to first identify characteristics of these structures. They are special due to their size andtheir manufacturing. This study aims also to determine thermal and mechanical data required for numerical modeling.When necessary some data can be computed from results coming from the results of the materials’ reaction to fire.Numerical models are developed to determine thermo-mechanical behavior and are designed to be robust and used inindustrial context. They include the evolution of thermal and mechanical properties during the degradation process. Thesemodels must enable to estimate the performances of innovative designs during an ISO 834 certification test
De, Freitas Alves Talita. « Thermomechanical behaviour of bituminous lavers containing rigid inserts for eRoads ». Thesis, Ecole centrale de Nantes, 2022. https://tel.archives-ouvertes.fr/tel-03920982.
Texte intégralIn general, four factors need to be accurately and simply accounted for on the design of flexible pavements: traffic and loading, environmental conditions, materials properties and failure criteria (HUANG, 2004). The inclusion of charge-while-drive technologies inside road infrastructures modifies not only the common disposal of layers, but also the overall response of the structure to thermal and mechanical loadings. In order to quantify the impact of these inclusions on the performance of flexible pavements, this study proposes both numerical and experimental methodologies to measure temperature, stress and strain evolutions within electrified roads (eRoads). By means of transient 2-D FEM thermo-viscoelastic simulations, traditional and electrified road profiles were subjected to daily temperature fluctuations and to traffic.The eRoad studied contains electrified rails embedded in the bituminous wearing course, a case of particular interest due to its direct exposure to traffic and climate. The response of the structures was analysed and compared to admissible values commonly assessed to predict distresses. In laboratory, a thermal test was proposed to evaluate eRoad specimens undergoing warm and cold cycles by means of Digital Image Correlation (DIC) technique. The strain fields measured numerically and experimentally lead to the same conclusion: the rigid inserts generate additional strain along the interface of the charging unit and the bituminous layer solely due to daily temperature fluctuations. The thermos-viscoelastic model proposed and the experimental set-up have a great potential to assess innovative pavement profiles (inductive and conductive eRoads)
Bardel, Didier. « Rôle de la microstructure d'un alliage à durcissement structural sur son comportement et sa tenue mécanique sous sollicitations cycliques après un transitoire thermique ». Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0045/document.
Texte intégralIn order to assemble the pressure vessel of experimental Reactor Jules Horowitz (RJH) of France in the future, the electron beam welding process will be used. Several ferrules in a 6061-T6 age hardening aluminum alloy are used for manufacturing this vessel. The fine precipitation state (T6) is affected significantly by the electron beam welding process. Consequently, this microstructural degradation leads to an evolution of the mechanical behaviour and thus will affect the distribution of residual stresses. Moreover, the mechanical properties of the weld joint at ambiant temperature can be modified, such as the yield stress that may drop from 280 MPa to 55 MPa. In this work, cyclic tensile tests have been performed after anisothermal histories representative of welding and during isothermal treatments. The analysis of these results is compared with Small Angles Neutrons Scattering (SANS) and Transmission Electron Microscopy (TEM) characterizations that allow to understand the effect of the precipitation on the material behaviour. To predict the microstructural evolutions in the 6061 structure, a precipitation model has been developped. The precipitation software "PreciSo" coupled with a Finite Element thermal simulations and elastoplastic models allows to open new prospectives in the physical-based simulations domain
Dia, Mouhamadou. « Hexahedral and prismatic solid-shell for nonlinear analysis of thin and medium-thick structures ». Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI040.
Texte intégralThin or medium-thick structures are naturally present in most power generation facilities: reactor building, pressurized pipelines, metal tanks or tarpaulins, reactor vessel, metal liners of containment chambers, to name but a few. A need currently expressed by EDF's engineering units is the modeling of the blistering phenomena of metal liners in reactor facilities. A liner is a metal sheet type structure that provides the impermeability function of nuclear power plants. Its modeling requires taking into account a contact-friction phenomenon causing pinching on the shell, plasticity under the effect of blistering and geometric nonlinearity (buckling type instability). To model the thermo-mechanical behavior of such a structure, the finite elements of plates and shells currently available do not seem to be up to the task. The first limitation attributable to these elements is the assumption of plane stresses which prevents the consideration of some natively three-dimensional constitutive laws. Secondly, due to their formulation with rotational degrees of freedom these elements do not offer facility of use when solving problems that take into account non-linear effects such as large geometric transformations, bi-facial friction-contact, buckling and following pressures. An alternative would be to use standard volume elements. However, the prohibitive computing cost of the latter is difficult to access for many industrial applications. The aim of this work is to propose a solution to this problem. We have proposed a solid-shell finite element formulation enriched in their pinching stress and strain and capable of reproducing accurately the behaviour of thin structures. This new finite element works with any type of three-dimensional behaviour law without restriction on stress fields. It can also be used for all types of mechanical problems: linear and nonlinear, frictional contact, large transformation, buckling, displacement-dependent pressure, etc. The numerical simulations carried out show satisfactory performances
Quint, Karsten [Verfasser]. « Thermomechanically coupled processes for functionally graded materials : experiments, modelling, and finite element analysis using high-order DIRK-methods / Karsten Quint ». Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2012. http://d-nb.info/1024717844/34.
