Articles de revues sur le sujet « THERMAL PERFORMANCE ANALYSIS »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : THERMAL PERFORMANCE ANALYSIS.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « THERMAL PERFORMANCE ANALYSIS ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Boonsu, R., S. Sukchai, S. Hemavibool et S. Somkun. « Performance Analysis of Thermal Energy Storage Prototype in Thailand ». Journal of Clean Energy Technologies 4, no 2 (2015) : 101–6. http://dx.doi.org/10.7763/jocet.2016.v4.261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

subramanian, G. Bala, et P. Bala shanmugam. « Performance Analysis of Solar Water Purification by using Thermal Method ». Global Journal For Research Analysis 3, no 8 (15 juin 2012) : 90–92. http://dx.doi.org/10.15373/22778160/august2014/27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Machado, H. A., et A. G. Ramos. « PERFORMANCE ANALYSIS OF THERMAL DIODES ». Revista de Engenharia Térmica 5, no 2 (31 décembre 2006) : 66. http://dx.doi.org/10.5380/reterm.v5i2.61853.

Texte intégral
Résumé :
The thermal diode consists in a common brick empty inside, where the internal cavity is geometrically arranged as two rectangles, disposed one over the other but not aligned. When the lower side is heated, natural convection in the air inside yields high heat transfer rates from this side to the other. When the upper side is heated, the heat transfer should run by pure conduction, and the brick with air inside works as a thermal insulator. As this brick allows a good conductance in one direction and insulation in the opposite sense, it behaves as an electric diode, being known as thermal diode. This principle is already known for a long time, but its use is still not extensive, and there are no basic rules for the cavity design or even a theoretical study of viability for this use replacing the conventional insulation systems. The objective of this work is to simulate the heat transfer process inside a thermal diode, in order to obtain the optimal geometry and dimensions and to verify the viability of its use in buildings for thermal optimization. The numerical data are validated through comparing with that obtained from the test applied to cellular concrete bricks.
Styles APA, Harvard, Vancouver, ISO, etc.
4

PERVEZ, Sardar Hamza, Muhammad Ali KAMRAN, Sallahuddin MİR, Abdul AHAD, Muhammad Alam Zaıb KHAN et Muhammad FAIQ. « Development and performance analysis of hybrid photovoltaic/thermal (PV/T) system ». Journal of Thermal Engineering 7, no 14 (30 décembre 2021) : 1936–44. http://dx.doi.org/10.18186/thermal.1051272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Karakurt, A. Sinan. « PERFORMANCE ANALYSIS OF A STEAM TURBINE POWER PLANT AT PART LOAD CONDITIONS ». Journal of Thermal Engineering 3, no 2 (1 avril 2017) : 1121. http://dx.doi.org/10.18186/thermal.298611.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gandhidasan, P., et K. N. Ramamurthy. « Thermal performance analysis of pneumatic structures ». Energy 13, no 5 (mai 1988) : 413–19. http://dx.doi.org/10.1016/0360-5442(88)90065-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shukla, K. N., A. Pradeep et S. S. Suneesh. « Thermal performance analysis of silica tiles ». Journal of Engineering Physics and Thermophysics 79, no 6 (novembre 2006) : 1157–63. http://dx.doi.org/10.1007/s10891-006-0218-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

P., Ram Kumar. « Thermal Performance Analysis of Cylindrical Heat Pipes Induced in a Shell Assisted Heat Exchanger ». Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 mars 2020) : 618–35. http://dx.doi.org/10.5373/jardcs/v12sp4/20201528.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

M, Halafawi. « Offset Wells Data Analysis and Thermal Simulations Improve the Performance of Drilling HPHT Well ». Petroleum & ; Petrochemical Engineering Journal 6, no 1 (2022) : 1–15. http://dx.doi.org/10.23880/ppej-16000298.

