Littérature scientifique sur le sujet « Thermal Hysteresi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Thermal Hysteresi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Thermal Hysteresi"
Bobenko, Nadezhda, Valeriy Egorushkin et Alexander Ponomarev. « Hysteresis in Heat Capacity of MWCNTs Caused by Interface Behavior ». Nanomaterials 12, no 18 (10 septembre 2022) : 3139. http://dx.doi.org/10.3390/nano12183139.
Texte intégralKutschan, Bernd, Silke Thoms et Maddalena Bayer-Giraldi. « Thermal hysteresis of antifreeze proteins considering Fragilariopsis cylindrus ». Algological Studies 151-152, no 1 (1 septembre 2016) : 69–86. http://dx.doi.org/10.1127/algol_stud/2016/0252.
Texte intégralFeng, Man, et Delwyn G. Fredlund. « Calibration of thermal conductivity sensors with consideration of hysteresis ». Canadian Geotechnical Journal 40, no 5 (1 octobre 2003) : 1048–55. http://dx.doi.org/10.1139/t03-046.
Texte intégralHamid, Youssef, David A. Hutt, David C. Whalley et Russell Craddock. « Relative Contributions of Packaging Elements to the Thermal Hysteresis of a MEMS Pressure Sensor ». Sensors 20, no 6 (19 mars 2020) : 1727. http://dx.doi.org/10.3390/s20061727.
Texte intégralBarrett, John. « Thermal hysteresis proteins ». International Journal of Biochemistry & ; Cell Biology 33, no 2 (février 2001) : 105–17. http://dx.doi.org/10.1016/s1357-2725(00)00083-2.
Texte intégralBoukheddaden, Kamel, Houcem Fourati, Yogendra Singh et Guillaume Chastanet. « Evidence of Photo-Thermal Effects on the First-Order Thermo-Induced Spin Transition of [{Fe(NCSe)(py)2}2(m-bpypz)] Spin-Crossover Material ». Magnetochemistry 5, no 2 (1 avril 2019) : 21. http://dx.doi.org/10.3390/magnetochemistry5020021.
Texte intégralLu, Sheng, Xing Yin Zhu, Bin Liu et Yun Peng Wang. « Effects of Workpiece Size on Temperature Distribution During FSW of AZ31 Magnesium Alloy ». Materials Science Forum 850 (mars 2016) : 734–41. http://dx.doi.org/10.4028/www.scientific.net/msf.850.734.
Texte intégralSchmahl, Wolfgang W. « Athermal transformation behaviour and thermal hysteresis at the SiO2-α/ß-cristobalite phase transition ». European Journal of Mineralogy 5, no 2 (27 avril 1993) : 377–80. http://dx.doi.org/10.1127/ejm/5/2/0377.
Texte intégralGU, WEN-XIAO, MENG-LIAN ZHAO, XIAO-BO WU, MINGYANG CHEN et QING LIU. « A HIGH-PRECISION ULTRA-LOW-POWER HYSTERETIC VOLTAGE DETECTOR USING CURRENT-BASED COMPARISON ». Journal of Circuits, Systems and Computers 22, no 09 (octobre 2013) : 1340005. http://dx.doi.org/10.1142/s0218126613400057.
Texte intégralUrrutia, Maria E., John G. Duman et Charles A. Knight. « Plant thermal hysteresis proteins ». Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1121, no 1-2 (mai 1992) : 199–206. http://dx.doi.org/10.1016/0167-4838(92)90355-h.
Texte intégralThèses sur le sujet "Thermal Hysteresi"
MANGIAGALLI, MARCO. « Structural and functional analyses of an ice-binding protein from an Antarctic bacterium ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241269.