Texte intégralButeri, Aurélien. « Etude de l'endommagement en fatigue d'alliages d'aluminium brasés pour échangeurs thermiques automobiles ». Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0077/document.
Texte intégralThe automotive industry, like many other industrial fields, requires the use of heat thermal exchangers to allow optimal thermal service conditions of the engine (around 90°C for a car engine). The exchangers’ reliability has to be guaranteed to avoid a decrease of the engine efficiency or detrimental mechanical damage resulting from too high service temperatures. It is therefore necessary to control the different damage modes of such thermal heat exchangers according to the conditions of use. Thanks to their good thermal, corrosion and mechanical properties, aluminium alloys have steadily replaced copper alloys and brass for manufacturing heat exchangers in cars or trucks. Such components have been constantly optimized in terms of exchange surface area and, nowadays, this has led to Al components in heat exchangers with a typical thickness of the order of 0.2 to 1.5 mm. With such small thicknesses, the load levels experienced by heat exchangers components has drastically increased leading to an important research effort in order to improve the resistance to damage development during service life. Two industrial materials made of 3 co-rolled aluminium alloys (total thickness 0.27 mm) have been studied. In spite of their small thickness, the materials exhibit a composite structure comprising a core material (3xxx alloy) and 2 clads (4xxx and/or 7xxx alloys according to material configuration: 4xxx/3xxx/4xxx or 4xxx/3xxx/7xxx). The lower melting point 4xxx alloy is used for producing the heat exchanger assembly during a brazing process while the 7xxx alloy improves internal corrosion resistance. Such complex architecture, combined to the severe brazing thermal treatment, leads to important microstructural modifications, mainly characterized by the formation of brazing joints or Clad Solidification Drops (CSD) on the surface. Both of them are responsible for significant gradients of the mechanical properties on the thickness. The present study is based on an original experimental and numerical approach developed to characterise the different fatigue damage mechanisms operating in such thin heterogeneous structures. Digital image correlation (2D-3D) and X-rays tomography (at different resolutions) have been used to analyze the crack initiation and propagation mechanisms, highlighting the impact of each clad on each damage step. While the 4xxx clad corresponds to preferential crack initiation zones, the 7xxx clad seems to affect significantly the crack propagation phase. Finite Elements simulations have been carried out to complete these experimental observations, putting forward an accurate quantification of the surface state influence (through the CSD). All the different results and observations made on fatigue samples with a simplified geometry have been finally confirmed by fatigue tests on thermal exchanger configurations
Havlásek, Radim. « Statistické plánování experimentů pro účely optimalizace kvality ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217910.
Texte intégralHamdani, Hamid. « Métamodèles pour l’étude fiabiliste des systèmes mécatroniques Métamodélisation pour une conception robuste des systèmes mécatroniques Reliability analysis of tape based chip-scale packages based metamodel Optimization of solder joints in embedded mechatronic systemsvia Kriging-assisted CMA-ES algorithm Metamodel assisted evolution strategies for global optimization of solder joints reliability in embedded mechatronic devices ». Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR12.
Texte intégralMechatronic system failures are often caused by fatigue failure of the solder joints of its electronic devices. With the increasing miniaturization of electronic devices, the stress on solder joints, which provide the connection between the component outputs and the PCB, has become a major challenge. Indeed, solder joints can accept high deformation rates, but an accumulation of repeated stresses causes their premature ageing which can lead to the rupture of solder joints (thermomechanical fatigue phenomenon). Thus, the studies based on finite element simulation methods are performed to numerically investigate the lifetime of PCB-mounted devices (secondlevel reliability). The high computational costs required to solve such problems may make the optimization and reliability assessment procedure impracticable due to the high computation time of multi-physics finite element simulation. This thesis proposes on the one side, an adaptation of the CMA-ES method Assisted by the kriging metamodel for the global optimization of a given problem. The implementation of this proposed algorithm was performed in the global optimization of the solder joints in a PQFP package. The results of the numerical studies show that the proposed KA-CMA-ES algorithm is more efficient and more efficient than the standard CMA-ES algorithm. On the other side, a general methodology for reliability analysis in fatigue is proposed in this manuscript. It is based on the uncertainty modeling (loading, material properties, geometry) and aims to quantify the reliability level of the system studied for a fatigue failure scenario. A method based on metamodelling techniques is precisely proposed to address the complexity of mechatronic systems in solving the reliability problem. The metamodel is used to emulate the mechanical model behaviour while satisfying both the its efficiency and accuracy. The implementation of the proposed methodology is applied for the reliability analysis of a T-CSP package
Abondance, Didier. « Modélisation thermomécanique d'un procédé de mise en forme aux cotes de pièces complexes par compression isostatique à chaud de poudre de TA6V ». Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10026.