Texte intégral
Résumé :
To drill new HPHT development wells safely, an exact estimate of their stability is essential. Analyzing previously drilled offset wells can assist in this determination, eliminating any stratigraphic column issues and saving nonproductive time. The challenges found with offset wellbores, their consequences on well design, possible remedies, and preventative measures are discussed in this paper. It examines drilling data from offset wells in order to discover, diagnose, and treat serious issues. Furthermore, thermal simulation was done in order to study the temperature distribution of the wellbore, annuli and fluids during drilling, tripping, circulation, logging, casing and cementing in HPHT zone.
Styles APA, Harvard, Vancouver, ISO, etc.
10

TAKANO, Chihiro, Yusuke MURAKI, Tsuyoshi TOTANI, Harunori NAGATA et Isao KUDO. « 3329 Thermal Analysis and Performance Characteristics on Solar Thermal Thruster ». Proceedings of the JSME annual meeting 2005.5 (2005) : 385–86. http://dx.doi.org/10.1299/jsmemecjo.2005.5.0_385.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jain, Nikhil, Vishal Garg et Jyotirmay Mathur. « Thermal performance analysis of solar clothes dryer ». Journal of Renewable and Sustainable Energy 5, no 4 (juillet 2013) : 043113. http://dx.doi.org/10.1063/1.4816498.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sopian, K., K. S. Yigit, H. T. Liu, S. Kakaç et T. N. Veziroglu. « Performance analysis of photovoltaic thermal air heaters ». Energy Conversion and Management 37, no 11 (novembre 1996) : 1657–70. http://dx.doi.org/10.1016/0196-8904(96)00010-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bhangu, Navneet Singh, Rupinder Singh et G. L. Pahuja. « Availability Performance Analysis of Thermal Power Plants ». Journal of The Institution of Engineers (India) : Series C 100, no 3 (15 mars 2018) : 439–48. http://dx.doi.org/10.1007/s40032-018-0450-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhuang, Zhi, Yuguo Li et Bin Chen. « Thermal storage performance analysis on Chinese kangs ». Energy and Buildings 41, no 4 (avril 2009) : 452–59. http://dx.doi.org/10.1016/j.enbuild.2008.11.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Han, Yuanyuan, Hong Guo, Ximin Zhang, Fazhang Yin, Ke Chu et Yeming Fan. « Thermal performance analysis of LED with multichips ». Journal of Wuhan University of Technology-Mater. Sci. Ed. 26, no 6 (décembre 2011) : 1089–92. http://dx.doi.org/10.1007/s11595-011-0368-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

S, Nagarajan, et Prem kumar M. « Analysis of Thermal Performance in Solar Dryer ». IOSR Journal of Mechanical and Civil Engineering 11, no 3 (2014) : 71–74. http://dx.doi.org/10.9790/1684-11327174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Anand Kishorbhai Patel. « Thermal performance analysis conical solar water heater ». World Journal of Advanced Engineering Technology and Sciences 9, no 2 (30 août 2023) : 276–83. http://dx.doi.org/10.30574/wjaets.2023.9.2.0228.

Texte intégral
Résumé :
Solar radiation is harnessed as an alternative energy source for numerous industrial and domestic applications. Currently, apart from space heating, air-conditioning and lightning, solar water heating (SWH) systems have a widespread usage and applications in both domestic and industrial sectors. The major issue with solar energy is that the transmission efficiency is low and so heat transfer augmentation methods can be used to improve thermal performance of solar water heater and the aim of present work is to developed conical solar water heater with objective is to obtain good water outlet temperature from compact solar water heater.
Styles APA, Harvard, Vancouver, ISO, etc.
18

XUYI, Zhao, Wang FUQIANG, Shi XUHANG, Cheng ZIMING et Gong XIANGTAO. « Analysis of heat transfer performance of the absorber tube with convergent-divergent structure for parabolic trough collector ». Journal of Thermal Engineering 7, no 14 (30 décembre 2021) : 1843–56. http://dx.doi.org/10.18186/thermal.1051232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Heggs, P. J., et E. A. Foumeny. « THERMAL PERFORMANCE OF DIABATIC CYCLIC REGENERATORS ». Numerical Heat Transfer, Part A : Applications 9, no 2 (1 février 1986) : 183–99. http://dx.doi.org/10.1080/10407788608913472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lin, Xueyan. « Thermal performance analysis of electric vehicle charging connectors ». Thermal Science, no 00 (2020) : 313. http://dx.doi.org/10.2298/tsci200609313l.