Texte intégralIce-binding proteins (IBPs) are characterized by the ability to control the growth of ice crystals. IBPs are active in increasing thermal hysteresis (TH) gap as they decrease the freezing point of water. On the other hand, IBPs can inhibit ice recrystallization (IRI) and stabilize small ice crystals at the expense of the harmful, large ones. IBPs have been identified in several organisms including higher Eukaryotes and microorganisms such as bacteria, yeasts and algae. Although IBPs share the ability to bind ice crystals, proteins from different sources present different 3D structures, from α-helix to β-solenoid proteins. This thesis is focused on the structural and functional characterization of EfcIBP, a bacterial IBP identified by metagenomic analysis of the Antarctic ciliate Euplotes focardii and the associated consortium of non-cultivable bacteria. The 3D structure of EfcIBP, solved by X-ray crystallography, consists in a β-solenoid with an α-helix aligned along the axis of the β-helix. It is possible to distinguish three different faces: A, B and C. Docking simulations suggest that B and C faces are involved in ice binding. This hypothesis was tested by the rational design of six variants that were produced and assayed for their activity. Overall, these experiments indicate that both solenoid faces contribute to the activity of EfcIBP. EfcIBP displays remarkable IRI activity at nanomolar concentration and a TH activity of 0.53°C at the concentration of 50 μM. The atypical combination between these two activities could stem from the ability of this protein to bind ice crystals through two faces of the solenoid. In the presence of EfcIBP, ice crystals show a hexagonal trapezohedron shape within the TH gap, and a unique “Saturn-shape” below the freezing point. A chimeric protein consisting of the fusion between EfcIBP and the green fluorescent protein was used to deeper investigate on this aspects by analyses of fluorescence ice plane affinity and binding kinetics. Overall, experimental data suggest that the EfcIBP unique pattern of ice growth and burst are due to its high rate of binding at the basal and the pyramidal near-basal planes of ice crystals. These data, together with the signal sequence for the secretion, suggest that EfcIBP is secreted in local environment where it becomes active in increasing the habitable space. In conclusion, EfcIBP is a new type of IBP with unusual properties of ice shaping and IRI activity. This study opens new scenarios in the field of IBPs by contributing to identify a new class of moderate IBPs potentially exploitable as cryoprotectants in several fields, such as cryobiology and food science.
Scheck, Christopher G. « Thermal Hysteresis loss in gas springs ». Ohio University / OhioLINK, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1182870415.
Texte intégralCan, Ozge. « NOVEL ANTIFREEZE PROTEIN CONSTRUCTS FOR IMPROVED ACTIVITY ». Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1229703788.
Texte intégralCelik, Yeliz. « Experimental Investigation of the Interactions of Hyperactive Antifreeze Proteins with Ice Crystals ». Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1268166115.
Texte intégralSuleimanov, Iurii. « Nano-objets et nano-composites à transition de spin basés sur des complexes du fer(II) avec des ligands 1,2,4-triazoles ». Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30017.
Texte intégralThe thesis is devoted to the preparation of new nanoobjects and nanocomposites of spin crossover complexes [Fe(Htrz)2(trz)](BF4) and [Fe(NH2-trz)3](NO3)2 (where Htrz - 1,2,4-triazole, trz - 1,2,4-trazolato, NH2-trz - 4-amino-1,2,4-triazole) and investigation their properties. Nanoobjects of mixed-ligand complexes with different ratio of 4-amino-1,2,4-triazole to 1,2,4-triazole were synthesized in reverse emulsions. It was shown that the increasing of the of 4-amino-1,2,4-triazole quantity leads to the increasing of nanoparticles anisotropy while spin crossover temperatures decrease. Double-step spin transition was observed at 20% mol of 4-amino-1,2,4-triazole, while at concentrations over 50% mol. spin crossover properties of [Fe(Htrz)2(trz)](BF4) completely disappear. Investigations of their morpholgy, size and spin transition characteristics as well as investigations of mechanisms of the fluorescent properties change under the spin switching process are shown. We consider obtaining nanoobjects of mixed-ligand complexes of iron (II) based on 1,2,4-triazole and 4-amino-1,2,4-triazole. The ligands ratio influences the morphology, size and characteristics of the spin transition of nanoobjects obtained. New modification of the complex [Fe(NH2-trz)3](NO3)2 in the form of nanoobjects was obtained using ligand excess. High transition temperature of this form was evidenced by various methods of analysis. This form was found to be isostructural with a resolved structure of [Fe(NH2-trz)3](NO3)2 · 2H2O. Series of nanocomposites with plasmonic and luminescent properties were prepares. For the core-shell composite with gold nanoparticles higher efficiency of the spin state switching due to the photothermal effect was demonstrated in comparison to the control sample. Fluorescent spin crossover composites with quantum dots, organic luminophors and terbium complexes were described. For all these composites the luminescence intensity variation as a function of temperature have been found. The mechanisms responsable of the luminescence intensity variation at two spin state are discussed. These mechanisms include resonant energy transfer, mechanical strain and photon reabsorption. High photostability fort he terbium - spin crossover composite is demonstrated comparing to previously obtained similar spin crossover luminescetnt composites. An example of a practical application of obtained composites for manufacturing fluorescent thermosensitive paper is shown
Gelaye, Ababu A. « UPSCALING OF A THERMAL EVOLUTION EXPERIMENT ON SHREDDED-TIRE MONOFILLS ». University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1512762530668535.