Texte intégralAlam, Khurshid. « Experimental and numerical analysis of conventional and ultrasonically-assisted cutting of bone ». Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/5870.
Texte intégralDib, Johan. « Contribution à l'élaboration d'un logiciel métier par éléments finis pour l'analyse thermomécanique globale d'échangeurs de chaleur à plaques et ondes ». Thesis, Vandoeuvre-les-Nancy, INPL, 2007. http://www.theses.fr/2007INPL025N/document.
Texte intégralThis work consists of developing a software tool based on the linear thermomechanical modeling of the heat exchanger using homogenization techniques. A methodology for modeling the heat exchanger constituted by stacking of different brazed fins and sheets is adopted. This methodology assumes that the global behavior of every layer of fins and sheets is found between two behavior limits determined by periodic mechanical approach (HMP) and periodic kinematical approach (HCP). These techniques are implemented for numerical application while studying global loading due to the temperature and pressure internal loads. A homogenization tool (HomPass) is then developed in order to calculate automatically equivalent behaviors to each layer of brazed fins and sheets. That contributes to the development of the final software tool (SiTEME) dedicated to the global thermomechanical study of the heat exchanger
Bernard, Chrystelle. « Intégration dans un code éléments finis d'un modèle de comportement en grandes déformations pour les polymères amorphes : applications à une large gamme de vitesses de déformation et à la mise en forme ». Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD018/document.
Texte intégralNowadays, numerous structural parts are made in polymeric materials. These materials exhibit a complex behavior strongly sensitive to strain rate and temperature. Numerous constitutive equations have been developed during the last decades in order to describe the elastic-viscoplastic behavior of polymers in finite strain for a wide range of strain rates and temperature. To provide for the holding of mechanical parts polymer subject to a complex set of loads, the use of numerical methods, such as Finite Element (FE) method, is unavoidable. However, the quality of the numerical prediction is strongly dependent to the used constitutive equations. Thus, we proposed to study two models of mechanical behavior implemented in two FE softwares: a simple phenomenological model, introduced in CAST3M, and a micromechanical model, introduced in ABAQUS/Explicit. The phenomenological model allows simulating the mechanical behavior of glassy polymers in small strains over a reduced range of strain rates and temperatures. A compressive test reproducing the Split Hopkinson Pressure Bar device is simulated for several strain rates and temperatures. A good correlation is found between experimental results and numerical predictions. Moreover, an estimation of Taylor-Quinney coefficient and the interfacial stress, due to the friction between the polymer sample and the compressive bars, have been found. The micromechanical model describes the mechanical behavior of amorphous polymers in finite strain over a wide range of strain rates and temperatures. It has been developed in our research team by Richeton et al. [Int. J. Solids Struct. 44 (2007) 7938] and proposes to take into account the strain rate and temperature dependence of various material properties (elastic modulus, yield stress, orientational hardening). In order to simulate the mechanical behaviour of polymeric structures under dynamic loadings or during forming processes, a VUMAT subroutine is written. After validation of the numerical implementation of the VUMAT subroutine for simple compressive/tensile tests, two applications were simulated. The first application is a normal impact test of a polymeric plate by a hemispherical projectile. The second application is a cold forging test. In both cases, numerical predictions are in agreement with the experimental results from the literature
Soyarslan, Celal. « Modelling Damage For Elastoplasticity ». Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610300/index.pdf.
Texte intégralChevalier, Damien. « Contribution à la compréhension du couplage thermomécanique en laminage à chaud sur l’évolution des défauts de coulée ». Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0078/document.