Texte intégral
Résumé :
In order to obtain the thermal characteristics of the electric vehicle connector in operation. Firstly, the thermal circuit diagram of the connector is obtained by using thermoelectric simulation method. Then, based on Newton's cooling equation, the natural convection heat transfer coefficient of the connector is calculated, which provides accurate input parameters for thermal simulation calculation. Finally, the thermal performance of the connector and the influence of component size and material are analyzed based on ANSYS software. When the working current is 250A and the ambient temperature is 25?C, the temperature rise of connector shell and conductor can meet the thermal performance requirement. In order to reduce the temperature and uniform temperature difference of each part of the connector, the following optimization schemes are put forward: the optimal length of the insulator is 44mm; the shell length should be increased as far as possible if conditions permit; LCP with high thermal conductivity is selected as the insulator material; aluminum alloy with high thermal conductivity and blackness is selected as the shell material.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jurigova, Martina, Maria Minarova et Ivan Chmúrny. « Analysis of Thermal Performance of Energy Storage System ». Applied Mechanics and Materials 824 (janvier 2016) : 371–78. http://dx.doi.org/10.4028/www.scientific.net/amm.824.371.

Texte intégral
Résumé :
Thermal energy is necessary of many reasons. The most basic and most obvious includes food preparation and delivery of heat. Thermal energy storage is actually a temporary storage at high temperatures, respectively at low temperatures. It is an advanced technology, which can reduce environmental impact and it can facilitate more efficient and cleaner energy system. Nowadays, these systems have ability to retain thermal energy for a period of three months or more. The aim of design of these systems is to keep the thermal energy in summer period and to use it for heating in winter period. The role of such storage systems is to accumulate the heat, to balance temperature differences and to achieve the most effective use of the collected energy. This paper is focused on thermal analysis of system, which contains concrete tank. It is a system with water as a storage medium and the cooling of the water was monitored for 30 days.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Djamila, Harimi. « Analysis of Building Materials for Indoor Thermal Performance and Thermal Comfort ». Advanced Materials Research 845 (décembre 2013) : 472–76. http://dx.doi.org/10.4028/www.scientific.net/amr.845.472.

Texte intégral
Résumé :
In recent years, there has been an increasing interest on energy saving in building sector.Passive cooling is considered the best strategy for improving the indoor thermal conditions and comfortwith lowest cost energy usage. In air-conditioned era, however, many designers have fully forgotten that the main objective of building thermal comfort is not to cool the whole space but rather the resident of the building with the least energy consumption. This investigation is about discussing some of the available passive cooling strategies based on experimental investigations. Results from this study showed that building materialsaffect the indoorair temperature, which in turn willaffect the indoor thermal comfort. Design strategies more suitable under tropical humid climatic conditions were suggested.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shankar, Gade Bhavani, et P. S. Kishore. « PERFORMANCE ANALYSIS OF A CONVENTIONAL AIR HEATER ». International Journal of Research -GRANTHAALAYAH 5, no 4 (30 avril 2017) : 320–33. http://dx.doi.org/10.29121/granthaalayah.v5.i4.2017.1826.

Texte intégral
Résumé :
Solar energy constitutes one of the main alternatives for facing the energy problems of the future. Solar air heaters are used for applications at low and moderate temperatures. Such as crop drying, timber seasoning, space heating, and drying agriculture products. Artificial geometry applied on the absorber plate is the very efficient method to improve thermal performance of solar air heaters. The thermal efficiency of solar air heaters is generally poor due to low heat transfer coefficient between the absorber plate and air flowing in the collector. Thermal performance of the conventional solar air heater was studied under varying solar and ambient conditions in different months. At day time the solar heating system stored the thermal solar energy as sensible and latent heat. A parametric study was done for 10 months for the climatic conditions of Visakhapatnam. The effect of change in the tilt angle, length and breadth of a collector and mass flow rate on the temperature of collector has been studied. The length of the collector is 2.1m and width of the collector is 1.1 m. the performance analysis of system shows potential of improving the thermal efficiency range is 31% to 47% .From the obtained results, graphs are drawn to assess the performance analysis of a conventional air heater.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Fang, Wen Bo. « Performance Analysis of Solar Evacuated Tube Collector ». Advanced Materials Research 712-715 (juin 2013) : 1605–8. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.1605.

Texte intégral
Résumé :
The high temperature operation of Evacuated Tube Collectors (ETC) and their very low radiant heat losses make them ideal for solar water heating, solar space heating, desiccant air conditioning, thermal driven cooling and industrial process heating applications. The work temperature of common ETC can reach 100~ 250°C. The vacuum tube envelope minimizes heat loss and ensures high collector durability and steady performance. This paper investigates different types of solar thermal collectors and compared them so that the result which the heat loss of ETC is least is obtained. The thermal analysis and performance of ETC are investigated as well.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Wang, Quannan. « Thermal insulation performance analysis of high rise building envelope based on finite element analysis ». Thermal Science 26, no 3 Part A (2022) : 2361–72. http://dx.doi.org/10.2298/tsci2203361w.