Texte intégralPetrášová, Anna. « Počítačové modelování teplotní hystereze při změně skupenství ». Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445463.
Texte intégralAbeysekara, A. U., S. Archambault, A. Archer, W. Benbow, R. Bird, M. Buchovecky, J. H. Buckley et al. « A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421 ». IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/622634.
Texte intégralHan, Mangui. « Critical Behavior of Thermal Expansion and Magnetostriction in the Vicinity of the First order transition at the Curie Point of Gd5(SixGe1-x)4 ». Ames, Iowa : Oak Ridge, Tenn. : Ames Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/837267-32IBIb/webviewable/.
Texte intégralPublished through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2309" Mangui Han. US Department of Energy 12/19/2004. Report is also available in paper and microfiche from NTIS.
Lhermerout, Romain. « Mouillage de surfaces désordonnées à l'échelle nanométrique ». Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE041/document.
Texte intégralDuring this thesis, we first developed an experimental set-up to measure contact angle dynamics with a record precision of 0.01° over 7 decades of velocity of the triple line, a range never before attained. For the first time, numerically solving the lubrication equations has allowed us to deduce the contact angle at the microscopic scale from these macroscopic measurements, and thus enabled the multi-scale hydrodynamic problem to be disentangled from the physics of the contact line at small scales. With these tools we have shown that the dynamics can be completely piloted by a pseudo-brush -a nanometric layer of polymers-, producing the lowest ever reported hysteresis (<0.07°!) and giving rise to a huge source of dissipation originating from the viscoelasticity of the coating. This study points the way towards nano-rheology, to probe extremely fast dynamics (~100 ns) of polymers confined at the nano-scale. Thanks to a fruitful collaborative work, we then developed a model that provides a single quantitative framework to account for hydrodynamic dissipation, hysteresis and thermal activation. Finally, a great deal of effort has been made to produce nano-defects whose size, shape and density are controlled. The dynamics appears to be insensitive to this scale of disorder, and the presence of defects is observed to only modify the hysteresis. These results have been interpreted semi-quantitatively with scaling laws, and we expect that the complete characterization of the defects should eventually allow the development of more quantitative models
Livres sur le sujet "Thermal Hysteresi"
Clarke, Andrew. Freezing. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0006.
Texte intégralManson, S. S., et G. R. Halford. Fatigue and Durability of Metals at High Temperatures. ASM International, 2009. http://dx.doi.org/10.31399/asm.tb.fdmht.9781627083430.
Texte intégralChapitres de livres sur le sujet "Thermal Hysteresi"
Kristiansen, Erlend. « Thermal Hysteresis ». Dans Antifreeze Proteins Volume 2, 131–58. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41948-6_6.
Texte intégralUnruh, H. G., et A. Levstik. « Thermal Hysteresis, Solitons and Domain Walls ». Dans NATO ASI Series, 163–76. New York, NY : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0184-5_15.
Texte intégralRassili, A., et M. Ausloos. « Critical Behavior of the Thermal Conductivity near a Magnetic Phase Transition ». Dans Magnetic Hysteresis in Novel Magnetic Materials, 187–93. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_18.
Texte intégralKühn, Jan, Andreas Bartel et Piotr Putek. « A Thermal Extension of Tellinen’s Scalar Hysteresis Model ». Dans Scientific Computing in Electrical Engineering, 55–63. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44101-2_6.
Texte intégralMüller, I. « Some Remarks on Thermo-Mechanical Hysteresis ». Dans Advances in Continuum Mechanics, 428–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-48890-0_34.