Texte intégralRolling is a hot forming process dedicated to manufacture bars with different diameters. The initial product is a bloom from the continuous casting. The bloom contains inclusions which have different forms, sizes and distributions. The rolling reduces the diameter of the bar and acts on the material microstructure by fragmenting and dispersing the inclusions. The aim of the thesis work is to understand the behavior of the inclusions with the rolling thermo mechanical loading effects. The direct investigations on the rolling mill are not possible because of the size of the installations. To address this problem, the solution is to develop and validate a small scale characterization test reproducing the thermo mechanical loading of the rolled bar. To achieve this, the rolling mill is modeled. Only the solicitations which have a major role on the behavior of the defects are reproduced. An open-die forging test is designed, manufactured and implemented on the VULCAIN installation of the ENSAM. The artificial defects which have a similar malleability to the real defects are integrated into the sample. A parametric experimental campaign has been conducted on the different defects. The forged samples have been analyzed with non-destructive methods such as ultrasound, radiography and tomography. These analyses allowed to follow the behavior of the defects and to observe certain phenomena illustrated in the literature such as the emergence of a cavity on the defect-matrix interface
Orgéas, Laurent. « Étude expérimentale et numérique du comportement thermomécanique d'un alliage à mémoire de forme industriel NiTi ». Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10256.
Texte intégralSahli, Mehdi. « Simulation and modelling of thermal and mechanical behaviour of silicon photovoltaic panels under nominal and real-time conditions ». Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD036.
Texte intégralThe work presented in this thesis deals with the development of a numerical multi-physics model, designed to study the optical, electrical and thermal behaviour of a photovoltaic module. The optical behaviour was evaluated using stochastic modelling based on Markov chains, whereas the electrical behaviour was drawn specifically for Silicon based photovoltaic panels using numerical optimization methods. The thermal behaviour was developed in 1D over the thickness of the module, and the multi-physics module was weakly coupled in MATLAB. The behaviour of commercial panels under nominal operation conditions was validated using data declared by the manufacturers. This model was used to perform a parametric study on the effect of solar irradiances in steady state. It was also validated for real use conditions by comparing it to experimental temperature and electrical power output. A thermomechanical study in 2D in ABAQUS/CAE based in the multi-physics model was carried out in nominal operating conditions, as well as in fatigue thermal cycling according to the IEC 61215 Standard to predict the stresses that are imposed on the panel
Bargaoui, Hiba. « Simulation de la déformation des noyaux de fonderie durant la coulée ». Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM004/document.
Texte intégralThe inner cavities of aluminum cylinder heads are made using sand cores, which are made of silica sand and of a polyurethane resin binder. The cores are placed in the metallic mold just before casting. During this stage, the cores are submitted to the metallo-static pressure and high temperatures. Under these extreme loading conditions, with the development of thinner and thinner walls with complex designs, the cores exhibit significant deformation causing dimensional defects in the final cast.To control the deformation of the sand core, it is necessary to possess a robust characterization of their thermal and mechanical properties, that could be introduced in structural computations simulating the flow of the liquid metal, the solidification and the thermal fields. This approach is still not fully in use in the industry. A review of the literature confirms that this knowledge is incomplete for the moment.The work was therefore concentrated on the experimental characterization of the thermomechanical behavior and the thermophysical properties of the foundry cores and Polyurethane resin binder.Then, a behavior model capable of taking into account the viscosity of the material, damage development, and especially its evolution as a function of time and temperature because of the thermal degradation of the binder resin was developed.A technological specimen was finally designed and an experimental protocol has been established to measure the deformation of a core during casting and numerically validate the constitutive equations under complex thermal and mechanical loadings
Biglione, Jordan. « Simulation et optimisation du procédé d'injection soufflage cycle chaud ». Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0079/document.
Texte intégralSingle stage injection blow molding process, without preform storage and reheat, could be run on a standard injection molding machine, with the aim of producing short series of specific hollow parts. The polypropylene bottles are blown right after being injected. The preform has to remain sufficiently malleable to be blown while being viscous enough to avoid being pierced during the blow molding stage. These constraints lead to a small processing window, and so the process takes place between the melting temperature and the crystallization temperature, where the polypropylene is in his molten state but cool enough to enhance its viscosity without crystallizing. This single stage process introduces temperature gradients, molecular orientation, high stretch rate and high cooling rate. Melt rheometry tests were performed to characterize the polymer behavior in the temperature range of the process, as well as Differential Scanning Calorimetry. A viscous Cross model is used with the thermal dependence assumed by an Arrhenius law. The process is simulated through a finite element code (POLYFLOW) in the Ansys Workbench framework. The geometry allows an axisymmetric approach. The transient simulation is run under anisothermal conditions and viscous heating is taken into account. Thickness measurements using image analysis are done and the simulation results are compared to the experimental ones. The experimental measurements are done by analizing tomography datas. The simulation shows good agreements with the experimental results. The existence of elongational strain as well as shear strain during the blowing after contact with the mold is discussed. An optimization loop is run to determine an optimal initial thickness repartition by the use of a Predictor/Corrector method to minimize a given objective function. Design points are defined along the preform and the optimization modifies the thickness at these locations. This method is compared to the Downhill Simplex Method and shows better efficiency