Texte intégral
Résumé :
The current analysis method of thermal insulation performance of building envelope neglects the optimization of temperature control parameters, which leads to poor thermal insulation performance, low thermal insulation rate and weak convincing results. Therefore, a finite element analysis method for the thermal insulation performance of high rise building envelope is proposed. Compton backscattering technique is introduced to analyze the influence of the scattering intensity and the ratio of window width on the heat transfer coefficient of the enclosure. Based on the objective function, the thermal performance parameters of retaining wall are calculated and fused. An adaptive iterative optimization method is used to control the thermal performance of the enclosure using the thermal performance parameters of the enclosure. Through the Compton backscatter detection technology, the decision variables of energy consumption of the thermal insulation materials are obtained, and the temperature control parameters of the walls are optimized. The finite element model of enclosure structure is established by using finite element software. The results of finite element model experiments show that the proposed method has ideal heat preservation rate and energy consumption. Compared with the traditional method, the proposed method can keep the preset temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Pokorny, Nikola, et Tomas Matuska. « Performance analysis of glazed PVT collectors for multifamily building ». E3S Web of Conferences 172 (2020) : 12003. http://dx.doi.org/10.1051/e3sconf/202017212003.

Texte intégral
Résumé :
The paper deals with performance analysis of potential application of glazed photovoltaic-thermal collector for domestic hot water preparation for multifamily building in European climatic conditions. Two different solutions are studied, glazed photovoltaic-thermal collectors integrated in the building envelope and glazed photovoltaic-thermal collectors fixed on the roof of the building. Moreover, the paper presents a comparison with conventional side by side installation of solar thermal collectors and photovoltaic panels to show the benefit of photovoltaic-thermal collectors. Simulation analysis has been done in TRNSYS with use of developed and validated mathematical model of glazed photovoltaic-thermal collector.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Cao, Rui. « Performance Characteristics Analysis of Supercritical Boiler Water Wall ». Advanced Materials Research 328-330 (septembre 2011) : 2248–51. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.2248.

Texte intégral
Résumé :
The key technology of supercritical boiler is water wall, this paper is mainly analyzed the dangerous working conditions of supercritical boiler water wall. On the one hand, from working substance’s point of view, we adopt traditional pressure drop method to judge the heat transfer deterioration position under sub-critical pressure; on the other hand, we use temperature test point combining calculation formula of wall temperature to judge the heat transfer deterioration position under supercritical pressure, and combining improved zoned thermal calculation method to get wall surface thermal load distribution map. Through an instance calculation, when boiler unit under 40% of full load, the maximum thermal load is near 20 meters of furnace height and when it under 100% full loads, the maximum thermal load is near 30 meters of furnace height. So we can control all kinds of heat transfer deterioration position through changing hydrodynamic condition and ward off the highest thermal load area, which is significant to operation.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Bezerra Batista, Pedro Igor, Joaquin Humberto Aquino Rocha et Yêda Vieira Póvoas. « Parameters of thermal performance of plaster blocks : Experimental analysis ». Materiales de Construcción 73, no 350 (24 mai 2023) : e314. http://dx.doi.org/10.3989/mc.2023.299322.

Texte intégral
Résumé :
This work aims to obtain parameters of thermal performance of various types of plaster blocks for vertical sealing. The methodology consisted of making test elements with 8 types of plaster blocks, in addition to plasterboard of different densities. Thermal resistance, transmittance, capacity, and delay were calculated, according to the Brazilian standard NBR 15220. Thermal behavior tests were carried out with controlled heating through a heat source, digital thermometer, infrared thermography, and an instrumented thermal chamber developed for this work. The experimental results corroborated with the trend indicated by the calculated parameters. The massive and hollow blocks of 100 mm had the best results followed by the 76 mm hollow blocks. The 50- and 70-mm massive blocks were among those with the worst thermal behavior. The study through the thermal chamber and real test elements associated with the normative methods allowed the practical verification regarding the thermal behavior of the components.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Buday, Peter, Rastislav Ingeli et Miroslav Čekon. « Advanced Thermal Performance Analysis of Thermal Break Element Applied in Balcony Slab ». Advanced Materials Research 1041 (octobre 2014) : 167–70. http://dx.doi.org/10.4028/www.scientific.net/amr.1041.167.