Texte intégralBonney, G. E. « Thermal Hysteresis at 4 K with a GM Cryocooler ». Dans Cryocoolers 12, 411–19. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/0-306-47919-2_54.
Texte intégralRoshko, R. M., P. D. Mitchler et E. Dan Dahlberg. « The Effect of Thermally Induced Relaxation on the Remanent Magnetization in a Moving Preisach Model ». Dans Magnetic Hysteresis in Novel Magnetic Materials, 147–57. Dordrecht : Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_13.
Texte intégralGusev, Vitalyi, et Vincent Tournat. « Thermally Induced Rate-Dependence of Hysteresis in Nonclassical Nonlinear Acoustics ». Dans Universality of Nonclassical Nonlinearity, 337–48. New York, NY : Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35851-2_21.
Texte intégralTan, Yuqing, Ji Dang, Akira Igarashi, Takehiko Himeno et Yuki Hamada. « A Thermo-Mechanical Coupled Model of Hysteresis Behavior of HDR Bearings ». Dans Lecture Notes in Civil Engineering, 307–19. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93236-7_27.
Texte intégralUsui, Kaoru, Shinichi Ichimura, Kazuo Nozaki, Manabu Suzuki, Kazuya Oguri et Yoshitake Nishi. « Influence of Thermal Hysteresis on Tc mid — (about 115 K) of High-Tc Bi-System ». Dans Advances in Superconductivity VI, 671–73. Tokyo : Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-68266-0_148.
Texte intégralActes de conférences sur le sujet "Thermal Hysteresi"
Clemente-Arenas, Mark, Julio Urbina et Akhlesh Lakhtakia. « Metasurfaces with thermal hysteresis ». Dans 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2018. http://dx.doi.org/10.1109/iceaa.2018.8520495.
Texte intégralZhang, Jun, Emmanuelle Merced, Nelson Sepúlveda et Xiaobo Tan. « Modeling of Non-Monotonic Hysteresis Behavior in VO2-Coated Microactuators ». Dans ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7940.
Texte intégralBauerbach, Kai, Michael Vormwald et Ju¨rgen Rudolph. « Fatigue Assessment of Nuclear Power Plant Components Subjected to Thermal Cyclic Loading ». Dans ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77450.
Texte intégralPieniazek, Jacek, et Piotr Ciecinski. « Thermal hysteresis in inertial sensors ». Dans 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2020. http://dx.doi.org/10.1109/metroaerospace48742.2020.9160243.
Texte intégralDantas, A. L., R. E. Camley et A. S. Carrico. « Thermal hysteresis of thin Dy films ». Dans INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.375668.
Texte intégralTan, Yuqing, Akira Igarashi, Ji Dang, Takehiko Himeno et Yuki Hamada. « A Thermo-mechanical Coupled Model of Hysteresis Behavior of HDR Bearings ». Dans IABSE Symposium, Prague 2022 : Challenges for Existing and Oncoming Structures. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1574.
Texte intégralWong, Voon Hon, John Parry et Gabor Farkas. « Effects of Auto-calibration Hysteresis ». Dans 2021 27th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, 2021. http://dx.doi.org/10.1109/therminic52472.2021.9626480.
Texte intégralChiou, J. Albert, et Steven Chen. « Thermal Hysteresis Analysis of MEMS Pressure Sensors ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59184.
Texte intégralChen, Jian-Zhang. « Thermally Actuated Droplet Motion on Chemically Homogeneous, Striated, and Defected Surfaces ». Dans 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70096.
Texte intégralBelghith, Ali, H. Beji et F. Oueslati. « HYSTERESYS ASPECT OF CONVECTION IN POROUS MEDIA WITH CROSS FLUX BOUNDARY CONDITIONS ». Dans Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar Bled. Connecticut : Begellhouse, 2000. http://dx.doi.org/10.1615/ichmt.2000.thersieprocvol2thersieprocvol1.220.
Texte intégralRapports d'organisations sur le sujet "Thermal Hysteresi"
Asenath-Smith, Emily, Emily Jeng, Emma Ambrogi, Garrett Hoch et Jason Olivier. Investigations into the ice crystallization and freezing properties of the antifreeze protein ApAFP752. Engineer Research and Development Center (U.S.), septembre 2022. http://dx.doi.org/10.21079/11681/45620.
Texte intégral