Texte intégral
Résumé :
Thermal performance of any building component is the result not only of its thermophysical properties but also of a way of final installation and connections altogether of their all elements. In addition, thermal leakage and bridging in buildings can eventually contribute to a multitude of problems. The thermal bridge is the place in the building envelope through which heat transfer has a multi-dimensional nature. That is why in recent studies, the issue of heat transfer phenomena in the building components is considered as a multi-dimensional more frequently. One of the specific details that create thermal leakage is located in balcony slabs. This paper is focused on detailed analysis of thermal performance of thermal break element applied in balcony slab with relation to the thermal aspects of wall building envelope. Particular cases of commonly used balcony systems in buildings are observed related to multi-dimensional and parametric approach of modeling. As result of analyzed thermal aspects, such as importance of building envelope type and its thermal performance, variations of thermal properties, are presented as study findings that affected thermal bridges magnitude and resultant thermal performance of balcony slab detail.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Marc-Alain Mutombo, N., Freddie Inambao et Glen Bright. « Performance analysis of thermosyphon hybrid photovoltaic thermal collector ». Journal of Energy in Southern Africa 27, no 1 (23 mars 2016) : 28. http://dx.doi.org/10.17159/2413-3051/2016/v27i1a1564.

Texte intégral
Résumé :
The conversion of solar irradiance into electricity by a photovoltaic module (PV) is 6– 7% of the incoming energy from the sun depending on the type of technology and the environmental parameters. More than 80% of incoming energy from the sun is reflected or absorbed by the solar module. The fraction of energy absorbed increases with solar cell temperature and the cells’ efficiency drops as a consequence. The efficiency of a PV module is improved by combining a PV module and a thermal collector in one unit, resulting in a hybrid photovoltaic and thermal collector (PV/T). The purpose of this paper is to present the behavior a thermosyphon hybrid PV/T when exposed to variations of environmental parameters and to demonstrate the advantage of cooling photovoltaic modules with water using a rectangular channel profile for the thermal collector. A single glazed flat-box absorber PV/T module was designed, its behavior for different environmental parameters tested, the numerical model developed, and the simulation for particular days for Durban weather run. The simulation result showed that the overall efficiency of the PV/T module was 38.7% against 14.6% for a standard PV module while the water temperature in the storage tank reached 37.1 °C. This is a great encouragement to the marketing of the PV/T technology in South Africa particularly during summer, and specifically in areas where the average annual solar irradiance is more than 4.70 kWh/m²/day.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Nguyen, Ngoc-Vi, et Dong-Wook Oh. « Analysis of thermal performance of polymer rotary regenerator ». High Temperatures-High Pressures 48, no 1-2 (2019) : 107. http://dx.doi.org/10.32908/hthp.v48.703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Hisada, Takashi, et Yasuharu Yamada. « Computational Analysis on Thermal Performance of 2.5D Package ». Transactions of The Japan Institute of Electronics Packaging 7, no 1 (2014) : 114–22. http://dx.doi.org/10.5104/jiepeng.7.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Radha, Chro Hama, et Istvan Kistelegdi. « Thermal performance analysis of Sabunkaran residential building typology ». Pollack Periodica 12, no 2 (août 2017) : 151–62. http://dx.doi.org/10.1556/606.2017.12.2.13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Choi, Bongkeun. « Thermal Performance of Disc Brake and CFD Analysis ». SAE International Journal of Passenger Cars - Mechanical Systems 7, no 4 (28 septembre 2014) : 1304–10. http://dx.doi.org/10.4271/2014-01-2497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bi-chao, YE, et Hao Zhou. « Thermal Performance Analysis of Concrete Small Hollow Block ». IOP Conference Series : Materials Science and Engineering 556 (19 août 2019) : 012041. http://dx.doi.org/10.1088/1757-899x/556/1/012041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ross, Jennifer M., James L. Szalma et Peter A. Hancock. « A Meta-Analysis of Performance under Thermal Stress ». Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, no 17 (octobre 2006) : 1736–40. http://dx.doi.org/10.1177/154193120605001703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Fakhim, B., N. Srinarayana, M. Behnia et S. W. Armfield. « Thermal Performance of Data Centers-Rack Level Analysis ». IEEE Transactions on Components, Packaging and Manufacturing Technology 3, no 5 (mai 2013) : 792–99. http://dx.doi.org/10.1109/tcpmt.2013.2248195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yuan, Zhimin, et Bo Liu. « Anti-thermal asperity head : design and performance analysis ». Journal of Magnetism and Magnetic Materials 209, no 1-3 (février 2000) : 166–68. http://dx.doi.org/10.1016/s0304-8853(99)00677-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Fleuchaus, Paul, Simon Schüppler, Bas Godschalk, Guido Bakema et Philipp Blum. « Performance analysis of Aquifer Thermal Energy Storage (ATES) ». Renewable Energy 146 (février 2020) : 1536–48. http://dx.doi.org/10.1016/j.renene.2019.07.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Fudholi, Ahmad, Kamaruzzaman Sopian, Mohammad H. Yazdi, Mohd Hafidz Ruslan, Adnan Ibrahim et Hussein A. Kazem. « Performance analysis of photovoltaic thermal (PVT) water collectors ». Energy Conversion and Management 78 (février 2014) : 641–51. http://dx.doi.org/10.1016/j.enconman.2013.11.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Gultekin, Ahmet, Murat Aydin et Altug Sisman. « Thermal performance analysis of multiple borehole heat exchangers ». Energy Conversion and Management 122 (août 2016) : 544–51. http://dx.doi.org/10.1016/j.enconman.2016.05.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bataineh, Khaled M., et Nadia Fayez. « Analysis of thermal performance of building attached sunspace ». Energy and Buildings 43, no 8 (août 2011) : 1863–68. http://dx.doi.org/10.1016/j.enbuild.2011.03.030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wen, Li Zhe, et Yuan Sheng Huang. « Comparable Analysis on the Thermal Performance of Prepreg ». Materials Science Forum 984 (avril 2020) : 144–49. http://dx.doi.org/10.4028/www.scientific.net/msf.984.144.

Texte intégral
Résumé :
Both differential scanning calorimetry (DSC) and differential thermal analysis (DTA) were employed to analyze the thermal performance of the prepreg made by different companies. The results were shown that glass transition temperature (Tg), conversion rate and residual amount of carbon had a large difference. Tg ranged from 130.10 °C to 198.99 °C. After heat-treating from 20°C to 230°C for 23minutes, conversion rate ranged from 19.47% to 100%. After heating from 20°C to 500°C, residual amount of carbon had a range from 13.149% to 39.834%. Tg was not directly proportional to residual amount of carbon. When the residual amount of carbon was more than 30%, Tg would be more than 150°C. It was indicated Tg was relevant to carbon content of resin and inorganic fillers.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Radziemska, Ewa. « Performance Analysis of a Photovoltaic-Thermal Integrated System ». International Journal of Photoenergy 2009 (2009) : 1–6. http://dx.doi.org/10.1155/2009/732093.

Texte intégral
Résumé :
The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Mohanty, Chinmaya P., Siba Sankar Mahapatra et Jambeswar Sahu. « A thermal-structural model for process performance analysis ». International Journal of Productivity and Quality Management 16, no 3 (2015) : 347. http://dx.doi.org/10.1504/ijpqm.2015.071519.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Mahbubul, I. M., A. Saadah, R. Saidur, M. A. Khairul et A. Kamyar. « Thermal performance analysis of Al2O3/R-134a nanorefrigerant ». International Journal of Heat and Mass Transfer 85 (juin 2015) : 1034–40. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.02.038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Xiangdong, et Yongping Chen. « Transient thermal performance analysis of micro heat pipes ». Applied Thermal Engineering 58, no 1-2 (septembre 2013) : 585–93. http://dx.doi.org/10.1016/j.applthermaleng.2013.04.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Oliveira, Raquel Diniz, Roberta Vieira Gonçalves de Souza, Ana Júlia Maia Mairink, Magno Tadeu Gomes Rizzi et Roberto Márcio da Silva. « Concrete Walls Thermal Performance Analysis by Brazilian Standards ». Energy Procedia 78 (novembre 2015) : 213–18. http://dx.doi.org/10.1016/j.egypro.2015.11.383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Bilen, Kadir, Ugur Akyol et Sinan Yapici. « Thermal performance analysis of a tube finned surface ». International Journal of Energy Research 26, no 4 (2002) : 321–33. http://dx.doi.org/10.1002/er.786.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bannister, Paul. « The ANU solar thermal steam engine : performance analysis ». International Journal of Energy Research 22, no 4 (25 mars 1998) : 303–16. http://dx.doi.org/10.1002/(sici)1099-114x(19980325)22:4<303 ::aid-er348>3.0.co;2-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie